电导检测微型全分析系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型全分析系统目前正成为分析化学一个热点研究领域。为分析系统中普遍采用的激光诱导荧光检测虽然可以得到高的灵敏度,但难以实现真正的微型化,而电化学方法具有制作成本低、灵敏度高、易于微型化,与发展的微加工相适应,将电化学检测器集成到微芯片上,可望实现真正意义的芯片试验室。目前在微型全分析系统中应用较多的电化学检测方法是安培法和电导法。
    本文从微型全分析系统的参数缩微化分析入手,讨论微管道流体的流动特性,探讨了管道缩微化对混合、分离的影响和电极缩微化对检测的影响,论证了缩微化的可行性及某些方面的优越性,探讨了电场驱动和压力驱动电导检测微芯片的设计原理。
    通过对以有机玻璃(PMMA)为材料制作集成电导检测微芯片的工艺及条件的进一步实验,优化得到了普通实验室可以制作集成电导检测微芯片的方法。利用显微镜观察了液流在微管道中的流动状况及混合状况,讨论了不同因素对压力驱动和电场驱动电导检测微型分析系统测试的影响,采用自制压力驱动电导检测微型分析系统测定了KCl标液,并用常规电导法进行对比测试,论证了在微芯片上实现压力驱动电导法测定的可行性。利用自制的集成电导检测有机玻璃芯片毛细管电泳分离了NaCl和KCl的混合液,论证了在有机玻璃微芯片上实现电泳分离电导检测的可行性。
    利用压力驱动电导检测的微型全分析系统,采用标准加入法测定了土壤中铁总含量;利用原子发射光谱法和常规电导法分析了共存元素是否存在干扰,讨论了影响土壤中铁总含量测定的各种因素,并用原子吸收光谱法验证电导检测微型全分析系统测定结果的可靠性。同时在自制集成电导检测微芯片上完成了阿司匹林中乙酰水杨酸的电导滴定分析,利用药典法和常规电导法验证了微芯片上电导滴定法测定结果是准确性。
    通过以上两个样品的分析,较好地证明了自制的集成电导检测微系统可以用于样品分析,为最终实现(-TAS整个体系的集成和实现样品的现场分析奠定基础。
Miniaturized total analytical system was becoming the hot-point in the researching fields of analytical chemistry. It was really difficult for miniaturization of Laser Induced Fluorescence (LIF), which was of high sensitivity. On the other hand, it was practical to realize true concept ——Lab-on-a-chip with integration of electro-detector on microchip, because of its inherent miniaturization, remarkable sensitivity, compatibility with advanced microfabrication, and minimal cost of electrochemical devices. Amperometric method and conductivity method were the most popular ones in μ-TAS.
    Fluidic characters in microchannel were discussed, and effects of miniaturization of pipeline on mixing, separation, and detection were discussed based on parameters' downscale of μ-TAS. Feasibility and some superiority of miniaturization were proved. Design theory of microchip with conductivity detection was proposed.
    PMMA microchip fabrication with integrated conductivity electrode was studied in details. The fabricating process and conditions for chip prepared in normal lab were optimized. The liquid flowing status in microconduit was observed with microscope. Influence factors of μTAS with conductivity detection were discussed. Standard potassium chloride solution was detected with μTAS set-up in this work. Normal conductivity detecting method was also applied for comparing. Conductivity detection on microchip with pressure driving was demonstrated. The mixture of potassium chloride and sodium chloride solution was separated in PMMA microchip with conductivity detection. The feasibility of conductivity detection for separation process on PMMA microchip was proved.
    The iron in soil was detected with pressure driven μTAS set-up in this work by means of integrated conductivity detector. Atomic Emission Spectroscopy and normal conductivity method were applied for co-existing interference analysis in the soil sample detection. Many factors that affected detection of iron ion (II) were analyzed. The results of iron in soil with μTAS detection were matched well with the results of Atomic Absorption Spectroscopy. At the same time, aspirin was determined with the same μTAS setup. The veracity of detecting results of aspirin with μTAS was compared with the detecting results of codex method and normal conductivity method.
    The detecting results of practical samples, such as: iron in soil and aspirin in medicine, proved that the μTAS with integrated conductivity detection was practical. The research is helpful for the truly integration of μTAS and μTAS application for
    
    in-situ and in-fields in the coming future.
引文
[1] ManzA, Graber N, Widmer H M. Miniatruized total chemical system:a novel concept of chemical sensing. Sensors & Actuators B, 1990, 1(2),244-248
    [2] Koppmu, Carbtreehj, Manza D. Development in technology and application of Microsystems. Current Opinion in Chemical Bilogy, 1997(1), 410-419
    [3] 方肇伦. 关于在我国发展微全分析系统的建议. 分析仪器,2001(2),1-3
    [4] Manz A. What can chips technology offer for next century's chemistry and life science. Chimia, 1996, 50, 140-143
    [5] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis system: a novel concept for chemical sensing. Sensors and Actuators B, 1990(1), 224-248
    [6] Manz A, Harrison D J, Verpoorte E et al. Planar Chip Technology of Separation System: A Developing Perspective in Chemical Monitoring. Advances in Chromatography, 1993, 33, 1-66
    [7] D.J.Harrison, Andreas Manz, Zhonghui Fan etc. Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. chem., 1992 (64), 1926-1932.
    [8] Manz A, Verpoorte E, Effenhause C S etc. Plannar chip technology for capillary electrophoresis, Anal Chem, 1994, 348, 567-571.
    [9] Carlo S Effenhauser, Aran Paulus, Andreas Manz etal. High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device, Anal Chem, 1994, 71, pp2949-2953
    [10] Stephen C. Jacobson, Roland Hergenroder, Lance B. Koutny, etal. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal Chem, 1994, 66, 1107-1113
    [11] J R.Webster, D K Jones, and C H. Mastrangelo. Monolithic capillary gel electrophoresis stage with on-chip detector. IEEE, 1996, 491-495
    [12] Shi Y, Simpson P C. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem, 1999, 71, 5354-5361.
    [13] 汤扬华,周兆英,叶雄英等.毛细管电泳芯片的制造. 微细加工技术,2001, 1, 62-66
    [14] 曹小丹, 方群, 方肇伦等. 基于紫外光度检测的微流控芯片毛细管电泳系统的研究.毛细管电泳进展——第五届全国毛细管电泳及相关微分离分析学术报告会议集, 2002,中国上海, 2002年8日-10日,16-17
    [15] Q Fang, F R Wang, S L Wang et al. Anal Chia Acta, 1999, 390, 27-31
    
    
    [16] 孟斐, 方群, 方肇伦等. 聚二甲基硅氧烷微液流控芯片的紫外光照射表面处理研究.高等学校化学学报,2002(7),23:1264-1268
    [17] 章刚华, 周兆英, 罗国安等. 微芯片电泳仪的研制. 仪器仪表学报,2002, 23(4),335-338
    [18] 吴友谊, 吴明嘉. 新型安培检测毛细管电泳微系统. 分析化学,2001,29(2), 138-141
    [19] Stephen C.Jacobson, Lance B.Koutny, Doland Henren Roder, Microchip capillary elect rophoresis with an integrated postolumn reactor, Anal Chem 1994, l66(20), 3472-3476
    [20] Ruzicka J, Hansen E H. Flow Injection Analysis. Second Edition. Danmark. John Wiley & sons. 1988, 19-20
    [21] Tijssen R. Axial dispersion and flow phenomena in helically coiled tubular reactors for flow analysis and chromatography. Anal Chem Acta, 1980, 114, 71-74
    [22] Ruzicka J, Hansen E H. Integrated microconduits for flow injection analysis. Anal Chem Acta , 1984, 161, 1-25
    [23] Ruzicka J. Flow injection Microsystems: There is a past but where is the future? Micro Total Analysis System. The Netherlands. 1994. Dordrecht. Kluwer Academic Publishers. 1995, 117-125
    [24] Haswell S J. Development and operating characteristics of micro flow injection analysis systems based on electroosmotic flow. Analyst, 1997, 122, 1-10
    [25] van der Schoot B H, Verpoorte E M J, Jeanneret S, et al. Microsystms for analysis in flowing solutions. Micro total Analysis Systems. The Netherlands. 1994. Dordrecht. Kluwer Academic Publishers. 1995, 181-190
    [26] Verpoorte E M J, van der Schoot B H, Jeanneret S et al. Three-dimensional micro flow manifolds for miniaturized chemical analysis systems. J Micromech Microeng, 1994, 4, 246-256
    [27] Nakamura H, Murakami Y, Yokoyama K et al. A compactly integrated flow cell with a chemilunescent FIA system for determining lactate concentration in serum. Anal Chem, 2001, 73, 373-378
    [28] Jacobson S C, Ramsey J M. Integrated Microdevice for DNA Restriction Fragment Analysis. Anal Chem, 1996, 68, 720-723
    [29] Dodge A, Fluri K, Verpoorte E et al. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal Chem, 2001, 73, 3400-3409
    Tokeshi M, Minagawa T, Uchiyama K et al. Continuous-Flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network. Anal
    
    [30] Chem, 2002, 74(7), 1565-1571
    [31] Yuji Murakami, Toshifumi Takeuchi, Kenji Yokoyama, et al. Integration of enzyme-immobilized column with electrochemical flow cell using micromachining techniques for a glucose detection system. Anal Chem.,1993,65:2731-2735
    [32] Ratna Tantra, Andreas Manz. Integrated Potentiometric Detector for Use in Chip-Based Flow Cells. Anal. Chem.,2000,72,2875-2878
    [33] Crabtree H J, Kopp M U, Manz A. Shah Convolution Fourier Transform Detection. Anal. Chem., 1999, 71: 2130-2138
    [34] Xu Yi, Tang Shouyuan, Xiong Kaisheng, et al. Design and fabrication of microflow total chemical analysis system by organic polymer. Chemical Journal on Internet, 2002, 4(4), 14-18.
    [35] 汤扬华, 叶雄英, 周兆英. 电泳芯片的制作及其进样与分离. 分析化学, 2001, 29(5), 606-610
    [36] 贾志舰, 方群, 方肇伦. 玻璃基质微流控芯片低温键合方法的研究. 毛细管电泳进展——第五届全国毛细管电泳及相关微分离分析学术报告会文集,2002,中国上海,2002年10月8日:18-19
    [37] Wang J, Alberto Escarpa, Martin Pumera, et al. Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides[J]. Journal of Chromatography A, 2002, 1(1), 1-6.
    [38] T.Kappers,P.Schnierle,P.C.Hauser, Field-portable capillary electrophoresis instrument with potentiometric and amperometric detection. Anal.Chim.Acta., 1999, 393:77-84
    [39] Martin Pumera, Wang J, Frantisek Opekar,et al. Contactless conductivity detector for microchip capillary electrophoresis. Anal Chem, 2002, 74, 1968-1971
    [40] Zemann A J, Schnell E, Volgger D, et al. Contactless conductivity detection for microchip capillary electrophoresis. Anal Chem, 1998, 70, 563-567.
    [41] Peng Chen, Bai Xu, Natalya Tokranova, et al. Amperometric Detection of Quantal Catecholamine Secretion from Individual Cells on Micromachined Silicon Chips. Anal Chem, 2003, 75, 518-524.
    [42] Phillip D Voegel, Zhou Weihong, Baldwin R P. Integrated Capillary Electrophoresis/Electrochemical Detection with Metal Film Electrodes Directly Deposited onto the Capillary Tip. Anal Chem, 1997, 69, 951-957.
    Wang J, Madhu Prakash Chatrathi, Tian Baomin. Micromachined Separation Chips with a Precolumn Reactor and End-Column Electrochemical Detector. Anal
    
    [43] Chem, 2000, 72:5774-5778
    [44] Wang J, Tian Baomin, Polsky Ronen, et al. Capillary electrophoresis chips with thick-film amperometric detectors:separation and detection of hydrazine compounds. Electroanalysis, 2000, 12(9), 691-697.
    [45] Chen Derchang, Hsu Fengliu, Zhan Dianzhen, et al. Palladium film decoupler for amperometric detection in electrophoresis chips. Anal Chem, 2001, 73:758-762.
    [46] Wu Chingchou, Wu Renguei, Huang Jenngunn, et al. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric aetection. Anal Chem, 2003, 75, 947-952.
    [47] Frederic Laugere, Rosanne M Guijt, Jeroen Bastemeijer, et al. On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Anal Chem, 2003, 75, 306-312.
    [48] Woolley A T, Lao Kaiqin, Richard A. Mathies. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem, 1998, 70, 684-688.
    [49] Wang J, Baomin Tian, Eski S. Integrated electrophoresis ehips/amperometric detection with sputtered gold working electrodes. Anal Chem, 1999, 71, 3901-3904.
    [50] Wang J, Xu Danke, Polsky Ronen, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem, 2001, 73, 5576-5581.
    [51] Wang J, Chatrathi M P, Tian Baomin. Microseparation chips for performing multienzymatic dehydrogenase/oxidase assays: simultaneous electrochemical measurement of ethanol and glucose. Anal Chem, 2001, 73:1296-1300.
    [52] Wang J, Chen Gang, Chatrathi M P. Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector[J]. Anal Chem, 2003, 75, 935-939.
    [53] Wang J, Chatrathi M P. Microfabricated Electrophoresis Chip for Bioassay of Renal Markers. Anal Chem, 2003, 75, 525-529.
    [54] Pfahler J, Harley J, Bau H. Liquid Transport in Micron and Submicron Channels. Sensors and Actuators, 1990, A21~A23, 431~434.
    [55] 周兆英,叶雄英等.微型系统和微型制造技术. 微米/纳米科学与技术,1996,2(1),1-11
    
    
    [56] Griffiths S K, Nilson R H. Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal Chem, 2000, 72: 5473-5482
    [57] Soper S A, Ford S M. Qi Shize et al. Ploymeric microelectro-mechanical system. Anal. Chem., 2000, 72, 12, 643-651
    [58] 徐溢, BESSOTH F, MANZ A. 含微混合器的微芯片设计和性能研究[J]. 分析测试学报, 2000, 19(4),39.
    [59] Der-chang Chen, Feng-liu Hsu, Dian-zhen Zhan. Palladium film decoupler for amperometric detection in electrophoresis chips. Anal Chem ,2001, 73, 758-761
    [60] T.Kappers,P.Schnierle,P.C.Hauser. Field-portable capillary electrophoresis instrument with potentiometric and amperometric detection. Anal Chim Acta, 1999, 393,77-81
    [61] Rosanne M.Guijt,Erik Baltussen,Johannes Frank, et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis 2001,22,235-241
    [62] Yan Liu, David O. Wipf and Charles S.Henry. Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst, 2001, 126, 1248-1251
    [63] F.Laugere, G.W.Lubking, J.Bastemeijer, M.J.Vellekoop. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sensors and Actuators B, 2002, 83, 104-108
    [64] Maria Zuborova, Marian Masar, Dusan Kaniansky,et al. Determination of oxalate in urine by zone electrophoresis on a chip with conductivity detection. Electrophoresis, 2002, 23, 774-781
    [65] 侯晋, 陈国松, 王镇浦. 迭代目标转换因子分析法辅助分光光度法同时测定痕量锰、铁、铜和锌. 冶金分析, 2001, 21(3), 18-22
    [66] 纪惠敏, 姚波. 水和土壤中铜、锌、铁、锰的原子吸收测定. 辽宁城乡环境科技,2000,20(1), 54-55
    [67] 徐慧, 黄延祥, 康国发. 云南原始观音座莲属植物及土壤中Ca、Mg、Mn、Zn、Fe含量的发射光谱分析. 光谱实验室, 2001,18(5), 624-626
    [68] 李清曼, 季国亮. 土壤中二价铁离子的付安法测定. 环境化学, 2001,20(6),582-587
    Wang Tiangen, Peverly J H, Screening a selective chelator pair for simultaneous
    
    [69] determination of iron(II) and iron(III). Soil Sci Soc Am J, 1998, 62, 611-617
    [70] 池秀珍. 双波长紫外分光光度法测定阿司匹林肠溶片含量. 海峡药学, 2002, 14(1), 7-28
    [71] 刘文英主编,药物分析,人民卫生出版社,2002年1月,北京:102-103
    [72] 胡智华.电导滴定法测阿司匹林片含量.南京铁道医学院学报, 1994, 13(1), 58-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700