用户名: 密码: 验证码:
福建宁化紫色土地区土壤侵蚀动态变化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土资源是人类赖以生存的物质基础,近几十年来,人口增长、社会经济发展和资源的高强度开发,直接导致土地退化和区域生态环境恶化,水土流失问题日渐成为我国头号环境问题。宁化县地处“三江源头”,是福建省水土流失最严重的地区之一,也是我国南方紫色土丘陵区水力侵蚀的典型代表,境内水土流失已有上百年历史,严重制约了社会、经济的可持续发展,加剧了区域贫困和生态环境恶化。由于长期研究的侧重点不同,我国南方紫色土丘陵区水土流失理论、生态恢复与重建实践等工作相对滞后,而已有的研究大多集中于室内、坡面等小尺度范围内,研究空间窄,时间跨度短;此外,以往的土壤侵蚀研究由于技术手段的限制,多集中于定性和定量方面,动态研究应用不多。因此,深入研究紫色土丘陵区大尺度范围内水土流失多年变化规律,建立土壤侵蚀数据库,定量地评价强化治理的效果,可以有效地指导当地水土保持实践,为更好地在政府宏观调控下开展水土流失综合防治工作奠定基础。
     随着遥感、地理信息系统技术和空间分析模型的深入发展,利用遥感和地理信息系统技术研究典型区域水土流失及其动态变化,成为最迅速可靠的理想手段之一。自2000年宁化县开展大规模的水土流失综合治理实践以来,在社会、经济及其它因素影响下,区域土壤侵蚀面积、景观要素等发生了很大变化。本文以水土保持学、生态学的相关理论为基础,以宁化西部典型紫色土流失区为研究区域,基于地形图、ALOS遥感数据等,综合利用“3S”技术和ArcView、ArcGIS、Erdasimagine等软件,采集包括地形(主要利用DEM提取高程、坡度、坡向等地形因子)、土地利用类型、植被、土壤侵蚀和水土保持措施五个方面数据,建立了大比例尺、高精度的区域土壤侵蚀地理空间数据集,在野外实地判读验证和专家咨询的基础上综合生成土壤侵蚀现状图;分析了宁化西部2000-2007年土壤侵蚀的强度、数量结构在时间和空间上的演变及其变化原因,定量评价治理效果;同时,结合宁化县紫色土综合治理实践经验,提出防治对策。研究的主要结论如下:
     1. 2007年水土流失现状。2007年福建省宁化县西部区域水土流失总面积为13123.82 hm2,占土地总面积的27.04%,土壤侵蚀以微度和轻度为主,随着侵蚀强度的增加,土壤侵蚀面积呈下降趋势。由生成的2007年宁化西部土壤侵蚀现状图可知,该区水土流失集中分布在以石壁乡为中心的中部低山丘陵区,向周围山区呈辐射下降趋势。石壁、淮土乡两个乡镇仅占区域土地总面积的45.2%,其水土流失面积约占了流失总面积的近4/5(为79.73%)。
     2. 2000-2007年治理期间土壤侵蚀数量、强度动态变化规律。根据土壤侵蚀分级统计结果可知,从总体变化趋势上看,自2000年以来,宁化西部区域水土流失面积呈下降趋势,2007年与2000年相比,共减少水土流失面积1509.86 hm2,下降了3.11%,年变化率为1.47%。从各侵蚀强度类型变化趋势来看,微度侵蚀和中度侵蚀明显增加,其它各侵蚀类型均呈减少趋势,其中以中度和轻度侵蚀面积变化幅度最大;中度和极强度侵蚀年变化率最大。说明7年间宁化西部紫色土地区土壤侵蚀经过治理已初显成效。
     3.各侵蚀类型的转移动向和新增来源构成变化。7年中约有15462.98hm2面积发生不同程度的变化,占区域总面积的31.85%。其中微度侵蚀主要转化成轻度侵蚀;轻度、中度和极强度侵蚀均主要转化为微度侵蚀,主要聚集在中部采取封禁保护和强化治理措施的地区。微度、中度侵蚀分布主要由轻度、强度侵蚀转化而来;轻度、强度侵蚀主要由微度转化而来,极强度侵蚀绝大部分由轻度、微度侵蚀转化而来,主要聚集在全垦式山地开发、火烧山、项目开发建设等人为活动干扰严重的区域,呈零星散状分布。
     4.利用土壤侵蚀地域分布重心模型对各侵蚀类型空间位置转换分析得出,7年间宁化西部地区土壤侵蚀分布总重心向西北偏移,整体上偏移了1945.813m;从侵蚀类型上看,微度、轻度侵蚀重心分别向东南、西北方向偏移,中度和极强度侵蚀重心均向西南方向偏移,而强度侵蚀向东南方向偏移,其中以极强度侵蚀偏移距离最大,整体上偏移了8066.912m。
     5.运用SEIC和SEII指标对区域内不同地形因子土壤侵蚀结构动态变化特征进行分析,说明了海拔、坡度、坡向等地形因子的不同带来的土壤侵蚀严重程度及土壤侵蚀等级类型结构差异较大;绝大部分高程带、坡度等级和坡向类别上的SEII和SEIC均是2007年低于2000年,表明人为干预作用己经超过了自然因素的影响,宁化西部地区7年间,通过采取封禁、营造防护林草、坡耕地改造等综合措施,地表植被覆盖明显增加,水土流失有所减轻。
Ninghua City, locating in the area of "the source of three rivers", suffers the most serious soil erosion in Fujian Province. It is one of typical representatives of purple soil erosion region in South China, and its history of soil erosion has been more than a century. Study and investigation on the status quo of purple soil erosion and degradation, on changes in the law for many years, the establishment of a database concerning related data on soil erosion, proposals on prevention and control measures, all of those mentioned above can effectively guide local treatment on soil erosion and lay good foundation for better integrated soil erosion control under the government’s macro-control foundation.
     With in-depth developments on remote sensing, geographic information systems technology and spatial analysis model, remote sensing and geographic information systems have become one of the most rapid and reliable means to study soil erosion and its changes in the typical regional. Ninghua City has launched a large-scale and comprehensive treatment on soil erosion since 2000. With the social, economic and other factors, great changes for both soil erosion and landscape have taken place in the western part of the city. In this paper, on the basis of the relevant theories on soil and water conservation, ecology, setting the most serious purple soil erosion area, the western part in Ninghua City, as research region, with help of topographic maps, ALOS and other remote sensing data, "3S" technologies and ArcView, ArcGIS, Erdasimagine and so on, data in the five fields including topography (mainly using DEM to extract data of elevation, slope, aspect and other terrain factors), land-use types, vegetation, soil erosion and soil conservation measures have been acquired, and then large-scale, high-precision regional geo-spatial data sets on soil erosion have been established as well as the the status quo of soil erosion that based on the verification and expert advice in the open field. In addition, reasons for soil erosion evolution and changes of both intensity and quantity structure in time and space have been analyzed in west Ninghua during the period from 2000 to 20007. Finally, treatment and control strategies have been proposed according to integrated treatment and related experience in Ninghua county. Main conclusions are come up as follows:
     1. Soil erosion situation in 2007. In 2007, the total soil erosion area in the western region of Ninghua county, Fujian Province, is 13123.82 hm2, 27.04% of the total land area. And the extent of soil erosion is slight and mild-oriented. With the increase of erosion intensity, soil erosion area becomes downward. From soil erosion status chart of Ninghua county generated in 2007, the soil erosion region mainly locates in central hilly areas around Shibi. The land area of Shibi and Huaitu only accounts for 45.2% of total regional land area, however the soil erosion area is about 4 / 5 (that is 79.73%) of the total erosion area.
     2. Dynamic changes law of soil erosion quantity and intensity during 2000-2007. Based on statistical results of soil erosion classification, from overall changes trend, the soil erosion area in western NingHua is declining since 2000. By comparing the erosion area in 2007 with that in 2000, soil erosion area reduced 1509.86 hm2 in total with the rate of 3.11% and annual change rate of 1.47%. From changes trend of erosion intensity, slight and moderate degree erosion increased obviously, other types of erosion declined, with the biggest area change at moderate and slight erosion, and the most obvious annual changes rate at moderate and extreme strong erosion. Aforesaid results have proved early fruits in soil erosion treatment on purple soil erosion in west Ninghua in past seven years.
     3. From transfers of various erosion types and new erosion sources, there are about 15462.98hm2 area that suffered changes of different degrees erosion in past 7 years, accounting for 31.85% of the total regional area. Among erosion changes, slight erosion manly turned into mild erosion; slight, moderate and extreme strong erosions all turned into moderate erosion, extreme strong erosion turned into moderate erosion mainly locating in the central region areas where banned and strengthened protection measurements have been taken. Slight and moderate erosions mainly conversed from mild and strong erosions; mild and strong erosions mainly from slight erosions; extreme strong erosions mainly from mild and slight erosions locating sporadically and mainly in regions inferred seriously by human activities such as fully-cultivated land developing, mountains burining, project development and construction.
     4. Using the soil erosion distribution model to analyse spatial locations of the different erosion types, it is concluded that the center of soil erosion distribution in the west Ninghua has moved to the northwest, with an overall movement of 1945.813m in past 7 years. From erosion types, the shift direction for slight and mild erosion centers were southeast and northwest respectively, for both moderate and extreme strong erosion centers are southwest, for extreme strong erosion southeast. Among them, most intensive erosion is extreme strong erosion with an overall deviation distance of about 8066.912m.
     5.Through the analysis for different terrains on regional soil erosion dynamic changes based on SEIC and SEII indicators, it indicates that different terrain factors such as elevation, slope angle and slope direction brought about great discrepancies in severity and structure types of soil erosion. Through the comparison of related data between 2000 and 2007, it is found that indicators in 2007 on most the vast majority of elevation, slope grading, slope direction types for both SEIC and SEII are less than those in 2000, which means the role of human intervention overrun the impact of natural factors. In the west Ninghua in past 7 years, through comprehensive measures such as closure, fertilization, forest and grassland protection, economic orchard, sloping land transformation, shallow gully treatment, the surface vegetation cover has significantly increased. As a result soil erosion alleviates continuously.
引文
[1]史德明.江西省兴国县紫色土地区的土壤侵蚀及其防治方法[J].土壤学报,1965,13(2):182~189.
    [2]李庆逵.中国红壤第一版[M].科学出版社,1983:55
    [3]熊毅,李庆逵主编.中国土壤(第二版)[M].科学出版社,1987:259-265.
    [4]李嘉峻,许有鹏,桑银江,朱岭.GIS支持下的土壤侵蚀动态变化研究:浙江一例[J].南京大学学报(自然科学), 2005 ,41(3):297-303.
    [5] Baciel LZ,Rossiter DG,Bregt AK.Using.Special information to improve collective understanding of shared environmental problems at watershed level[J].Lancaspe and urban planning,2006,77(1/2):54-66.
    [6] Ma Yong sheng.GIS application in Watershed Management[J].Nature and Science,2004,2(2):1-7.
    [7]林文莲.福建省紫色土地区水土流失及其防治[J].福建水土保持,1998,3(1):24-27.
    [8]李勇.宁化县紫色土退化现状及防治措施探讨[J].福建水土保持,2000,12(1):35-38.
    [9]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].科学出版社.1991:1-10.
    [10]余剑如,刘载生.长江上游的水土流失与河流泥沙[J].水土保持学报,1988,2(1) :1-15.
    [11]何长高,尹忠东.紫色土区土壤侵蚀对土地生产潜力的影响研究[J].水土保持学报,2001,15(4):110-114.
    [12]何毓蓉,张丹宫.长江上游退耕还林区的土壤退化与肥力建设[J].山地学报,2000,18(6):526-529.
    [13]吕喜玺,沈荣明.土壤可蚀性因子K值的初步研究[J].水土保持学报,1992,6(1):63-70.
    [14]刘刚才,罗志平,张先婉.川中丘陵区土壤侵蚀及其P值得确定[J].水土保持学报,1993,7(2):40-44.
    [15]钟祥浩.紫色土研究的回顾与展望[J].山地研究,1996,14(增):1-2.
    [16]林超文,陈一兵.四川盆地遂宁组(J35)母质发育紫色土的平衡施肥与水土保持[J].西南农业学报, 2001, 14(增刊): 26-28.
    [17]张奇,林超文,杨文元,等.川中丘陵小流域流失特征与调控研究[J].水土保持学报,1997,3(3):38-45.
    [18]何毓蓉主编.中国紫色土(下)[M].北京:科学出版社,2003.
    [19]李宪文.四川紫色土区小流域产流产沙和养分流失特征及其动态模拟[R].南京:中国科学院南京土壤研究所博士后报告.2000,51-61.
    [20]李宪文,史学正,Ritema C.四川紫色土区土壤养分径流和泥沙流失特征研究[J].资源科学, 2002, 24(6): 22-28.
    [21]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社,1991:1-10.
    [22]朱仲麟,罗晓川.紫色土丘陵农区土壤保护试验站建设,水土流失动态监测和防治技术[J].土壤农化通报,1992, 7(1,2):1-17.
    [23]余剑如,刘载生.长江上游的水土流失与河流泥沙[J].水土保持学报,1988,2(1):1-15.
    [24]张奇,林超文,杨文元等.川中丘陵小流域流失特征与调控研究[J].水土保持学报,1997,3(3):38-45.
    [25]张奇.川中丘陵区降雨特性与土壤流失量关系探讨[J].土壤农化通报.1992,7(1,2):35-40.
    [26]杨文元,张奇,张建华,等.紫色丘陵区土壤抗蚀性研究[J].水土保持研究.1997,3(2):22-28.
    [27]朱益玲,刘洪斌,江希流.江津市紫色土中N、P养分元素区域空间变异性研究[J].环境科学, 2004, 25(1): 138-143.
    [28]陈晓燕,何丙辉,缪驰远等.WEPP模型在紫色土坡面侵蚀预测中的应用研究[J].水土保持学报, 2003, 17(3):1-8.
    [29]骆东奇,侯春霞,魏朝富,等.紫色土团聚体抗蚀特征研究[J].水土保持学报,2003,17(2):20-23.
    [30]史德明.长江流域水土流失及其防治[J].长江流域资源与环境,1992,1(1):62-70.
    [31]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社,1991,1-10.
    [32]吕甚悟,陈谦,袁绍良,等.紫色土坡耕地水土流失试验分析[J].山地学报,2000,18(6):520-525.
    [33]刘刚才,罗志平,张先婉.川中丘陵区土壤侵蚀及其P值得确定[J].水土保持学报,1993,7(2):40-44.
    [34]陈一兵,Kim T.紫色土渗透性的对比研究[J].水土保持通报,1997,17(2):11-14.
    [35]姜万勤.川中丘陵区旱坡地水土流失规律分析[J].人民长江,1996,27(6):34-35.
    [36]蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8.
    [38]许峰,蔡强国,吴淑安等.坡地等高植物篱带间距对土壤表土养分流失的影响[J].土壤侵蚀与水土保持学报,1999,5(2):23-29.
    [39]许峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报.2002,39(1):71-80.
    [40]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社,1991:1-10.
    [41]李勉,李占斌,刘普灵.川中紫色丘陵区土壤侵蚀研究进展[J].水土保持学报,2002,16(1):72-75.
    [42] Zhang Bao-Hua,He Yu-Rong,Zhou Hong-Yi,Zhu Bo.Erosion and sediment production in small watershed in purple hilly areas and prevention techniques[J].Wu’han University Journal ofNatural Sciences, 2003, 8(3b): 1041-1046.
    [43]崔灵周,丁文峰,李占斌.紫色土丘陵区农用地土壤水分动态变化规律研究[J].土壤与环境,2000,9(3):207-209.
    [44]何毓蓉,张保华,周红艺等.紫色土的水土保持与持续农业环境[J].水土保持学报,2002,16(5):11-14.
    [45]黄义瑞,田积莹,雍绍萍.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3(3):9-14.
    [46]罗治平.聚土免耕耕作法的水土保持效益研究[J].土壤农化通报,1990,(5):1-2.
    [47]荣德明,查知南.坡薄地改土垄作栽培水土保持效益研究[J].土壤农化通报,1994,9(3):41-46.
    [48]史东梅,刘立志.紫色土坡耕地生产潜力及水土流失治理[J].西南农业大学学报,2004.2(62):132-136.
    [49]肖萍.四川植物篱及植物护埂技术调查研究[J].土壤农化通报,1998,13(4):108-110.
    [50]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229-232.
    [51]朱波,陈实,游祥等.紫色土退化旱地的肥力恢复与重建[J].土壤学报,2002,3(95):743-749.
    [52]朱波,高美荣,刘刚才.紫色泥页岩的风化侵蚀与工程建设增沙[J].山地学报,2001,19(增):50-55.
    [53]朱波,彭奎,高美荣等.川中丘陵区土地利用变化的生态环境效应——以中国科学院盐亭紫色土农业生态试验站集水区为例[J].山地学报,2001,19(增):14-19.
    [54]汤育红,何永建.3S技术集成在土地调查中的应用[M].测绘与空间地理信息.2008:95-100.
    [55]冯仲科,余新晓.“3S”技术及其应用[M].北京:中国林业出版社, 2000.
    [56]永利部水土保持监测中心,中国水土保持学会水土保持监测专业委员会.全国第一届水土保持监测学术研讨会论文集[C].北京:中国水利水电出版社. 200l:22l-227.
    [57] Koeh M.Geological controls of land degaration as detected by remote sensing:a case study in Los Monergros,north—east Spain[J].Intemational Journal of Remote Sensing,2000,21(3):457-473.
    [58] ChenY.B,LinCW,HuangJJ,et.Soil Erosion Modeling and Seenario Analysis for the Small Catehment in the Purple Hilly Masses of Siehuan Basin[J].Science of soil and Water Conservation,2006,4(1):98-108.
    [59]周乐群,孙长安,高改萍,等.长江三峡工程库区生态环境遥感动态监测[J].国土资源遥感,2005.
    [60]孙长安.国内外应用“3S”技术开展水土流失监测的发展状况[J].中国水土保持,2008(6):54-57.
    [61]范建容.基于RS和GIS的四川省李子溪流域土壤侵蚀动态变化[J].水土保持学报,2001,15(4):25-28.
    [62]周月敏.面向区域管理的水土保持遥感监测方法研究[D].中国科学院遥感应用研究所博士学位论文, 2005.
    [63]杨健新.南方区域水土流失遥感动态监测技术研究[D].中山大学硕士学位论文,2004.
    [64] Haboudane,et al. Land degradation and erosion risk mapping by fusion of speetrally based information and digital geomorphometric attributes[J].International Joumal of Remote Sensing,2002,23(18):3795-3820.
    [65]马蔼乃.地理科学与地理科学信息论[M].武汉:武汉出版社,2000.
    [66]曾大林,李智广.第二次全国土壤侵蚀遥感调查工作的做法与思考[J].中国水土保持,2000, (1): 28-31.
    [67]田建林,聂琴,石军南.Quickbird记影像在景观类型区划中的应用一以红水河流域贵州省册亨县纳牙村为例[J].石河子大学学报(自然科学版),2006,24:227-230.
    [68]岳彩荣.利用卫星遥感和GIS技术进行昭通地区土壤侵蚀调查研究[J].水土保持通报,2003,23(2):36-39.
    [69]邱扬,傅伯杰,王军,等.黄土丘陵区域土壤侵蚀的时空变异及其影响因子[J].生态学报. 2004, 24(9): 1871-1877.
    [70]彭飞宇,夏著.基于GIS技术的全数字土壤侵蚀遥感调查与制图[J].水利水电工程设计,2001,20(2):34-35.
    [71]刘国平.内蒙古水利基础数字图开发[J].内蒙古水利,2003(4):52-53.
    [72] MathieuR.et al. Contribution of multi-temporal SPOT data to the mapping of a soil erosion index the case of the loamy plateau of northem France[J].Soil Technology.1997,10(2):99-110.
    [73] Boeeo.G.Remote sensing and GIS-based regional geomorphological mapping a tool for land use planning in developing countries[J].Geomorphology.2001(39):211-219.
    [74]王璞玉,潘竟虎,韩进凤,等.GIS和遥感支持下的区域非点源污染负荷估算[J].资源开发与市场, 2006, 22(5): 19-21.
    [75]潘竟虎,董晓峰.基于GIS与OuickBird记影像的区域土壤侵蚀定量评价[J].生态与农村环境学报, 2006, 22(2):2-5.
    [76]祝民强,高永光,吕开云,等.抚州地区TM影像的水土流失信息自动提取专家模式研究[J].华东地质学院学报,2002,25(3):187-189.
    [77]唐方云,陈红.试论“3S”技术及其在水土保持中的应用[J].水土保持应用技术,2008 (2):33-35.
    [78]门宝辉.VBS.0在初步开发区域水土保持规划信息体统中的应用[J].水土保持通报,2000,19(6):36-38.
    [79]刘高焕,刘俊卫,朱会义,等.基于GIS的区域地块单元划分与汇流网络计算[J].地球科学进展, 2002, 21(2): 139-145.
    [80]史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的区域农用地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    [81]杨联安,杨凯.GIS软件在区域规划与管理中的应用初探[J].西北大学学报(自然科学版), 2002, 32(6): 672-676.
    [82]李锐.现代空间信息技术在中国水土保持中的应用[J].水土保持通报,1998,5(18):l-5.
    [83]李锐.黄土高原小流域综合治理信息系统[j].中国科学院水利部西北水土保持研究所集刊, 1988(7): 14-23.
    [84]许峰,曾大林.地球信息技术在水土保持生态环境监测中的应用[J].中国水土保持,2001(8):32-35.
    [85] Navas,A Maehin J. Assessing erosion risks in the gypsiferous steppe of Litigio(NESPain),An approaeh using GIS[J].Joumal of Arid Environments,1997,37(3):433-441.
    [86]李锐.中国水土保持管理信息系统总体设计方案[J].水土保持通报,1998,18(5):40-43.
    [87]曾义英,王明文.3S技术的发展、现状及其趋势综述[J].新余高专学报,2003,2(8):16-24.
    [88]肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社,2003.
    [89]林辉,何安国,赵煌鹏,等.QUICKBIRD数据处理及其应用[J].遥感信息应用技术,2004:20-23.
    [90]赵帮元,喻权刚,马红斌,等.不同比例尺数字高程模型在水土保持信息提取中的应用分析[J].中国水土保持SWCC,2004 (2):33-35.
    [91]张超.遥感在北京生态监测中的应用研究[D].浙江大学博士后学位论文,2005.
    [92]王鸿斌,刘斌,田杏芳,等.黄土高原沟壑区典型区域高精度DEM制作及其应用研究[J].水土保持通报, 2004,24(3):34-36.
    [93]施介岚,史天元.以As为R立体像对产制数字高程模型之精度研究[A].见第22届测量学术及应用研讨会论文集[C],2003:257-266.
    [94]惠凤鸣,田庆久,李应成.ASTER数据的DEM生成及精度评价[J].遥感信息,2004 (l):14-18.
    [95]陈志强.区域多尺度LUCC及空间数据库研究[D].福建师范大学博士学位论文,2006.
    [96]王苏颖,陈志强,陈志彪,等.根溪河流域水土流失影响因子分析[J].太原师范学院学报(自然科学版), 2006, 5(3): 104-106.
    [97]陈志彪.花岗岩侵蚀山地生态重建及其生态环境效应[D].福建师范大学博士学位论文,2005.
    [98]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [99]蓝士斌.基于遥感与GIS的水土保持应用研究[D].中国人民解放军信息工程大学硕士学位论文,2005.
    [100]杨学震.任承辉,陈明华,等.土壤侵蚀遥感调查中的一种计算机辅助评判方法[J].福建水土保持, 2001(4): 53-55.
    [101]林敬兰,杨学震.陈明华,等.福建省土壤侵蚀遥感调查的方法和特点[J].福建水土保持,2001,(4):56-60.
    [102]林敬兰,杨学震,陈明华,等.基于几种3S技术的福建省土壤侵蚀动态监测研究[J].水土保持学报, 2003(1): l55-157.
    [103]中华人民共和国水利部,《土壤侵蚀分类分级标准》.中国水利水电出版社,北京,1997.
    [104]黎霄平.基于“3S”技术的吉林省土壤侵蚀监控及成果评价[D].大连理工大学硕士学位论文,2005.
    [105]邹爱平,陈志彪.根溪河小流域侵蚀景观格局定量分析[J].福建师范大学学报(自然科学版), 2006, 22(4): 19-23.
    [106]汪爱华,张树清,张柏,等.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2):237-243.
    [107] PEARSONS M,TURNER M G DRAKE J B.Ladscape change and habitat availability in the southemhiglilands and Olympic peninsula[J]. Eeological Applications,2000,9(4):1288-1304.
    [108]张志,朱金兆,朱清科,等.晋西黄土区蔡家川流域景观地形分异格局研究[J].北京林业大学学报, 2005, 27(2): 43-48.
    [109]杨存建,刘纪远,张增祥,等.不同高程带上的土壤侵蚀特征分析[J].水土保持通报,2001,21(4):15-18.
    [110]杨存建,刘纪远,张增祥,等.GIS支持下不同坡度的土壤侵蚀特征分析[J].水土保持学报, 2002, 16(6): 46-49.
    [111]钱乐祥.影响福建土壤侵蚀的景观因子分析[J].土壤侵蚀与水土保持学报,1997, 3(1):23-29.
    [112]郑本暖.GIS支持下东圳库区水土流失景观因子分异研究[J].水土保持研究,2007,14(4):210-213.
    [113]张军,倪绍祥,于文静,等.三江并流区居民点空间分布规律阴[J].山地学报,2003,21(l):121-125.
    [114]王思远,王光谦,陈志祥,等.黄河流域土地利用与土壤侵蚀的祸合关系[J].自然灾害学报, 2005, 14(l): 32-37.
    [115]王思远,刘纪远,张增祥,等.不同土地利用背景下土壤侵蚀空间分布规律研究[J].水土保持学报,2001,15(3):45-51.
    [116]邹爱萍.水土流失景观空间自相关与自相似的尺度特征分析-以长汀县根溪河小流域为例[J].国土与自然资源研究,2007,(3):31-33.
    [117]朱溪.河流域侵蚀景观格局变化随坡度分异研究[J].内江师范学院学报,2007,22 (6):85-88.
    [118]陈志强,王苏颖,陈志彪.根溪河小流域高程和坡度对水土流失现状的影响[J].2007,20(1):88-92.
    [119]刘新华,张晓萍,杨勤科,等.不同尺度下影响水土流失地形因子指标的分析与选取[J].西北农林科技大学学报(自然科学版),2004,32(6):107-111.
    [120]张晓萍,李锐,杨勤科,等.基于RS/GIS的中尺度地区退耕变化及其坡度分异研究[J].农业资源与环境科学,2005,21(8):355-392.
    [121]孙丽,陈焕伟,潘家文.运用DEM剖析土地利用类型的分布及时空变化[J].山地学报, 2004, 22(6): 762-766.
    [122]陈志彪,朱鹤健,刘强,等.根溪河区域的崩岗特征及其治理措施[J].自然灾害学报,2006,15(5):83-88.
    [123]王维明,陈明华,林敬兰,等.长汀县水土流失动态变化及防治对策研究[J].水土保持通报, 2005, 25(4): 73-77.
    [124]陈灵芝,陈伟烈主编.中国退化生态系统研究[M].北京:中国科学技术出版社,1995.
    [125]福建省宁化县水土保持委员会办公室.水土流失普查和水土保持区划报告书,1995.
    [126]段巧甫.从四川盆中水土保持看我国紫色土水土流失的综合治理[J].中国水土保持,1998(1):7-10.
    [127]李文萍,雷孝章,刘兴年,等.四川盆地紫色土丘陵区水土流失及防治对策[J].中国地质灾害与防治学报,2004,15(3):137-139.
    [128]杨玉盛,等.紫色土严重侵蚀地营造水土保持林后土壤肥力的变化[J].福建水土保持,1991(1):19-22.
    [129]叶昌亮,钟佩田,张振刚.北江上游紫色砂页岩地区水土流失治理与开发研究[J].中国水土保持, 2007, 6: 26-29.
    [130]彭少麟主编.热带亚热带恢复生态学研究与实践[M].北京:科学出版社, 2003.
    [131]陈丽慧,陈志彪.陈志强,等.根溪河小流域生态修复潜力评价[J].2008,24(13):98-102.
    [132]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [133]刘涛,谷建才,陈凤娟,等.“3S”技术在森林资源调查中的应用与展望[J].中国农学通报, 2008, 24(11): 156-159.
    [134]牛玉生,王林林,宋平波.3S技术在巨野平原微地貌研究中的应用[J].长春工程学院学报(自然科学版), 2008, 9(3): 59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700