基于微型生物反应器的聚合物荧光传感膜及双光子非线性材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代生物技术在近几十年发展迅猛,由于一般生物反应器在发酵和细胞培养中价格、体积及菌株筛选、培养基配方和确立关键参数方面的限制,廉价、高通量、快速、可靠的微型生物反应器已引起了国际社会的高度重视。根据生物技术发展需要,希望微型生物反应器可以进行多参数、平行在线监测和具有高通量分析功能。在微型反应器内进行各种参数的分析、测定,如pH、溶解氧(DO)、pCO2等,常规的技术已经无法满足需要,而基于荧光测量方法可以解决这样的困难而受到广泛重视。将荧光传感单元通过共价键引入聚合物是一种非常实用的办法,可有效避免相分离和聚集态荧光淬灭,且很容易小型化和器件化,并可以重复利用。
     本论文基于微型生物反应器的在线检测需要,合成并研究了具有pH、溶解氧传感性质的亲水性聚合膜,主要包括以下几方面内容:
     第一章在介绍有关荧光传感器的理论基础上,概述了pH、溶解氧探针以及将荧光传感器用于微型生物反应器的研究进展,并提出了本论文的研究课题。
     为了适应水溶液环境的检测,采用聚甲基丙烯酸羟乙酯(PHEMA)为传感器的骨架,主要考虑到:1)该类聚合物支链含有羟乙基,具有很好的亲水性;2)该类聚合物对生物体无毒性,非常安全;3)在玻璃或石英上显示出很好的成膜性。在第二章将具有较强碱性的吡啶引入苯并咪唑设计pH比率荧光传感器P(BIPy-HEMA)。通过与甲基丙烯酸羟乙酯单体共聚合成了适用于酸性范围的亲水性聚合物。在水溶液中,当酸性逐渐增强时,吡啶氮原子和3-位咪唑氮原子先后进行质子化,聚合物薄膜的吸收光谱和荧光光谱均发生两次红移过程,并出现两个等吸收(荧光)点。根据I462/I423和I536/I462与pH值的线性相关曲线,发展了基于苯并咪唑荧光团的亲水性聚合型比率荧光探针。考虑到其在水溶液中的亲水性、稳定性和重复性,该比率荧光探针薄膜适用于pH值为1.7-4.5的酸性范围内。
     4-位甲基哌嗪取代的1,8-萘酰亚胺在接近中性范围内对pH具有较好的线性响应性能,第三章将该荧光分子引入PHEMA聚合物中,合成了共聚物P(NI-HEMA)。在pH为5.8-8.0的水溶液中,该聚合物薄膜显示出非常明显的荧光变化和极好的线性响应。使用等吸收点406 nm作为激发波长,可以避免紫外线的辐射和光密度的影响。基于PET机理,当pH从8.0降至5.8时,荧光增强了将近一倍。该聚合型传感膜具有很好的热稳定性、时间稳定性和重复性。
     考虑到萘酰亚胺的吸收波长较短,即使用等吸收点(400 nm)进行荧光激发,还是会受到反应器中本体的影响,在应用上受到限制。第四章选择了具有更长吸收波长的2-甲基哌嗪取代的萘四酰二亚胺NDI,该荧光分子的吸收波长可达570 nm,荧光波长为628 nm,很大程度上克服了本体的背景影响。含有该荧光传感单元的共聚物P(NDI-HEMA)薄膜在pH为4.6-8.0的水溶液中的荧光强度对pH值显示出非常好的线性响应性能。而且,当pH从8.0变化至4.6的时候,荧光强度增强了2倍,比P(NI-HEMA)具有更大的增强幅度,其线性响应的pH值范围也比萘酰亚胺更大。
     第五章将具有对溶解氧敏感的红光金属铱(Ⅲ)络合物引入聚合物,合成了共聚物P([Ir(DPQ)2phen]-HEMA)。研究了该聚合物和单体的荧光及荧光寿命随溶解氧的变化,发现随着溶液中溶解氧量降低时,其荧光强度得到明显地增强,同时荧光寿命变化更为.显著,单体和聚合物的甲醇溶液的荧光寿命增幅分别达6倍和3倍。
     在第六章设计合成了具有双光子诱导非线性荧光的TPA-BODIPY,并通过单晶衍射和理论计算确定了其空间构型和前线轨道。该化合物在756和653 nm有两个很强的吸收峰。在甲苯溶液中,用756和644 nm的波长进行激发得到非常强的荧光,而用紫外区波长进行激发,可以很明显地看到能量部分转移,在680 nm左右和820 nm有两个不同强度的荧光峰,而在二氯甲烷和四氢呋喃中均不发生该能量转移行为。采用800 nm波长的激光对其进行双光子荧光激发,发现其荧光光谱出现两个吸收带,分别位于673和594 nm,分析荧光强度与激发光强度的关系,说明该激发波长下化合物显示双光子吸收诱导荧光,而不需要共聚焦就可以观察到强烈的双光子荧光。
     此外,合成了比率型聚合物荧光传感器P(PT-HEMA)和近红外聚合物荧光传感器P(PDI-HEMA),但是由于荧光光谱变化较小和荧光强等方面因素其作为pH荧光传感器的性能未能达到预期目标。在合成双光子荧光分子TPAP-BODIPY的时候由于提纯遇到困难未能得到最终产物。
Modern biotechnology has developed dramastically in recent decades. The applicaion of currently bioreactors is restricted due to its price, volume and inconvenience in screening bacterium, culture medium formula and determining key parameters. To solve those limitations, considerable efforts have been made to develop micro-bioreactors with low-cost, high-thoughtput, fast and reliable requirements. In order to meet these standards in biotechnology, the micro-bioreactors assembled with the ability of detecting multiple parameters parallelly and high-throughput analysis would be more preferable. To detect the parameters such as pH, dissolved oxygen (DO), pCO2 in micro-reactors, optical method becomes preferrable instead of traditional technology. Incorporating the fluorescent chemosensors into a polymeric system can efficiently avoid phase separation and aggregation-induced fluorescence quenching, and is also beneficial to miniaturize devices.
     Based on micro-bioreactors, several series of hydrophilic polymers for determing pH, DO were synthesized. The main contents in this dissertation are generalized as follows:
     In Chapter 1, based on fluorescence sensing theory, the development for pH and DO sensors and their application in micro-bioreactors, was. reviewed, and the main research stratety was presented.
     In order to apply in aqueous system, hydrophilic PHEMA was selected as the main matrix for its hydrophilic ability attributed to its hydroxyl groups. The ratiometric approach is robust and insensitive to factors such as source intensity, photobleaching. In Chapter 2, a novel ratiometric hydrophilic polymer P(BIPy-HEMA) for acidic aqueous containing pyridyl substituted benzimidazole moiety as pH sensor has been developed. Its fluorescence in aqueous system showed two obvious isosbestic points due to two-stepwise protonation. According to the linear curves of I462/I423 and I536/I462 to pH, such ratiometric pH values could be read directly without tedious calibration. Considering the hydrophilicity, stability and repeatability in aqueous environment, the fluorescent film with ratiometric characteristic over acidic pH range of 1.7-4.5 makes it high promising for online monitor.
     In Chapter 3, a novel hydrophilic copolymer P(NI-HEMA) containing the pendant group of naphthalimide moiety has been prepared. In the aqueous buffer solution, its film on the glass substrate shows an obvious fluorescence change and excellent linear relevance at the pH range of 5.8-8.0. Specifically, using the isobestic point at 406 nm as excitation wavelength can avoid the UV irradiation and the tedious calibration process. The film-stability and hydrophilicity of copolymer P(NI-HEMA) was studied.
     Considering that the absorption wavelength of copolymer P(NI-HEMA) is located at near 400 nm, affected by background in bioreactor, in Chapter 4, NDI was chosen as sensor with absorption and fluorescence bands at 570 and 628 nm, respectively. The film of copolymer P(NDI-HEMA) exhibits good linear response with pH in the range of 4.6-8.0. Distincctly, the extents of increase in fluorescence intensity and pH range are larger than P(NI-HEMA).
     In Chapter 5, the oxygen sensitive unit of Ir(Ⅲ) complex was copolymerized into polymer matrix to develop dissolved oxygen sensor P([Ir(DPQ)2phen]-HEMA). Changes in fluorescence intensity and lifetime were studied for both the copolymer and its monomer. By decreasing the concentration of DO in solution, the change of polymer P([Ir(DPQ)2phen]-HEMA) in fluorescence intensity increased a lot and lifetime of P([Ir(DPQ)2phen]-HEMA) and [Ir(DPQ)2phen]+PF6- are increased by about 3 times and 6 times, respectively.
     In Chapter 6, a novel two-photon absorption material TPA-BODIPY was designed and synthesized. There are two intense absorption peaks at 756 and 653 nm. Upon excitation at those peaks, TPA-BODIPY exhibits strong fluorescence in toluene. While excited at UV irridiation, energy transfer was observed only in toluene but not in CH2Cl2 and THF. Two-photon fluorescence was excited at 800 nm, and two emission bands were appeared at 673 and 594 nm. The gradient of fluorescence intensity at those peaks with exciting energy can be attributed to the two-photon absorption induced fluorescence.
     Besides, the ratiometric polymeric fluorescence sensor P(PT-HEMA) and NIR polymeric fluorescence sensor P(PDI-HEMA) for pH were synthesized. However, small changes in fluorescence spectra and low intensity of fluorescence could not meet the anticipation. The purification of intermediate of TPAP-BODIPY could not be solved and the targeted product did not achieved at the end.
引文
[1]Adhikari B., Majumdar S. Polymers in sensor applications. Prog. Polym. Sci.,2004, 29(7):699-766.
    [2]Coskun A., Akkaya E. U. Signal ratio amplification via modulation of resonance energy transfer:Proof of principle in an emission ratiometric Hg(Ⅱ) sensor. J. Am. Chem. Soc., 2006,128(45):14474-14475.
    [3]Loehr H. G., Voegtle F. Chromo- and fluoroionophores. A new class of dye reagents. Acc. Chem. Res.,1985,18(3):65-72.
    [4]De Silva A. P., Fox D. B., Moody T. S., Weir S. M. The development of molecular fluorescent switches. Trends Biotechnol.,2001,19(1):29-34.
    [5]Callan J. F., De Silva A. P., Magri D. C. Luminescent sensors and switches in the early 21st century. Tetrahedron,2005,61(36):8551-8588.
    [6]de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., Mccoy C. P., Rademacher J. T., Rice T. E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev.,1997,97(5):1515-1566.
    [7]de Silva A. P., Fox D. B., Huxley A. J. M., Moody T. S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev.,2000, 205(1):41-57.
    [8]Rettig W. Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew. Chem. Int. Ed.,1986,25(11):971-988.
    [9]Kubo Y., Yamamoto M., Ikeda M., Takeuchi M., Shinkai S., Yamaguchi S., Tamao K. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: fluoride ion sensing by a triarylborane-porphyrin conjugate. Angew. Chem. Int. Ed., 2003,42(18):2036-2040.
    [10]Korostynska O., Arshak K., Gill E., Arshak A. Review on state-of-the-art in polymer based pH sensors. Sensors,2007,7:3027-3042.
    [11]Aschi M., D Archivio A. A., Fontana A., Formiglio A. Physicochemical properties of fluorescent probes:experimental and computational determination of the overlapping pKa values of carboxyfluorescein. J. Org. Chem.,2008,73(9):3411-3417.
    [12]Weidgans B. M., Krause C., Klimant I., Wolfbeis O. S. Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst,2004,129(7):645-650.
    [13]Kreft O., Javier A. M., Sukhorukov G. B., Parak W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem.,2007,17(42):4471-4476.
    [14]Giuliano K. A., Gillies R. J. Determination of intracellular pH of BALB/c-3T3 cells using the fluorescence of pyranine. Anal. Biochem.,1987,167(2):362-371.
    [15]Hakonen A., Hulth S. A high-precision ratiometric fluorosensor for pH:implementing time-dependent non-linear calibration protocols for drift compensation. Anal. Chim. Acta,2008,606(1):63-71.
    [16]Nishimura G., Shiraishi Y., Hirai T. A fluorescent chemosensor for wide-range pH detection. Chem. Commun.,2005(42):5313-5315.
    [17]Shiraishi Y., Tokitoh Y., Hirai T. pH- and H2O-driven triple-mode pyrene fluorescence. Org. Lett.,2006,8(17):3841-3844.
    [18]Shiraishi Y., Tokitoh Y., Nishimura G., Hirai T. Solvent-driven multiply configurable on/off fluorescent indicator of the pH window:a diethylenetriamine bearing two end pyrene fragments. J. Phys. Chem. B,2007,111(19):5090-5100.
    [19]Grabchev I., Dumas S., Chovelon J., Nedelcheva A. First generation poly(propyleneimine) dendrimers functionalised with 1,8-naphthalimide units as fluorescence sensors for metal cations and protons. Tetrahedron,2008,64(9): 2113-2119.
    [20]Callan J. F., Kamila S., Singh N., Mulrooney R. C., Mackay M., Cronin M. C., Dunn J., Durham D. G. A new class of fluorescent chemosensors based on the β-aminobisphosphonate receptor. Supramol. Chem.,2009,21(7):643-649.
    [21]Mcdonnell S. O., O'Shea D. F. Near-infrared sensing properties of dimethlyamino-substituted BF2-azadipyrromethenes. Org. Lett.,2006,8(16): 3493-3496.
    [22]Grabowski Z. R., Rotkiewicz K., Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures. Chem. Rev.,2003,103(10):3899-4032.
    [23]Saha S. K., Purkayastha P., Das A. B. Photophysical characterization and effect of pH on the twisted intramolecular charge transfer fluorescence of trans-2-[4-(dimethylamino)styryl]benzothiazole. J. Photochem. Photobiol. A,2008, 195(2-3):368-377.
    [24]Yao S., Schafer-Hales K. J., Belfield K. D. A new water-soluble near-neutral ratiometric fluorescent pH indicator. Org. Lett.,2007,9(26):5645-5648.
    [25]Zheng M., Jin J., Sun W., Yan C. A new series of fluorescent 5-methoxy-2-pyridylthiazoles with a pH-sensitive dual-emission. New J. Chem.,2006, 30(8):1192-1196.
    [26]Charier S., Ruel O., Baudin J., Alcor D., Allemand J., Meglio A., Jullien L., Valeur B. Photophysics of a series of efficient fluorescent pH probes for dual-emission-wavelength measurements in aqueous solutions. Chem. Eur. J.,2006, 12(4):1097-1113.
    [27]Ryazanova O. A., Voloshin I. M., Makitruk V. L., Zozulya V. N., Karachevtsev V. A. pH-induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochim. Acta, Part A,2007,66(4-5):849-859.
    [28]Grygorovych O., Moskalenko S., Marekha B., Doroshenko A. Heterogeneous wide range pH-sensing materials allowing ratiometric fluorescence detection based on structurally rigid analogs of 2,6-distyrylpyridine. J. Fluoresc.,2010,20(1):115-124.
    [29]Xu Y., Liu Y., Qian X. Novel cyanine dyes as fluorescent pH sensors:pet, ict mechanism or resonance effect. J. Photochem. Photobiol. A,2007,190(1):1-8.
    [30]El-Shishtawy R. M., Almeida P. A new vilsmeier-type reaction for one-pot synthesis of pH sensitive fluorescent cyanine dyes. Tetrahedron,2006,62(33):7793-7798.
    [31]de Rice A. P. S. A. A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (pet) of the bacterial photosynthetic reaction centre (prc). Chem. Commun.,1999:163-164.
    [32]de Silva A. P., Gunaratne H. Q. N., Habib-Jiwan J., Mccoy C. P., Rice T. E., Soumillion J. New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state. Angew. Chem. Int. Ed., 1995,34(16):1728-1731.
    [33]Gao Y. Q., Marcus R. A. Theoretical investigation of the directional electron transfer in 4-aminonaphthalimide compounds. J. Phys. Chem. A,2002,106(10):1956-1960.
    [34]Cui D., Qian X., Liu F., Zhang R. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org. Lett.,2004,6(16): 2757-2760.
    [35]Derinkuyu S., Ertekin K., Oter O., Denizalti S., Cetinkaya E. Fiber optic pH sensing with long wavelength excitable schiff bases in the pH range of 7.0-12.0. Anal. Chim. Acta,2007,588(1):42-49.
    [36]袁东,付大友,张新申,邹玉权,涂杰,李翔.溶解氧的测定方法研究进展.皮革科学与工程,2006,16(3):42-46.
    [37]Bailey R. T., Cruickshank F. R., Deans G., Gillanders R. N., Tedford M. C. Characterization of a fluorescent sol-gel encapsulated erythrosin b dissolved oxygen sensor. Anal. Chim. Acta,2003,487(1):101-108.
    [38]Xiong Y., Xu J., Zhu D., Duan C., Guan Y. Fiber-optic fluorescence sensor for dissolved oxygen detection based on fluorinated xerogel immobilized with ruthenium (Ⅱ) complex. J. Sol-Gel. Sci. Techn.,2010,53(2):441-447.
    [39]Payne S. J., Fiore G. L., Fraser C. L., Demas J. N. Luminescence oxygen sensor based on a ruthenium(Ⅱ) star polymer complex. Anal. Chem.,2010,82(3):917-921.
    [40]Wu X., Song L., Li B., Liu Y. Synthesis, characterization, and oxygen sensing properties of Ru(Ⅱ) complex covalently grafted to mesoporous MCM-41. J. Lumin., 2010,130(3):374-379.
    [41]Mak C. S. K., Pentlehner D., Stich M., Wolfbeis O. S., Chan W. K., Yersin H. Exceptional oxygen sensing capabilities and triplet state properties of Ir(ppy-NPh2)3. Chem. Mater.,2009,21(11):2173-2175.
    [42]Habibagahi A., Me Barki Y., Sultan Y., Yap G. P. A., Crutchley R. J. Water-based oxygen-sensor films. ACS Appl. Mater. Interfaces,2009,1(8):1785-1792.
    [43]Borisov S. M., Krause C., Arain S., Wolfbeis O. S. Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide. Adv. Mater.,2006,18(12):1511-1516.
    [44]Anni M., Rella R. Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films. J. Phys. Chem. B,2010,114(4): 1559-1561.
    [45]Arshak K., Gill E., Arshak A., Korostynska O. Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors. Sens. Actuators A,2007,127(1): 42-53.
    [46]Robinson K. L., Lawrence N. S. Redox-sensitive copolymer:a single-component pH sensor. Anal. Chem.,2006,78(7):2450-2455.
    [47]Santiago K. S., Bartolome A. J., John V. B. Electrochemically synthesized polymer-based pH sensors. Philippine J. Sci.,1999,128:120-126.
    [48]Herlem G., Lakard B., Herlem M., Fahys B. pH sensing at Pt electrode surfaces coated with linear polyethylenimine from anodic polymerization of ethylenediamine. J. Electrochem. Soc.,2001,148:E435-E438.
    [49]Nath S., Maitra U. A simple and general strategy for the design of fluorescent cation sensor beads. Org. Lett.,2006,8(15):3239-3242.
    [50]Koopmans C., Ritter H. Color change of N-isopropylacrylamide copolymer bearing Reichardts dye as optical sensor for lower critical solution temperature and for host-guest interaction with (3-cyclodextrin. J. Am. Chem. Soc.,2007,129(12): 3502-3503.
    [51]Uchiyama S., Kawai N., de Silva A. P., Iwai K. Fluorescent polymeric and logic gate with temperature and pH as inputs. J. Am. Chem. Soc.,2004,126(10):3032-3033.
    [52]Tian H., Gan J. A., Chen K. C., He J., Song Q. L., Hou X. Y. Positive and negative fluorescent imaging induced by naphthalimide polymers. J. Mater. Chem.,2002,12(5): 1262-1267.
    [53]Grabchev I., Sali S., Betcheva R., Gregoriou V. New green fluorescent polymer sensors for metal cations and protons. Eur. Polym. J.,2007,43(10):4297-4305.
    [54]Kusterer A., Krause C., Kaufmann K., Arnold M., Weuster-Botz D. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations. Bioproc. Biosyst. Eng.,2008,31(3):207-215.
    [55]Betts J. I., Doig S. D., Baganz F. Characterization and application of a miniature 10 ml stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol. Progr.,2006,22(3):681-688.
    [56]Kostov Y., Harms P., Randers-Eichhorn L. Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol. Bioeng.,2001,72:346-352.
    [57]Vallejos J., Kostov Y., Ram A., French J., Marten M., Rao G. Optical analysis of liquid mixing in a minibioreactor. Biotechnol. Bioeng.,2006,93:906-911.
    [58]Betts J. I., Baganz F. Miniature bioreactors:current practices and future opportunities. Microb. Cell Factor.,2006,5:21.
    [59]Isett K., George H., Herber W., Amanullah A. Twenty-four-well plate miniature bioreactor high-throughput system:assessment for microbial cultivations. Biotechnol. Bioeng.,2007,98(5):1017-1028.
    [60]Chen A., Chitta R., Chang D., Amanullah A. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol. Bioeng.,2009,102(1):148-160.
    [61]Harms P., Kostov Y., French J. A., Soliman M., Anjanappa M., Ram A., Rao G. Design and performance of a 24-station high throughput microbioreactor. Biotechnol. Bioeng., 2006,93(1):6-13.
    [62]Zhang Z. Y., Boccazzi P., Choi H-G., Perozziello G., Sinskey A. J., Jensen K. F. Microchemostat-microbial continuous culture in a polymer based instrumented microbioreactor. Lab Chip,2006,6:906-913.
    [63]Buchenauer A., Hofmann M. C., Funke M., Buchs J., Mokwa W., Schnakenberg U. Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens. Bioelectron.,2009,24(5):1411-1416.
    [64]Buchenauera A., Hofmanna M. C., Funkeb M., Buchsb J., Mokwaa W., Schnakenberg U. Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens. Bioelectron.,2009,24:1411-1416.
    [65]Jeude M., Dittrich B., Niederschulte H., Anderlei T., Knocke C., Klee D., Buchs J. Fed-batch mode in shake flasks by slow-release technique. Biotechnol. Bioeng.,2006, 95(3):433-445.
    [66]Tang Y. J., Laidlaw D., Gani K., Keasling J. D. Evaluation of the effects of various culture conditions on Cr(VI) reduction by shewanella oneidensis MR-1 in a novel high-throughput mini-bioreactor. Biotechnol. Bioeng.,2006,95(1):176-184.
    [67]John G. T., Klimant I., Wittmann C., Heinzle E. Integrated optical sensing of dissolved oxygen in microtiter plates:a novel tool for microbial cultivation. Biotechnol. Bioeng., 2003,81(7):829-836.
    [68]Weiss S., John G. T., Klimant I., Heinzle E. Modeling of mixing in 96-well microplates observed with fluorescence indicators. Biotechnol. Progr.,2002,18(4):821-830.
    [69]Gupta A, Rao G. A study of oxygen transfer in shake flasks using a noninvasive oxygen sensor. Biotechol. Bioeng.2003,84(3):351-358.
    [70]Tolosa L., Kostov Y., Harms P., Rao G. Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnol. Bioeng.,2002,80(5):594-597.
    [71]Wu M., Wang J., Taha T., Cui Z., Urban J., Cui Z. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Biomed. Microdevices,2007,9(2):167-174.
    [72]Wu M., Urban J. P. G., Cui Z. F., Cui Z., Xu X. Effect of extracellular pH on matrix synthesis by chondrocytes in 3d agarose gel. Biotechnol. Progr.,2007,23(2):430-434.
    [73]Wu M., Lin J., Wang J., Cui Z., Cui Z. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment. Biomed. Microdevices,2009,11(1):265-273.
    [74]Castellarnau M., Zine N., Bausells J., Madrid C., Juarez A., Samitier J., Errachid A. Integrated cell positioning and cell-based ISFET biosensors. Sens. Actuators, B,2007, 120(2):615-620.
    [75]Ges I. A., Ivanov B. L., Schaffer D. K., Lima E. A., Werdich A. A., Baudenbacher F. J. Thin-film irox pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron.,2005,21(2):248-256.
    [76]Lin C., Lee G., Wang C., Lee H., Liao W., Chou T. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices. Biosens. Bioelectron.,2006,21(8): 1468-1475.
    [77]Milgrew M. J., Riehle M. O., Cumming D. R. S. A large transistor-based sensor array chip for direct extracellular imaging. Sens. Actuators, B,2005,111-112:347-353.
    [78]Liu Z., Liu J., Chen T. Phenol red immobilized pva membrane for an optical pH sensor with two determination ranges and long-term stability. Sens. Actuators, B,2005,107(1): 311-316.
    [79]Yadavalli V. K., Pishko M. V. Biosensing in microfluidic channels using fluorescence polarization. Anal. Chim. Acta,2004,507(1):123-128.
    [80]Suzuki M., Akaguma H. Chemical cross-talk in flow-type integrated enzyme sensors. Sens. Actuators, B,2000,64(1-3):136-141.
    [81]Kurita R., Hayashi K., Fan X., Yamamoto K., Kato T., Niwa O. Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate. Sens. Actuators, B,2002,87(2):296-303.
    [82]Pan T., Liao K. Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-isfet. Sens. Actuators, B,2007,127(2):480-485.
    [83]Wu M., Cai H., Xu X., Urban J., Cui Z., Cui Z. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Biomed. Microdevices,2005,7(4):323-329.
    [84]Samorski M., Muler-Newen G., Buhs J. Quasi-continuous combined scattered light and fluorescence measurements:a novel measurement technique for shaken microtiter plates. Biotechnol. Bioeng.,2005,92(1):61-68.
    [85]Ge X., Hanson M., Shen H., Kostov Y., Brorson K. A., Frey D. D., Moreira A. R., Rao G. Validation of an optical sensor-based high-throughput:bioreactor system for mammalian cell culture. J. Biotechnol.,2006,122(3):293-306.
    [86]Kermis H. R., Kostov Y., Harms P., Rao G. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring:development and application. Biotechnol. Progr.,2002,18(5):1047-1053.
    [87]Walther I., Van Der Schoot B., Boillat M., Cogoli A. Performance of a miniaturized bioreactor in space flight:microtechnology at the service of space biology. Enzyme Microb. Tech.,2000,27(10):778-783.
    [88]Maharbiz M. M., Holtz W. J., Howe R. T., Keasling J. D. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol. Bioeng.,2004, 85(4):376-381.
    [89]Harms P., Kostov Y., Rao G. Bioprocess monitoring. Curr. Opin. Biotech.,2002,13(2): 124-127.
    [90]Kostov Y., Harms P., Randers-Eichhorn L., Rao G. Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol. Bioeng.,2001,72(3):346-352.
    [91]Kermis H. R., Kostov Y., Rao G. Rapid method for the preparation of a robust optical pH sensor. The Analyst.2003,128(9):1181-1186.
    [92]Zanzotto A., Szita N., Boccazzi P., Lessard P., Sinskey A. J., Jensen K. F.. A membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechol. Bioeng.2004,85(4):376-381.
    [93]Puskeiler R., Kaufmann K., Weuster-Botz D. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol. Bioeng.,2005,89(5):512-523.
    [94]Diao J. P., Young L., Zhou P., Shuler M. L. An actively mixed mini-bioreactor for protein production from suspended animal cells. Biotechnol. Bioeng.,2008,100:72-81.
    [95]Rudolph G., Lindner P., Gierse A., Bluma A., Martinez G., Hitzmann B., Scheper T. Online monitoring of microcarrier based fibroblast culti-vations with in situ microscopy. Biotechnol. Bioeng.,2008,99:136-145.
    [96]Andersson R. M., Carlsson K., Liljeborg A., Brismar H. Characteriza-tion of probe binding and comparison of its influence on fluorescence lifetime of two pH-sensitive benzo[c]xanthene dyes using inten-sity-modulated multiple-wavelength scanning technique. Anal. Biochem.,2000,58:104-110.
    [97]Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliver. Rev.,2006,58:1655-1670.
    [98]赵世元,黄华艺,农勤高,黄惠芳.胃液pH值、蛋白质含量与胃疾病严惩程度之间关系的探讨.广西预防医学,2000,6(2):92-94.
    [99]Zhang M., Yu M., Li F., Zhu M., Li M., Gao Y., Li L., Liu Z., Zhang J., Zhang D., Yi T., Huang C. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J. Am. Chem. Soc.,2007,129(34):10322-10323.
    [100]Ning Z. J., Chen Z., Zhang Q., Yan Y., Qian S. X., Cao Y., Tian H. Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitter for organic light-emitting diodes and Cl2 gas chemodosimeter. Adv. Funct. Mater.,2007,17:3799-3807.
    [101]Zeng D. L., Cheng J. G., Ren S. J., Sun J., Zhong H. L., Xu E. J., Du J. P., Fang Q. A new sensor for copper (Ⅱ) ion based on carboxyl acid groups substituted polyfluoreneethynylene. React. Funct. Polym.,2008,68:1715-1721.
    [102]Xu H., Wu H. P., Huang F., Song S. P., Li W. X., Cao Y., Fan C. H. Magnetically assisted DNA assays:high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic. Acids Res.,2005,33:e83.
    [103]Wolfbeis O. S. Fiber-optic chemical sensors and biosensors. Anal. Chem.,2004,76(12): 3269-3284.
    [104]Panda B. R., Chattopadhyay A. A water-soluble polythiophene-Au nanoparticle composite for pH sensing. J Colloid. Interf. Sci.,2007,316(2):962-967.
    [105]Li Z. A., Lou X., Yu H., Li Z., Qin J. An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide. Macromolecules, 2008,41(20):7433-7439.
    [106]Haugland R. P. The handbook. A guide to fluorescent probes and labeling technologies, 10th ed. eugene:or molecular probes inc.2005.
    [107]Tsukamoto G., Yoshino K., Kohno T., Ohtaka H., Kagaya H., Ito K.2-substituted azole derivatives.1. synthesis and antiinflammatory activity of some 2-(substituted-pyridinyl)benzimidazoles. J. Med. Chem.,1980,23(7):734-738.
    [108]Shin J. M., Cho Y. M., Sachs G. Chemistry of covalent inhibition of the gastric (H+ K+)-atpase by proton pump inhibitors. J. Am. Chem. Soc.,2004,126(25):7800-7811.
    [109]Kreft O., Javier A. M., Sukhorukov G. B., Parak W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem.,2007,17(42):4471-4476.
    [110]Tian H., Xu T., Zhao Y. B., Chen K. C. Two-path photo-induced electron transfer in naphthalimide-based model compound. J. Chem. Soc., Perkin Trans.2,1999,3: 545-549.
    [111]Bhosale S. V., Jani C. H., Langford S. J. Chemistry of naphthalene diimides. Chem. Soc. Rev.,2008,37(2):331-342.
    [112]Chen Z., Zheng Y., Yan H., Facchetti A. Naphthalenedicarboximide-vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J. Am. Chem. Soc.,2009,131(1):8-9.
    [113]Roger C., Miloslavina Y., Brunner D., Holzwarth A. R., Wiirthner F. Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J. Am. Chem. Soc.,2008,130(18):5929-5939.
    [114]Takenaka S. Pseudo-polyferrocene coating of double stranded DNA with ferrocenylnaphthalene diimide and its application for electrochemical gene detection. Polym. J.,2004,36(7):503-512.
    [115]Mukhopadhyay P., Iwashita Y., Shirakawa M., Kawano S., Fujita N., Shinkai S. Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a ID organogel matrix. Angew. Chem. Int. Ed.,2006,45(10):1592-1595.
    [116]Takenaka S., Yamashita K., Takagi M., Uto Y., Kondo H. DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal. Chem.,2000,72(6):1334-1341.
    [117]Lee H. N., Xu Z., Kim S. K., Swamy K. M. K., Kim Y., Kim S., Yoon J. Pyrophosphate-selective fluorescent chemosensor at physiological pH:formation of a unique excimer upon addition of pyrophosphate. J. Am. Chem. Soc.,2007,129(13): 3828-3829.
    [118]Roger C., Wurthner F. Core-tetrasubstituted naphthalene diimides:synthesis, optical properties, and redox characteristics. J. Org. Chem.,2007,72(21):8070-8075.
    [119]Sisson A., Sakai N., Banerji N., Fustenberg A., Vauthey E., Matile S. Zipper assembly of vectorial rigid-rod pi-stack architectures with red and blue naphthalenediimides: toward supramolecular cascade N/P-heterojunctions. Angew. Chem. Int. Ed.,2008, 47(20):3727-3729.
    [120]Wuthner F., Ahmed S., Thalacker C., Debaerdemaeker T. Core-substituted naphthalene bisimides:new fluorophors with tunable emission wavelength for fret studies. Chem. Eur. J.,2002,8(20):4742-4750.
    [121]Xiong Y., Zhu D., Chen S., Peng H., Guan Y. A fiber-optic evanescent wave O2 sensor based on Ru(Ⅱ)-doped fluorinated ormosils. J. Fluoresc.,2010,20(1):269-274.
    [122]Tian Y., Shumway B. R., Meldrum D. R. A new cross-linkable oxygen sensor covalently bonded into poly(2-hydroxyethyl methacrylate)-co-polyacrylamide thin film for dissolved oxygen sensing. Chem. Mater.,2010,22(6):2069-2078.
    [123]Fischer L. H., Stich M. I. J., Wolfbeis O. S. W., Tian N., Holder E., Schaferling M. Red-and green-emitting Iridium(Ⅲ) complexes for a dual barometric and temperature-sensitive paint. Chem. Eur. J.,2009,15(41):10857-10863.
    [124]Fischer L., Stich M. I. S., Wolfbeis O., Tian N., Holder E., Schaerling M. Red-and green-emitting Iridium(Ⅲ) complexes for a dual barometric and temperature-sensitive paint. Chem. Eur. J.,2009,15(41):10857-10863.
    [125]El-Giar E. E. M., Wipf D. O. Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging. J. Electroanal. Chem.,2007,609(2):147-154.
    [126]Lamansky S., Djurovich P., Murphy D., Abdel-Razzaq F., Kwong R., Tsyba I., Bortz M., Mui B., Bau R., Thompson M. E. Synthesis and characterization of phosphorescent cyclometalated Iridium complexes. Inorg. Chem.,2001,40(7):1704-1711.
    [127]Lamansky S., Djurovich P., Murphy D., Abdel-Razzaq F., Lee H., Adachi C., Burrows P. E., Forrest S. R., Thompson M. E. Highly phosphorescent bis-cyclometalated iridium complexes:synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc.,2001,123(18):4304-4312.
    [128]Matsuda K., Takayama K., Irie M. Single-crystalline photochromism of a linear coordination polymer composed of 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]-perfluorocyclopentene and bis(hexafluoroacetylacetonato)zinc(ii). Chem. Commun., 2001(4):363-364.
    [129]Peng Z., Fang J., Li J., Liu L., Du G., Chen J., Wang X., Ning J., Cai L. Combined dissolved oxygen and pH control strategy to improve the fermentative production of 1-isoleucine by brevibacterium lactofermentum. Bioproc. Biosyst. Eng.,2010,33(3): 339-345.
    [130]Van Leeuwen M., Krommenhoek E. E., Heijnen J. J., Gardeniers H., Van Der Wielen L. A. M., Van Gulik W. M. Aerobic batch cultivation in micro bioreactor with integrated electrochemical sensor array. Biotechnol, Progr.,2010,26(1):293-300.
    [131]Lai Y., Chu L. Novel mechanism for conditional aerobic growth of the anaerobic bacterium treponema denticola. Appl. Environ. Microb.,2008,74(1):73-79.
    [132]Ramkumar Pandian S., Deepak V., Kalishwaralal K., Rameshkumar N., Jeyaraj M., Gurunathan S. Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresource Technol., 2010,101(2):705-711.
    [133]Beckers S., Noor F., Muler-Vieira U., Mayer M., Strigun A., Heinzle E. High throughput, non-invasive and dynamic toxicity screening on adherent cells using respiratory measurements. Toxicol. In Vitro,2010,24(2):686-694.
    [134]Arezoo H., Youssef M., Yasir S., Glenn P. A. Y., Robert J. C. Water-based oxygen-sensor films. ACS Appl. Mater. Interfaces,2009,1:1785-1792.
    [135]Cohen Y., Meyer A. Y., Rabinovitz M. New polyheterocyclic 4n.pi.-electron dianions. paratropicity, charge delocalization, and reactions. J. Am. Chem. Soc.,1986,108(22): 7039-7044.
    [136]Lafratta C., Fourkas J., Baldacchini T., Farrer R. Multiphoton fabrication. Angew. Chem. Int. Ed.,2007,46(33):6238-6258.
    [137]Kawata S., Kawata Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev.,2000,100(5):1777-1788.
    [138]Chung S. J., Maciel G. S., Pudavar H. E., Lin T. C., He G. S., Swiatkiewicz J., Prasad P. N., Lee D. W., Jin J. I. Two-photon properties and excitation dynamics of poly(p-phenylenevinylene) derivatives carrying phenylanthracene and branched alkoxy pendents. J. Phys. Chem. A,2002,106(33):7512-7520.
    [139]Fisher W. G., Partridge Jr. W. P., Dees C., Wachter E. A. Simultaneous two-photon activation of type-Ⅰ photodynamic therapy agents. Photochem. Photobiol.,1997,66(2): 141-155.
    [140]Denk W., Strickler J., Webb W. Two-photon laser scanning fluorescence microscopy. Science,1990,248:73-76.
    [141]Marder S. R. Organic nonlinear optical materials:where we have been and where we are going. Chem. Commun.,2006(2):131-134.
    [142]Zhang Z., Achilefu S. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem. Commun.,2005(47):5887-5889.
    [143]Gawley R. E., Mao H., Haque M. M., Thorne J. B., Pharr J. S. Visible fluorescence chemosensor for saxitoxin. J. Org. Chem.,2007,72(6):2187-2191.
    [144]Mcdonnell S. O., Hall M. J., Allen L. T., Byrne A., Gallagher W. M., O'Shea D. F. Supramolecular photonic therapeutic agents. J. Am. Chem. Soc.,2005,127(47): 16360-16361.
    [145]Mustroph H., Stollenwerk M., Bressau V. Current developments in optical data storage with organic dyes. Angew. Chem. Int. Ed.,2006,45(13):2016-2035.
    [146]Ntziachristos V., Ripoll J., Wang L. V., Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol.,2005,23(3):313-320.
    [147]Lstrok M., Pawlicki O., Collins H., Denning R., Anderson H. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed.,2009,48(18):3244-3266.
    [148]Jin M., Malval J., Versace D., Morlet-Savary F., Chaumeil H., Defoin A., Allonas X., Fouassier J. Two-photon absorption and polymerization ability of intramolecular energy transfer based photoinitiating systems. Chem. Commun.,2008(48):6540-6542.
    [149]Dong X., Yang Y., Sun J., Liu Z., Liu B. Two-photon excited fluorescent probes for calcium based on internal charge transfer. Chem. Commun.,2009(26):3883-3885.
    [150]Zhang L., Li B., Lei B., Hong Z., Li W. A triphenylamine derivative as an efficient organic light color-conversion material for white leds. J. Lumin.,2008,128(1):67-73.
    [151]Aggarwal V. K., Smith H. W., Hynd G., Jones R. V. H., Fieldhouse R., Spey S. E. Catalytic cyclopropanation of electron deficient alkenes mediated by chiral and achiral sulfides:scope and limitations in reactions involving phenyldiazomethane and ethyl diazoacetate. J. Chem. Soc., Perkin Trans.1,2000(19):3267-3276.
    [152]Ishi-I T., Taguri Y., Kato S., Shigeiwa M., Gorohmaru H., Maeda S., Mataka S. Singlet oxygen generation by two-photon excitation of porphyrin derivatives having two-photon-absorbing benzothiadiazole chromophores. J. Mater. Chem.,2007,17(31): 3341-3346.
    [153]Kato S., Matsumoto T., Shigeiwa M., Gorohmaru H., Maeda S., Ishi-I T., Mataka S. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem. Eur. J.,2006,12(8):2303-2317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700