凤眼莲在富营养化水体中衰亡的环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凤眼莲是最早用于污水净化的植物之一,在藻型富营养化水体生态修复中有着重要的作用。以往对凤眼莲的研究主要集中在凤眼莲生长旺期对水质净化的作用,而就凤眼莲整个生长过程对污染物及水环境的影响研究尚不多,所以,往往根据直观的现象,认为凤眼莲衰亡腐烂会形成“二次污染”。究竟凤眼莲在什么时候、什么条件下会形成“二次污染”?“二次污染”的程度有多大?凤眼莲对污染水体的净化作用能够持续多久?这些问题尚需要进一步深入研究。本实验从初冬季节开始,模拟不同密度的凤眼莲在湖泊水体中的自然衰亡和腐解过程对水体和底泥的影响,通过与对照区对比分析,得出以下结论:
     (1) 初冬季节在富营养化水体中引种凤眼莲后,虽然气温较低,凤眼莲基本停止生长,但凤眼莲对富营养化水体的有机污染指标COD_(Mn)、营养盐指标TP、TN、NH_4~+-N和生物指标叶绿素均有去除能力,去除能力的强弱与凤眼莲生物量的多少成正比;在初冬季节的净化能力没有在生长旺盛期强,放养100 kg的D3区对TP、TN、NH_4~+-N、COD_(Mn)的净化率分别只有生长旺盛期的83.1%、25.7%、55.2%和21.3
     (2) 凤眼莲开始衰亡至完全沉降前这一阶段,不同密度的凤眼莲对水体DO有影响,对照区D8(未放养凤眼莲)的DO始终大于投放风眼莲的试验区;出现对水体营养盐污染的时间与投放凤眼莲生物量有关,最早出现污染的是第61天在D3区的NH_4~+-N指标,最晚出现污染的是第92大在D7区(放养25kg凤眼莲)的TP指标;因水体的自净作用,对水体COD_(Mn)没有明显的污染作用;这一阶段凤眼莲残体腐烂对水体叶绿素基本没有影响,主要是自然变化过程。
     (3) 在凤眼莲残体完全沉降后,各试验区DO、COD_(Mn)、Chla及水体透明度的最恶值均出现在最热的7、8月份;这个阶段投放凤眼莲的试验区水体继续受营养盐污染,凤眼莲生物量越多,对水体TP、TN污染持续的时间越长,D3区比D7区分别长60天和87天。
     (4) 凤眼莲残体完全沉降后,底泥营养盐浓度增加明显,营养盐上升量与凤眼莲放养量成正相关,投放100 kg的D3区底泥中的TP、TN、TOC增加最多,分别增加了31.78%、31.17%和52.17%,投放25 kg的D7区底泥中的TP、TN、TOC则分别增加了18.03%、17.25%、24.32%。这表明凤眼莲残体对沉积物有一定污染作用。
Water hyacinth, Eichhonia Cassipes Solms, has been widely used in wastewater treatment. It plays an important role in remediation of phytoplankton-dominated eutrophic water. However, its application has been limited because it causes many ecological and environmental problems. Most research on the purification of water hyacinth was done during the vigorous growth period of water hyacinth, and it is very few that studying the effect on water environment and contaminants during the whole growth of water hyacinth. Accordingly, when water hyacinth began to decline and decay, they were considered as "secondary pollution". But when and what conditions do they come into being "secondary pollution"? How deep of the degree are they? How long can the purification of water quality persist? All these questions need to thorough research. The experiment began in early winter and simulated the effect of water hyacinth's natural decline and decay of different density in a eutrophic water, the following conclusions were gott
    en:
    (1) After the water hyacinth was planted in eutrophic water in early winter, it can reduce the concentration of CODMn.TP, TN, NH4+-N and Chla although the temperature of water was low and its growth rate was very slow. But the capability of purification in early winter was weaker than that of in its vigorous growth, such as the capability of purification to the concentration of TP, TN, NH4+-N, CODMn of the experimental enclosure D3 in early winter, which planted 100 kg water hyacinth, was only 83.1 %, 25.7%, 55.2% and 21.3% of in its vigorous growths
    (2) During the period from the beginning of water hyacinth death to disappeared completely in water surface, the remains of water hyacinth can influence the dissolved oxygen (DO). The DO in the experimental enclosure D8 was higher than DO in other enclosures with remains of water hyacinth all the time. The time when the nutrients began to increase was related to the original biomass of water hyacinth in each enclosure. The NH4+-N was the earlist pollution and it happened in the sixty-first day in the experimental enclosure D3. The TP was the latest and it appeared in the ninety-second day. There wasn't clear pollution to the CODMn and Chla because of natural purification.
    (3) After all the remains disappeared from water surface and deposited to the water bottom, the water quality become worse and worse day by day. During this time, the nutrients of water of experimental encolsure D3, D5, D7 kept increasing. The periods of TP and TN pollution in enclosure D3 were 60 days and 87 days longer than that of D7 respectively. The original biomasses were 100, 50, 25 kg in enclosure D3, D5, D7.
    (4) After all the remains deposited to bottom, the concentration of nutrients in sediments increased obviously. There was positive correlation between the degree of sediment-pollution and the original quantity of water hyacinth in each encosure. The TP, TN, TOC of the sediment in D3 increased 31.78%, 31.17% and 52.17% respectively, while these indexes increased 18.03%, 17.25% and 24.32% respectively in D7.
引文
陈洪达,1984.杭州西湖水生植被恢复的途径与水质净化问题.水生生物学集刊,8(2):237~244
    成小英,2003.富营养化湖泊局部水体生态修复的物理生态工程—以莫愁湖为例.中国科学院硕士学位研究生学位论文,2003.
    成小英,王国祥,濮培民等,2002.冬季富营养化湖泊中水生植物的恢复及净化作用.湖泊科学,14(6):139~144
    大木规晃.国立公害研究所研究报告.第542号,79~94
    戴全裕,陈源高,皮宇等,1991.凤眼莲对含银废水中银的富集量及其应用研究.应用生态学报,2(2):159~167.
    戴全裕,蒋兴昌,汪耀斌等,1995.太湖入湖河道污染物控制生态工程模拟研究.应用生态学报,6(2):201~205
    丁树荣,1984.高产水生维管束植物在城镇污水资源化中的作用及其发展前景.中国环境科学,4(2):10~15.
    丁树荣,1989.高等水生植物净化污水研究的新进展兼论污水资源化生态工程中的若干问题.江苏省科学技术协会,江苏资源与环境.南京:江苏教育出版社,1989
    董哲仁,刘倩,曾向辉,2002.受污染水体的生物—生态修复技术.水利水电技术,33(2):1~4
    窦鸿身,濮培民,张圣照,1995.太湖开阔水域凤眼莲的放养实验.植物资源与环境,4(1):54~60
    凤眼莲高产栽培技术.农村新技术,2001,第1期
    国家环境保护总局,2002.水和废水分析方法[M].北京:中国环境科学出版社,2002.6.
    胡雪峰,陈振楼,高效江等,2001.入冬水生高等植物的衰亡对河流水质的影响.上海环境科学,20(4):184~188
    胡肄慧,陈章龙,陈灵芝等,1981.凤眼莲等水生植物对重金属污水监测和净化作用的研究.植物生态学与地植物学丛刊,5(3):187~192.
    黄承才,2001.富营养化水体中14种野生植物光合和营养吸收的相关性.绍兴文理学院学报,21(3):52~56
    黄文成,1994.深水植物在治理滇池草海污染中的作用.植物资源与环境,3(4):29~
    
    33
    黄文成,徐廷志,1994.试论沉水植物在治理滇池草海中的作用,广西植物,14(4):334~337
    蒋艾青,2003.凤眼莲对城郊污水鱼塘的净化试验.淡水渔业,33(5):43~44
    金相灿,屠清瑛,1990.湖泊富营养化调查规范.北京:中国环境科学出版社,1990
    李宝林,1996.凤眼莲根系微型动物群落的季节动态与净化效能的关系初探.环境科学,16(5):64~66
    李宝林,1999.凤眼莲净化水质的利用及其所诱发的环境问题.环境科学,1999,32~33
    李军,张玉龙,黄毅等,2003.凤眼莲净化北方地区屠宰废水的初步研究.沈阳农业大学学报,34(2):103~105
    李维新,1987.凤眼莲用于处理缫丝废水的半人工水生生态系统.环境工程,1987(6):26
    李文朝,1997.富营养水体中常绿水生植被组建及净化效果研究,中国环境科学,17(1):53~57
    李学宝,刘永定,1997.凤眼莲组织培养的研究.华中师范大学学报,31(3):332~335
    李周生,冉梦莲,王鸿博,2001.净化水域的水生花卉——凤眼莲.生物学杂志,18(5):47
    刘超翔,胡洪营,张建等,2003,不同深度人工复合生态床处理农村生活污水的比较,环境科学,24(5):92~96
    刘光良,1988.常见四种水生植物对制浆造纸废水净化处理的研究.环境科学,1988(1):34
    刘嘉麒.邓加忠,1997.利用天敌控制凤眼莲疯长的研究.云南环境科学,15(4):11~14.
    刘建,黄建华,2002.谨慎引进植物,警惕负面影响.植物保护,28(4):51~53.
    刘淑嫒,任久长,由文辉,1999.利用人工基质无土栽培经济植物净化富营养化水体的研究,北京大学学报(自然科学版).35(4):518~522
    陆剑飞,宋会鸣,章强华等,2001.41%BIOFORCE水剂防除河道中风眼莲效果初报.杂草科学,2001(1):36~37
    马红波,2001.渤海沉积物中氮的赋存形态及其在循环中的作用.中国科学院硕士学位论文,2001.6
    
    
    马剑敏,罗岳平,李益健等,1998.湖泊大型围隔(栏)中的植被恢复对四种水质指标的影响.环境科学与技术,2(1):9~13
    马凯,蔡庆华,谢志才等,2003.沉水植物分布格局对湖泊水环境N、P因子影响.水生生物学报,27(3):232~237
    庞金华,沈瑞芝,程平宏,1997.三种植物对COD的耐受极限与净化效果.农业环境保护,16(5):209~213
    濮培民,王国祥,胡春华等,2000.底泥疏浚能控制湖泊富营养化吗? 湖泊科学,12(3):269~279
    濮培民,王国祥,李正魁等,2001.健康水生态系统的退化及其修复——理论、技术及应用.湖泊科学,13(3):199~210
    齐玉梅,高伟生.1999.凤眼莲净化水质及其后处理工艺探讨.环境科学进展,7(2):136~140
    秦伯强,2002.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,14(3):193~202
    邱东茹,吴振斌,刘保元,1997.武汉东湖水生植被的恢复试验研究,湖泊科学,9(2):168~174
    孙文浩,余淑文,杨善元等,1993.凤眼莲根系分泌物中的克藻化合物.植物生理学报,19 (1)
    孙文浩,俞子文,余叔文,1988.凤眼莲对藻类的克制效应.植物生理学报,14(3)
    唐萍,吴国荣,1999.凤眼莲根系分泌物对栅列藻膜系统及光合作用的影响.连云港教育学院学报,1999(2):49~50
    唐述虞,1989.应用水生植物氧化塘生态工程处理炼油废水.环境工程,1989(6):8
    田淑媛,王景峰,朗铁柱,杨秀文,2000.水生维管束植物处理污水及其综合利用,城市环境与城市生态,13(6):54~56
    万咸涛,2001.武汉江段大面积出现凤眼莲对该水域环境的影响.江苏环境科技,14(4):21~22
    汪凤娣.外来入侵物种凤眼莲的危害及防治对策.黑龙江环境学报,2003,27(3):21~22.
    汪敏,郑师章,1994.凤眼莲与其根际细菌相互作用的研究,应用生态学报,5(3):309~313
    王崇效,徐赛兰,王志香等,1986.凤眼莲净化含酚污水的实验 Ⅰ.盆栽和氧化塘实验及
    
    几种环境条件对除酚的影响.环境科学学报,6(2):207~215.
    王国祥,1999.富营养化湖泊生态修复的物理生态工程及其机理.中国科学院博士学位研究生学位论文.
    王国祥,濮培民.张圣照等,1998.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染.植物资源与环境,7(2):35~41.
    王国祥,濮培民,张圣照等,1999.冬季水生高等植物对富营养化湖水的净化作用.中国环境科学,19(2):106~109
    王海珍,陈德辉,王全喜等,2001.水生植被对富营养化湖泊生态恢复的作用,自然杂志,24(1):33~36
    王焕友,1990.污染生态学基础.云南大学出版社,1990.1
    王建,2001.现代自然地理学.北京:高等教育出版社,2001.6
    吴振斌,邱东茹,贺锋等,2001.水生植物对富营养化水体水质净化作用研究,武汉植物学研究,19(4):299~303
    吴振斌,邱东茹,贺锋等.2003.沉水植物重建对富营养水体氮磷营养水平的影响,应用生态学报,14(8):1351~1353
    夏晓松,丁树荣,1987.凤眼莲(Eichhornia crassipes Somls)对染料色水脱色作用的初步研究.环境科学学报,7(3):353~359.
    谢伟.2000.凤眼莲养鱼及其效益研究.淡水渔业,30(9):25~27
    谢心义,1984.眼莲净化污水试验研究.环境科学,1984(3):15
    徐红,朱萍,钟玉林,2003.白莲河水库凤眼莲过度繁殖及其防治对策.黄冈师范学院学报,23(6):71~73.
    徐骏,2001.杭州西湖底泥磷分级分布.湖泊科学.13(3):247~254
    杨凤辉,马涛,陈家宽,2002.上海黄浦江凤眼莲灾害的发生机理及控制对策初探.复旦学报(自然科学版),42(6):599~603.
    杨继武,1993.凤眼莲用于废水净化.油气田环境保护,1993(3):25
    由文辉,刘淑嫒,钱晓燕,2000.水生经济植物净化受污染水体研究,华东师范大学学报(自然科学版),2000(1):99~102
    余国营,刘永定,丘昌强等.2000.滇池水生植被演替及其与水环境变化关系.湖泊科学,12(1):73~80
    余远松,润坤.2000.凤眼莲水生生物系统处理大型养猪场废水的应用研究.农业环境保
    
    护,19(5):301~303
    俞子文,孙文浩,郭克勤等,1992.几种高等水生植物的克藻效应.水生生物学报,16(1):1~7
    袁桂良,刘鹰,2001.凤眼莲对集约化甲鱼养殖污水的静态净化研究.农业环境保护,20(5):322~325
    张圣照,王国祥,濮培民,1998.太湖藻型富营养化对水生高等植物的影响及植被的恢复.植物资源与环境,7(4):52~57
    张文,2002.科学证实利用凤眼莲治理水污染可行.科学时报.
    张志杰,王志盈,吕秋芬等,1988.凤眼莲对铅、镉废水净化能力的研究.环境科学,10(5):14~17.
    章宗涉,1998.水生高等植物-浮游植物关系和湖泊营养状态,湖泊科学,10(4):83~86
    郑敏.凤眼莲资源的可持续利用对策探讨——以福建莆田木兰溪下游为例,资源开发与市场,2000,16(2):91~93
    郑师章,乐毅全,吴辉等,1994.凤眼莲及其根际微生物共同代谢和协同降酚机理的研究.应用生态学报,5(4):403~408.
    周风帆,王新光,丁树荣,1989.利用凤眼莲(Eichhornia crassipes Somls)净化水中放射性核素60钴、65锌、137铯的研究.中国环境科学.9(1):26~30.
    周凤霞,1998.水生维管束植物对污水的净化效应及其应用前景.污染防治技术,11(3):160~162
    米德尔布鲁克斯(Middlebrook E J)著.杨文进译.废水稳定塘的设计和运行.北京:中国建筑工业出版社,1986
    Aldridge K T, Ganf GG, 2003. Modification of sediment redox potential by three contrasting macrophytes: implications for phosphorus adsorption/desorption. Marine and Freshwater Research, 54(1): 87~94
    Anon.1973. Workshopin Aquatic Weed Management and Utilization. Georgetown, Guyana
    Beklioglu M, Moss B, 1996. Existence of a macrophyte-dominated clear water state over a very wide range of nutrient concentrations m a small Shallow Lake, Hydrobioioyia, 337: 93~106
    Bennett F D, 1967. Pesticides Abstracts and News Summary. C, 13:304~309
    
    
    Bennett F D, 1968. In Proceedings of the Ninth British Weed Control Conference, 832~835
    Bennett F D, 1972. Pesticides Abstracts and News Summary. C, 18:310~311
    Bennett, F D, Zwofer, 1968. Hyacinth Control Journal, 7: 44~52.
    Blindow I, Andersson G, Haregy A, et al. 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshw Biol, 30 (1): 159~167
    Brix H and Schierup H H. 1989. The use of aquatic macrophytes in water-pollution control. Ambio, 18:100~107
    Carignan R, Kalff J. 1980. Phosphorus sources for aquatic weeds: water or sediment? science, 207: 987~988
    Center T D, 1975. EPAReport No.ENN-07-75-1.51~58
    Center T D, 1994. Pest Management in the Subtropics, 23:482~521
    Center T D, J K Balciunas, 1982. Annals of the Entomological Society of America, 75: 471~479
    Center T D, W C Durden, 1984. Proceedings of 18~(th) Annual Meeting, Aquatic Plant Control Research Program, 85~98
    Chambers PA & Prepas EE, 1990. Competition and coexistence in submerged aquatic plant communities: the effects of species interactions versus abiotic factors factors. Freshwater Biol, 23: 541-550
    Charudattan, R, etal.1974, Proceedings of the Fourth International Symposium on Aquatic Weeds, 144~149
    Clarke SJ & Wharton G, 2001. Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. The Science of Total Environment, 266:103-112
    Comin F A, Romero J A, Hernáindez O, Menéndez M, 2001. Restoration of Wetlands from Abandoned Rice Fields for Nutrient Removal, and Biological Community and Landscape Diversity. Restoration Ecology, 9(2): 201-208
    Delfosse, E S, 1978a. Proceedings of the Fourth International Symposium on the Biological Control of Weeds, 93~97
    Delfosse, E S, 1978b. Entomphaga, 23:379~387
    Delfosse, E S, et al.1976. Journal of Aquatic Plant Management, 14:64~67
    Dellarossa V, Cespedes J & Zaror, 2001. Eichhornia crassipes-based tertiary treatment of Kraft
    
    pulp mill effluents in Chilean Central Region. Hydrobiologia, 443:187~191
    Deloach, C J, 1975. Proceedings of the Symposium on Water Quality Management through Biological Control, 44~50
    Dierberg F E, DeBusk T A, Jackson S D, et al. 2002. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading, Water Research, 36(6): 1409~1422
    El-Banhawy, E M, 1979. Acarologia, 20:477~484
    Gopal B & Goel U, 1993. Competition and allolopathy in aquatic plant communities. The Botanical Review, 59(3): 155~210
    Gulati R D, van Donk E, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobioiogia, 478(1-3): 73~106
    Harley K L S, A D Wright, 1984. Proceedings of the International Conference on Water Hyacinth. 58~69
    Holm, L G, et al.1977. Distribution and Biology. Honolulu, Hawaii: University Press of Hawaii, 609
    Horppila J & Nurminen L, 2001. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biology, 46: 1447~1455
    Jeanne E A, 1997. Trace Element Sorption by Sediments and Soil -sites and Process. In: CHAPPEL W K, PETERSON K(eds). Symposium on Molybdenum in the Envi. New York:: Dekker, 425~553
    Jeppesen E, Sondergaard M, Sondergaard M (eds.), 1997. The Structuring Role of Submerged Macrophytes in Lake, Springer
    Kim Y, Park J, Giokas D L, Albanis T A. 2004. Performance evaluation and mathematical modeling of nitrogen reduction in waste stabilization ponds in conjunction with other treatment systems. Journal of Environmental Science and Health Par. a-toxic/hazardous substances & environmental engineering, 39 (3): 741~758
    Korner S, Dugdale T, 2003. Is roach herbivory preventing re-colonization of submerged macrophytes in a shallow lake? Hydrobiologia, 506 (1-3): 497~501
    Li Wenchao, 1995. Wetland utilization in Lake Taihu for fish farming and improvement of lake
    
    water quality. Ecological Ening, 5: 107~121
    Mann C J, Wetzel R G, 2000. Effects of the emergent macrophyte Juncus effusus L. on the chemical composition of interstitial water and bacterial productivity, Biogeochemistry, 48 (3): 307~322
    Meijer ML & Hosper H, 1997. Effects of biomanipulation in the large and Shallow Lake Wolderwijd, The Netherlands. Hydrobiologia, 342/343: 335~349
    Michael R P, Martin TA, Eric L V, et al. 1995. Phosphorus digenesis in lake sediments: investigation using fractionation techniques. Mar Freshwater, 46:89~99
    Mooney H A, 1999. Species without frontiers. Nature, 397:665~666
    Moss B, 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200/201:367~378
    Nainan R J, Magnuson J J, Mcknight D M, et al.1995. Freshwater Ecosystems and Their Management: A National Initiative. Science, 270:584~585
    Napompeth B, 1993. United Nations Environment Program Reports and Proceedings Series, 7: 811~822
    Noges P, Tuvikene L, Feldmann T, et al. 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia, Hydrobiologia, 506 (1-3): 567~573
    Perki, 1973a. Proceedings Tall Timbers Conference on Ecological Animal Control by Habitat Management4, 53~64
    Perkins, B D, 1973b. Control of weeds. Mis cellane ous Publication, 6:179~184
    Perkins, B D, 1974. Pesticides Abstracts & News Summary. A, 20:304~314
    Phillips G L, Eminson D, Moss B, 1978. A mechanism to account for macrophyte decline in progressively eutrophicatied freshwater. Aquat Bot, 4 (2): 103~126
    Robert G, 1983. Wetzel. Limnologge Publishing, 223~341
    Scheffer M, Hosper SH, Meijer ML, et al. 1993. Alternative equilibria in shallow lakes, Trends Ecol. Evol., 8 (8): 275~279
    Schulz M, Kozerski HP, Piuntke T, Rinke K, 2003. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany), Water
    
    Research, 37(3): 569~578
    Silveira-Guido A, 1965. Final Report on PL-480 Project S9-CR-1(22 Jan.1962 to 15 Nov. 1965).
    Silveira-Guido A, 1971. Revistadela Sociedad Entomological Argeritina, 33: 137~145
    Silveira-Guido A, B D Perkins, 1975. Environ, Entomol., 4:400~404
    Sondergaard M and Moss B, 1997. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppessen E, et al. (Eds.). The Structuring Role of Submerged Macrophytes in Lakes. Springer 115~132
    Stephen E Davis Ⅲ, Carlos Coronado-Molina, Daniel L Childers, et al. 2003. Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany (75): 199~215
    Tanner C C, 2001. Plants as ecosystem engineers in subsurface-flow treatment wetlands, Water Science and Technology, 44 (11-12): 9~17
    Van Liere L, Parma S, Gulati R D, et al. 1992. Working group water quality research Loosderht Lakes: its history, structure, research programme, and some results, hydrobiologia, 233: 1~9
    Waterhouse D F, 1994. Biological Control of Weeds: South east Asian Prospects. Canberra, Australia, 68~83
    Wetzel R G and Sondergaard M, 1997. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In: The Structuring Role of Submerged Macrophytes in Lakes, Jeppessen E et al. (Eds.). Springer, 115~132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700