电泳芯片非接触电导检测器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为微全分析系统重要研究方向的毛细管电泳芯片以其高效、快速、微量、易自动化等优点,在生命科学、医学药物、环境保护等领域得到了极其广泛的应用。但是,目前其检测器尚未实现与电泳芯片一体化集成,严重阻碍了电泳芯片分析系统向集成化、微型化方向发展。本论文针对这一问题,根据非接触电导检测器具有结构简单、易于与电泳芯片一体化集成的优点,进行非接触电导检测器的相关理论和关键技术研究。
     本论文在国家自然科学基金的资助下,围绕电泳芯片检测器难以微型化、集成化的问题,在分析研究国内外电泳芯片检测器集成化现状和趋势的基础上,提出在电泳芯片分离沟道上集成非接触电导检测器的方案;通过对两电极和四电极非接触电导检测器理论分析和实验研究,获得了这两种非接触电导检测器的相关参数。为在电泳芯片上研制非接触电导检测器奠定了一定的技术基础。论文主要研究工作是:
     1.在查阅电泳芯片检测器集成化研究文献的基础上,分析了目前国内外电泳芯片检测器集成化研究的现状与趋势,比较了几种检测器在集成技术上面临的问题,提出了在电泳芯片分离沟道上集成非接触电导检测器的方案。
     2.在了解非接触电导检测器的结构及工作原理的基础上,根据非接触电导检测器响应电流公式,分析了绝缘层、电极尺寸、电极数目、检测对象对电导响应电流的影响。
     3.建立了两电极和四电极非接触电导检测器等效模型,计算了等效模型中的电容、电阻,利用OrCAD软件,对不同的激励源频率、溶液浓度、电极尺寸、电极数目等条件下电导响应电流的输出进行了模拟分析。
     4.进行了两电极和四电极非接触电导检测器响应实验,对不同激励源幅值、激励源频率、溶液浓度、电极尺寸、电极数目等条件下电导响应电流进行了测试。
     5.研究了基于锁相放大原理的非接触电导检测器检测电路,并对信号发生器、相敏检波器、低通滤波电路进行了初步设计。
As an important research direction of micro total analytical system (μ-TAS), the electrophoresis chip, with the characteristics of high performance, fast speed, low regent consumption and easy automation, is more and more frequently being employed in life science, biomedicine, environment protection, and so on. But the detection part can’t be integrated into the microchip at present, which sets back the development of electrophoresis chip analysis system to be a minimized and integrated micro analytical system. With a simple structure, contactless conductivity detector is a just detector which can solve this problem and can be easily integrated on electrophoresis chip. So this paper focus on the theory and key technology research about contactless conductivity detector.
     This project aims to solve the problem of integrating detector into the micro electrophoresis chip, which is supported by National Natural Science Foundation of China. Based on reference about the development of integrated detectors on microchip, contactless conductivity detector is proposed to integrate into the end of the separation channel of electrophoresis chip. The referred parameter of the two-electrode and four-electrode contactless conductivity detector is achieved by the way of theory analysis and experiment. So this paper is the basic work of developing contactless conductivity detector on the electrophoresis chip. The main work of this paper is as following:
     1. Based on a large amount references about the current development of integrated detectors on micro electrophoresis chip, the problem of integrating those detectors on electrophoresis chip is compared, then the concept of integrating the contactless conductivity detector into the end of the separation channel is proposed.
     2. According to the structure and work principle of the contactless conductivity detector, analyze the affection of the insulated film, electrode size, and the electrode number on the conductivity reaction current according to the current express
     3.The equivalent model of the two-electrode and four-electrode contactless conductivity detector is set up, and the value of capacitance and resistance of the model is computed, then simulate is done to the model using software OrCAD with the condition of different resource frequency, sample concentration, electrode size, electrode number.
     4. Experiment is done to measure the reaction current of the two-electrode and four-electrode contactless conductivity detector with the condition of different resource frequency, sample concentration, electrode size, electrode number, then compare this current with the current in theory.
     5. Research is done on the detection circuit which is based on the principle of phrased locked magnifier, primary design is done on the key part of the circuit, such as synchronous phase detector and low-pass filter.
引文
[1] 方肇伦. 微型全分析系统发展与展望. 香山科学会议微型全分析系统学术讨论会中心议题报告文集,pp1-6
    [2] 金亚,温涛,王义明,罗国安. 集成毛细管电泳芯片(微流控芯片)系统的检测器研究和应用. 第 165 次香山科学会议报告文集
    [3] 李艳,岑兆丰, 李晓彤. 集成毛细管电泳芯片荧光检测的研究. 光学仪器. 2003,Vol 25,No.1,pp8~13
    [4] 杨蕊,邹明强,翼伟,牟颖,金钦汉. 微流控分析系统的最新研究进展. 生命科学仪器. 2004 vol.3,NO.6,pp41~44
    [5] 莫建华,林斌. 微流控芯片光学检测系统集成化新进展. 光学仪器. 2004. vol.26,No.6. pp63~68
    [6] 朱睿,肖松山,范世福. 微流控芯片检测技术进展. 纳米技术与精密工程. 2005. vol.3, No.1. pp74~79
    [7] 曹小丹,方群,方肇伦. 基于复合型微流控芯片的紫外检测毛细管电泳系统. 高等学校化学学报. 2004. Vol.25,No.7. pp1231~1234
    [8] 聂舟,何治柯,庞代文,程介克. 微流控芯片化学发光检测系统研究. 分析科学学报. 2003. Vol.19,No.4.pp 321~323
    [9] Arora A,Mello A J,Manz A.Sub microliter electroche-detector-a model for small volume analysis systems[J].Anal Commun,1997,34:393-395
    [10] Arora A,Eijkel J C T,Morf W E,et a1.A wireless electro-chemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device[J].Anal Chem,2001,73:3 282-3 288
    [11] 魏培海, 刘芹,许青. 芯片毛细管电泳-电化学检测. 山东教育学院学报. 2004. Vol 6,NO.6, 82~84
    [12] Woolley A T, Lao K, Mathies R A et a1.Ana1.Chem.[J],l998.70:684-689
    [13] Wu C C,Wu R G,Huang J G,et a1.Three.electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for ampe-rometric detection[J].Anal Chem,2003,75: 947-952
    [14] Klett O,Nyholm L.Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis[J].Anal Chem,2003,75:1 245一l 250
    [15] Martin R S,Gawron A J,Lunte S M,et a1.Carbon paste-based electrochemical detectors formicrochip capillary electmphoresis/electmchemistry[J]. Analyst,2001, 126:277- 280
    [16] Gawron A J.Martin R S,Lunte S M.Fabrication and evaluation of a carbon-based dual-electrode detector for poly-electrophoresis chips[J].Electrophoresis,2001,22:242~ 248
    [17] Hilmi A,Luong J H T.Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive conpounds in soil and groundwater[J].Environ Sci-Technology,2000,34:3046~ 3050
    [18] Hilmi A, Luong J H T.Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips[J].Anal Chem,2000,72:4 677 682
    [19] Wang J,Pumera M.Dual conductivity/amperometric detection system for microchip capillary electrophoresis[J].Anal Chem,2002,74:5 9l9~5 923
    [20] F. Laugere, G..W.Lubking, J.Bastemeijer, M.J. Vellekoop. Sensors and Actuators B, 2002, 83:104~108
    [21] 李霞,温志渝,温中泉. 电泳芯片无接触电导检测器的理论研究. 色谱. 2004,Vol 22 No.5 469~471
    [22] Gǎs B, D em janenko M, Vac ik J. J Ch rom a togr, 1980, 192:253
    [23] Zem ann A J, Schne ll E, Vo lgge r D, B onn G K. Ana l Chem ,1998, 70 (3) : 563
    [24] F racass i da S ilva J A, do Lago C L. Ana l Chem , 1998, 70(20) : 4 339
    [25] Rosanne M. Guijt, Erik Baltussen, Gert van der Steen, Hans Frank, Hugo Billiet, Thomas, Schalkhammer, Frederic Laugere, Michiel Vellekoop, Axel Berthold, Lina Sarro, Gijs W. K. van Dedem. Capillary electrophoresis with on-chip four-electrode coactively coupled conductivity detection for application in bioanalysis. Electrophoresis 2001, 22, 2537–2541
    [26] F.Laugere, J.Bastemeijer, G.van der Steen. Electronic baseline-suppression for liquid conductivity detection in a capillary electrophoresis microchip. 2002, IEEE, pp:450~453
    [27] eroen Bastemeijer, Wijnand Lubking, Frederic Laugere, Michiel Vellekoop. Electronic protection methods for conductivy detectors in micro capillary electrophoresis device. 2002, Senor and Actuator 98~103
    [28] Rosanne W. Guijt, Christopher J. Evenhuis, Miroslav Macka, Paul R. Haddad. Conductivity detection for conventional and miniaturized capillary electrophoresis system. Electrophoresis 2004, 25, 4032~4057
    [29] Pavel Kubánˇ, Peter C. Hauser. Application of an external cotactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis. Electrophoresis 2005, 26, 3169~3178
    [30] Lichtenberg J, de Rooij N F, Verpoorte E. A microchip electrophoresis system with integratedin-plane electrodes for contactless conductivity detection,Electrophoresis 2002, 23: 3769-3780
    [31] Tanyanyiwa J, Hauser P C. High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis, Anal. Chem.2002, 74: 6378-6382
    [32] Laugere F, Lubking G W, Bastemeijer J, Vellekoop M.J. Design of anelectronic interface for capacitively coupled four-electrode conductivitydetection in capillary electrophoresis microchip, Sensors and Actuator B 2002,83: 104-108
    [33] Tanyanyiwa J, Leuthardt S, Hauser P C. Electrophoretic separations withpolyether ether ketone capillaries and capacitively coupled contactless conductivity detection, J. Chromator. A 2002, 978: 205-211
    [34] Lichtenberg J, de Rooij N F, Verpoorte E. A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection, Electrophoresis 2002, 23: 3769-3780
    [35] Walter R.Vandaveer IV, Stephanie A.pass-Farmer, David J.Fischer, Celeste N.Frankenfeld, Susan M.lunte. Recent developments in electrochemical detection for microchip capillary electrophoresis
    [36] Jastsai, Tanyanyiwa, Peter C. Hauser. Capillary and microchip electrophoresis of basic drugs with contactless conductivity detection.electrophoresis 2004, 25:3010~3016
    [37] Pavel Kubán,Peter C. Hauser. Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis. Electrophoresis 2005,26:3169~3178
    [38] Elwin X. Vrouwe,Regina Luttge,Albert van den Berg. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection. Electrophoresis 2004, 25:1660–1667
    [39] 康信煌, 陈缵光, 李全文, 蔡沛祥, 莫金垣. 毛细管电泳及芯片毛细管电泳的电容耦合非接触电导检测. 分析科学学报.2006,Vol. 22 ,No. 4, pp471~77
    [40] 王立新,傅崇岗. 毛细管电泳吴接触电导检测研究进展. 分析测试学报.2006,Vol25,NO.2,pp:120~125
    [41] 陈缵光,莫金垣. 毛细管电泳高频电导检测器的研制. 高等学校化学学报. 2002, Vol23 No.5 801~804
    [42] 方芳,关艳霞,吴智勇.电导检测芯片流动分析系统初步研究. 第三界全国微全分析系统学术会议论文文集. 2005,pp:88
    [43] 吴智勇,方芳,关艳霞,王世立,徐章润,方肇伦. 微流控芯片电导检测系统研究. 第三界全国微全分析系统学术会议论文集.2005,pp:86~87
    [44] 王立世,张水锋,陈缵光,党志,陈慧清,邓雪蓉. 电泳芯片高压非接触式电导检测系统.第三界全国微全分析学术会议论文集
    [45] 胡宗定,王一平. 工程电导测试技术. 天津大学出版社. 第7版,1990年
    [46] Pavel Kubán, Peter C. Hauser. Fundamental aspects of contactless conductivity detection for capillary electrophoresis. Part II: Signal-to-noise ratio and stray capacitance. Electrophoresis, 2004(25): 3398–3405
    [47] F.Laugere, G.W. Lubking, A, Berthold etal, Downscaling aspects of a conductivity detector for application in on-chip capillary electrophoresis, Sensors and Actuators A, 2001(92), pp109-114
    [48] 傅献彩,沈文霞,姚天扬。物理化学下册第四版,高等教育出版社,1990年,P-528
    [49] F.Laugere, G.W. Lubking, A, Berthold etal, Downscaling aspects of a conductivity detector for application in on-chip capillary electrophoresis, Sensors and Actuators A, 2001(92), pp109-114
    [50] 吴英. 低电压电泳芯片的研究. 重庆大学博士学位论文. 2002
    [51] 李霞. 电泳芯片上低电压分离过程的实现和计算机模拟. 重庆大学硕士学位论文.2004
    [52] 林凌,王小林李刚. 一种新型锁相放大器检测电路. 天津大学学报. 2005, 38(1), pp65~68
    [53] 翟成瑞,谭秋林,马游春. MEMS红外瓦斯传感检测系统的设计.中国信息技术,2006年第2期
    [54] 刘铁军, 黄志尧,王保良. 测量液体电导的两种新方法. 检测与控制装置. 2005, 32(3):50-53
    [55] 蒋金弟,朱永辉,毛培法. MAX038高频精密函数发生器原理及应用. 山西电极技术,2002年,第2期,pp39~43
    [56] 纪宗南,单片机外围器件实用手册,输入通道器件分册,北京航空航天大学出版社,1998 年 8 月第 1 版
    [57] 朱为维,温志渝,徐溢. 芯片上非接触电导检测器的研究. 传感技术学报. 2006(5)pp: 1988~1992
    [58] Pavel Kubán, Peter C. Hauser. Fundamental aspects of contactless conductivity detection for capillary electrophoresis.Part I: Frequency behavior and cell geometry. Electrophoresis 2004(25): 3387–3397
    [59] Pavel Kubán, Peter C. Hauser. Fundamental aspects of contactless conductivity detection for capillary electrophoresis. Part II: Signal-to-noise ratio and stray capacitance. Electrophoresis , 2004(25): 3398–3405
    [60] Andreas J. Zemann. Capacitively coupled contactless conductivity detection in capillary electrophoresis. Electrophoresis 2003(24): 2125–2137
    [61] 谭峰, 关亚风. 毛细管电泳-电容耦合非接触电导检测方法. 分析化学.2005, 33(3): pp313~316
    [62] Pavel Kuban , Peter C. Hauser, Contactless Conductivity Detection in Capillary Electrophoresis:A Review. Electroanalysis 2004, 16, No. 24,2020~2022
    [63] F.Laugere, G.W.Lubking, J.Bastemeijer,M.J. Vellekoop. Design of electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis maicro chip. Sensor and Actuators B 83(2002) 104~108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700