细胞壳化:基于表面工程的细胞功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界的生物进化中,从最基本的单细胞生物到具有复杂多级结构的高等生物,大自然给我们呈现了多尺度、多层次的材料、结构,系统和功能。比如,许多单细胞的生物体表面具有一层可以作为生物矿化模板的蛋白质薄膜。以这个蛋白质薄膜为模板诱导生成的生物体矿化层可以作为一个功能化的保护外壳。众所周知,鸡蛋壳可以保护鸡蛋免受外界细菌的侵扰和外力的损伤。
     在自然界中广泛分布的植物——硅藻也有一层具有多种图案化的矿化外壳。它的机械保护功能近日已被科学家们证实。但是,自然界中并不是所有的细胞都具有这样一个外壳。在这篇论文中,我们发展了一种给细胞制造外壳的策略,并初步探索了这种人造细胞外壳的工程技术在生物医学、生态环境保护以及可持续发展中的应用。
     我们发展了一种在酵母细胞(Saccharomyces cerevisiae)表面诱导成壳的方法。通过层层自组装引入矿化位点和生理条件下的原位矿化两步法,每一个单一的酵母细胞可以成功地被磷酸钙的矿化层包裹。包裹后的酵母细胞依然保持良好的生理活性,被包裹后的细胞自动进入静止期(G0)并且他们的生命周期相应地被延长。矿化壳可以保护细胞在恶劣环境下存活,使细胞免受酵母裂解酶的消化裂解。矿化壳也可以作为对单细胞进行化学和生物功能改造的支架。例如,当我们把四氧化三铁颗粒整合在矿化壳中后,酵母细胞立刻被改造成为磁性细胞。以上这些工作启示我们:基于单细胞的人工壳功能化改造策略在细胞种质储存、细胞作为治疗药物的输送以及活细胞的功能改造等方面有着巨大的潜能和广阔的应用前景。伴随着系统生物学和分子生物学,以及分子功能材料学的迅猛发展,通过仿生矿化的细胞功能化壳一定会孕育出新一代的“超级细胞”。
     伴随着平流层中臭氧层浓度的降低,越来越多的具有生物破坏性的中波段紫外线(UVB,280-320 nm)抵达地球表面。具有环境破坏性的中波段紫外线严重影响着自然界中海洋生物的种群数量,这主要是由于海洋生物被日益增加的紫外线辐射影响了其正常的胚胎发育过程。受自然界中生物系统进化策略的启发,我们在斑马鱼的囊胚期(blastula period)在其浆膜的表面诱导沉积了一层可以吸收紫外线的外衣。短时间高功率和长时间低功率的紫外辐射实验显示,人工矿化壳可以有效屏蔽外界紫外线的辐射,包裹的胚胎可以在室内模拟臭氧层空洞环境下的紫外线强度辐射下完成正常的发育过程。而没有处理过的胚胎在相应的外界紫外线辐射强度增加的环境下不能存活下来。通过斑马鱼模型,我们认为基于功能材料的工程壳可以赋予生物体全新的功能,并帮助他们更好地应对日益变化的生态环境,同时这个策略也给生物学研究提供了一个非常规条件下人工保护生物体的方法。
     在本文中,我们展示了在细胞表面诱导形成矿化壳的各种方法。所形成的矿化壳可以模仿细胞膜(或壁)的特征,例如半透膜的性质,或者通过人工定制各种非天然的材料来实现诸如抗紫外线的功能,这些功能可以为细胞提供更好地适应外界环境的策略。功能材料和细胞的复合可以整合不同的材料功能和活细胞所特有的生物功能,进而衍生出能量自给的微型反应器和传感器。这些创新型的能量自给的微型生物器将在生态环境保护和新能源发展方面存在广泛的应用前景。
     与单细胞微生物、受精卵细胞不同,人体内的细胞并不是孤立存在的,而是由细胞外基质交联在一起的。细胞外基质为细胞提供特定的生理微环境,并通过各种信号传导调节着周围细胞间通讯和单细胞的动力学行为。基于肿瘤部位相对于正常组织高表达金属基质蛋白酶和转铁蛋白受体的微环境,我们发展了一种可局部注射的、酶响应的、可以靶向于肿瘤微环境的水凝胶体系。这种细胞响应的水凝胶体系在癌细胞分泌的金属基质蛋白酶存在下释放包裹在水凝胶中的转铁蛋白-阿霉素复合物。释放出来的复合物可以通过癌细胞表面高表达的转铁蛋白受体选择性靶向于癌细胞,同时减少抗癌药物(阿霉素)对正常细胞的毒副作用。这种可注射的水凝胶药物输送体系给我们提供了一个可以通过改变用于合成水凝胶的交联多肽的酶响应敏感性,以及不同时期肿瘤分泌的金属基质蛋白酶的浓度不同来相应调节药物释放动力学的程序化智能平台。
In all living organisms, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. A number of unicellular organisms have an outer-surface proteinaceous membrane as a template for biomineralization. The resultant thin mineral layer is a functional covering. For example, the mineral shell can protect an egg from invasion from the exterior, and the diatom has an ornately patterned silicified shell that evolved as mechanical protection. But most cells in nature cannot make their own hard shells. Here we show a strategy to fashion an artificial shell for single cell so that it has extensive protection. The potential applications of shell engineering in the fields of biomedicine, protection of ecological environment and sustainable development are also illustrated in this article.
     Individual Saccharomyces cerevisiae (S. cerevisiae) cells are coated with a uniform calcium mineral layer by first self-assembly of functional polymers (layer-by-layer technique, LbL) and then in situ mineralization under physiological conditions. The viability of the cells is maintained after the encapsulation. The enclosed cells become inert (stationary phase) and their lifetime can be extended. Furthermore, the mineral shell protects the cell under harsh conditions. The encapsulated S. cerevisiae can even survive the attack of the lytic enzyme zymolyase. The shell can also be used as a scaffold for chemical and biological functionalization. For example, S. cerevisiae becomes magnetic by the incorporation of Fe3O34 nanoparticles in the mineral layer. The present work demonstrates that the artificial shell has a great potential in the storage, protection, delivery, and modification of living cells. Furthermore, insights from systems biology combined with an understanding of the molecular mechanisms of functional shells will facilitate the tailoring of "super cells" through biomimetic mineralization.
     Different from unicellular organisms and fertilized egg cells, cells inside human tissues are not separate but connected together by extracellular matrix (ECM). The ECM provides a physiological microenvironment for cells and regulates intercellular communication and a cell's dynamic behavior. Based on two over-expressed factors in the tumor microenvironment, matrix metalloproteinases (MMPs) and transferrin (TRF) receptors on the cell surfaces, we develop an enzyme-responsive locally injectable hydrogel system that target the tumor microenvironment. The cell-responsive hydrogel system is designed to release the encapsulated transferrin-drug conjugate in presence of MMPs secreted by cancer cells. The released conjugate is selectively targeted to tumor cells via receptor-mediated endocytosis by TRF receptors that are over-expressed in cancer cell, reducing nonspecific cytotoxicity to the normal cells. The injectable hydrogel drug-delivery system is minimally invasive, offering a highly tunable and programmable platform to modulate drug release through MMP crosslinker peptide sensitivity or tumor stage dependent MMP enzyme expression.
引文
1 Lowenstam, H. A. & Weiner, S. On biomineralization. (Oxford university press,1989).
    2 Simkiss, K.& Wilbur, K. M. Biomineralization:cell biology and mineral deposition. (Academic Press,1989).
    3 Volcani, B. E.& Simpson, T. L. Silicon and siliceous structures in biological systems. (Springer Verlag,1982).
    4 Frankel, R. B.& Blakemore, R. P. Iron Biominerals. (Plenum Press,1991).
    5 Mann, S. Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry. Vol. xii (Oxford University Press,2001).
    6 Miller, A., Phillips, D. & Williams, R. J. P. Mineral,phases in biology. Philos. Trans. R. Soc. London B 304,409-588, (1984).
    7 Simkiss, K. in Biomineralization in lower plants and animals Vol.30 eds B. S. C. Leadbeater & R. Riding) (Oxford University Press,1986).
    8 Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381,56-58, (1996).
    9 Berman, A., Addadi, L. & Weiner, S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals:a study of intracrystalline proteins. Nature 331,546-548, (1988).
    10 Mann, S. Molecular recognition in biomineralization. Nature 332,119-124, (1988).
    11 Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed.31,153-169, (1992).
    12 Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science 227,51-53, (1985).
    13 Simkiss, K. in Mechanisms and phylogeny of mineralization in biological systems eds S. Suga & H. Nakahara) 375-382 (Springer-Verlag,1991).
    14 Raz, S., Weiner, S. & Addadi, L. Formation of high-magnesian calcites via an amorphous precursor phase:Possible biological implications. Adv. Mater.12,38-+, (2000).
    15 Berman, A. et al. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259,776-779, (1993).
    16 Boskay, A. L. in Cell mediated calcification and matrix vesicles (ed S. Y. Ali) 175-179 (Elsevier,1986).
    17 Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324,565-567, (1986).
    18 Leadbeater, B. S. C. Silicification of 'cell walls' of certain protistan flagellates. Philos. T. Roy. Soc. B 304,529-&, (1984).
    19 Mann, S. & Frankel, R. B. in Biominelization:chemical and biochemical perspectives eds S. Mann, J. Webb, & R. J. P. Williams) 389-426 (VCH Verlagsgesellschaft,1989).
    20 Silynroberts, H. & Sharp, R. M. Crystal growth and the role of the organic network in eggshell biomineralization. P. Roy. Soc. Lond. B Bio.227,303-&, (1986).
    21 Ford, G. C. et al. Ferritin:design and formation of an iron-storage molecule. Philos. T. Roy. Soc. B 304,551-&, (1984).
    22 Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. & Weiner, S. A chemical-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation-relevance to biomineralization. P. Natl. Acad. Sci. USA 84,2732-2736, (1987).
    23 Gorby, Y. A., Beveridge, T. J. & Blakemore, R. P. Characterization of the bacterial magnetosome membrane. J. Bacteriol.170,834-841, (1988).
    24 Addadi, L.& Weiner, S. Interactions between acidic proteins and crystals:Stereochemical requirements in biomineralization. P. Natl. Acad. Sci. USA 82,4110-4114, (1985).
    25 Hecky, R. E., Mopper, K., Kilham, P.& Degens, E. T. The amino acid and sugar composition of diatom cell walls. Mar. Biol.19,323-331, (1973).
    26 Kroger, N., Deutzmann, R.& Sumper, M. Polycationic peptides from diatoom biosilica that direct silica nanosphere formation. Science 286,1129-1132, (1999).
    27 Heywood, B. R.& Mann, S. Template-directed nucleation and growth of inorganic materials. Adv. Mater.6,9-20, (1994).
    28 Arias, J., Arias, J.& Fernandez, M. in Handbook of biomineralization:Biomimetic and bioinspired chemistry eds P Behrens & E Baeuerlein) 109-117 (Wiley-VCH,2007).
    29 Addadi, L., Joester, D., Nudelman, F. & Weiner, S. Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chem.-Eur. J.12,981-987, (2006).
    30 Romano, P., Fabritius, H. & Raabe, D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater.3, 301-309, (2007).
    31 Nimtz, M., Conradt, H. S. & Mann, K. LacdiNAc (GalNAc beta 1-4G1cNAc) is a major motif in N-glycan structures of the chicken eggshell protein ovocleidin-116. Biochimica et Biophysica Acta-Bioenergetics 1675,71-80, (2004).
    32 Karlsson, O. & Lilja, C. Eggshell structure, mode of development and growth rate in birds. Zoology 111,494-502, (2008).
    33 Wang, B., Liu, P. & Tang, R. K. Cellular shellization:Surface engineering gives cells an exterior. BioEssays 32,698-708, (2010).
    34 Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421,841-843, (2003).
    35 Quintero-Torres, R., Arago, J. L., Torres, M., Estrada, M. & Cros, L. Strong far-field coherent scattering of ultraviolet radiation by holococcolithophores. Phys. Rev. E 74, (2006).
    36 Bradbury, J. Nature's nanotechnologists:Unveiling the secrets of diatoms. PloS Biol.2, 1512-1515,(2004).
    37 Kumar, Fausto, Robbins & Cotran. Pathologic Basis of Disease.7th edn, (Elsevier).
    38 lozzo, R. V. Matrix proteoglycans:From molecular design to cellular function. Annu. Rev. Biochem.67,609-652, (1998).
    39 Kumar, V., Collins, T. & Robbins, S. L. Robbins pathologic basis of disease.7th edn, (Saunders,1999).
    40 Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev.54,3-12, (2002).
    41 Jen, A. C, Wake, M. C. & Mikos, A. G. Review:Hydrogels for cell immobilization. Biotechnol. Bioeng.50,357-364, (1996).
    42 Magyar, J. P. et al. in Bioartificial Organs Iii:Tissue Sourcing, Immunoisolation, and Clinical Trials Vol.944 Annals of the New York Academy of Sciences eds D. Hunkeler, A. Cherrington, A. Prokop, & R. Rajotte) 135-143 (2001).
    43 Poncelet, D. et al. Production of alginate beads by emulsification/internal gelation.1. Methodology.Appl. Microbil. Biot.38,39-45, (1992).
    44 Rabanel, J. M. & Hildgen, P. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation. J. Microencapsul.21,413-431, (2004).
    45 Tan, Y. C, Hettiarachchi, K., Siu, M.& Pan, Y. P. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc.128,5656-5658, (2006).
    46 Shintaku, H. et al. Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst. Technol.13,951-958, (2007).
    47 Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8,1056-1061,(2008).
    48 Yeh, J. et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27,5391-5398, (2006).
    49 Hench, L. L. & West, J. K. The sol-gel process. Chem. Rev.90,33-72, (1990).
    50 Brennan, J. D. Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins:Toward novel solid-phase assays for high-throughput screening. Acc. Chem. Res.40,827-835, (2007).
    51 Tacke, R. Milestones in the biochemistry of silicon:From basic research to biotechnological applications. Angew. Chem. Int. Ed.38,3015-3018, (1999).
    52 Perry, C. C. & Keeling-Tucker, T. Biosilicification:the role of the organic matrix in structure control. J. Biol. Inorg. Chem.5,537-550, (2000).
    53 Johnson, P. & Whateley, T. L. Use of polymerizing silica gel systems for immobilization of trypsin. J. Colloid Interf. Sci.37,557-&, (1971).
    54 Avnir, D. Organic-chemistry within ceramic matrices-doped sol-gel materials. Acc. Chem. Res.28,328-334, (1995).
    55 Zink, J. I., Valentine, J. S. & Dunn, B. Biomolecular materials based on sol-gel encapsulated proteins. New J. Chem.18,1109-1115,(1994).
    56 Livage, J. Bioactivity in sol-gel glasses. C. R. Acad. Sci. Paris Ⅱb 322,417-427, (1996).
    57 Livage, J., Coradin, T.& Roux, C. Encapsulation of biomolecules in silica gels. J. Phys. Condens. Mat.13, R673-R691, (2001).
    58 Carturan, G., Dal Toso, R., Boninsegna, S. & Dal Monte, R. Encapsulation of functional cells by sol-gel silica:actual progress and perspectives for cell therapy. J. Mater. Chem. 14,2087-2098, (2004).
    59 Heichalsegal, O., Rappoport, S. & Braun, S. Immobilization in alginate-silicate sol-gel matrix protects I2-glucosidase against thermal and chemical denaturation. BioTechnology 13,798-800, (1995).
    60 Avnir, D., Coradin, T., Lev, O. & Livage, J. Recent bio-applications of sol-gel materials. J. Mater. Chem.16,1013-1030,(2006).
    61 Meunier, C. F., Dandoy, P. & Su, B. L. Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials. J. Colloid Interf. Sci. 342,211-224,(2010).
    62 Decher, G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science 277,1232-1237, (1997).
    63 Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A. & Mohwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37,2202-2205,(1998).
    64 Diaspro, A., Silvano, D., Krol, S., Cavalleri,O.& Gliozzi, A. Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir 18,5047-5050, (2002).
    65 Veerabadran, N. G., Goli, P. L., Stewart-Clark, S. S., Lvov, Y. M. & Mills, D. K. Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol. Biosci.7,877-882, (2007).
    66 Germain, M. et al. Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens. Bioelectron.21,1566-1573, (2006).
    67 Wang, X. et al. Functional single-virus-polyelectrolyte hybrids make large-scale applications of viral nanoparticles more efficient. Small, (2009).
    68 Fischer, D., Li, Y. X., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis. Biomaterials 24,1121-1131, (2003).
    69 Sarikaya, M. Biomimetics:Materials fabrication through biology. P. Natl. Acad. Sci. USA 96,14183-14185,(1999).
    70 Arias, J. L. et al. Sulfated polymers in biological mineralization:a plausible source for bio-inspired engineering. J. Mater. Chem.14,2154-2160, (2004).
    71 Fermin, C. D., Lovett, A. E., Igarashi, M. & Dunner, K. Immunohistochermistry and histochemistry of the inner-ear gelatinous membranes and statoconia of the chick (Gallus domesticus). Acta Anat.138,75-83, (1990).
    72 Mann, S. et al. Crystallization at inorganic-organic interfaces:Biominerals and biomimetic synthesis. Science 261,1286-1292, (1993).
    73 Deutsch, D. et al. Sequencing of bovine enamelin (" tuftelin") a novel acidic enamel protein. J. Biol. Chem.266,16021-16028, (1991).
    74 Fincham, A. G. & Simmer, J. P. in Dental enamel Vol. Ciba Foundation Symposium; 205 118-134 (Wiley,1997).
    75 Miller, A. Collagen:the organic matrix of bone. Philos. T. Roy. Soc. B 304,455-477, (1984).
    76 Termine, J. D. et al. Osteonectin:a bone-specific protein linking mineral to collagen. Cell 26,99-105,(1981).
    77 Samata, T. et al. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett.462,225-229, (1999).
    78 Shimizu, K., Cha, J., Stucky, G. D. & Morse, D. E. Silicatein α:cathepsin L-like protein in sponge biosilica. P. Natl. Acad. Sci. USA 95,6234-6238, (1998).
    79 Tang, R. K. et al. Control of biomineralization dynamics by interfacial energies. Angew. Chem. Int. Ed.44,3698-3702, (2005).
    80 Arias, J. L. & Fernandez, M. S. Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization. Chem. Rev.108,4475-4482, (2008).
    81 Ngankam, P. A. et al. Influence of polyelectrolyte multilayer films on calcium phosphate nucleation. J. Am. Chem. Soc.122,8998-9004, (2000).
    82 Spoerke, E. D. et al. A bioactive titanium foam scaffold for bone repair. Acta Biomater.1, 523-533, (2005).
    83 London, G. M., Marchais, S. J., Guerin, A. P. & Metivier, F. Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr. Opin. Nephrol. Hypertens.14, 525-531,(2005).
    84 Liu, P. et al. Role of fetal bovine serum in the prevention of calcification in biological fluids. J. Cryst. Growth 310,4672-4675, (2008).
    85 Brown, W., Eidelman, N. & Tomazic, B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res.1,306-313, (1987).
    86 Marentette, J. M., Norwig, J., Stockelmann, E., Meyer, W. H. & Wegner, G. Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers. Adv. Mater. 9,647-651,(1997).
    87 Decher, G., Hong, J. D. & Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process:Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210,831-835, (1992).
    88 Richert, L. et al. Layer by layer buildup of polysaccharide films:Physical chemistry and cellular adhesion aspects. Langmuir 20,448-458, (2004).
    89 Koutsoukos, P. G. & Nancollas, G. H. The mineralization of collagen in vitro. Colloid. Surface.28,95-108, (1987).
    90 Cai, A. H. et al. Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. J. Phys. Chem. C 112,11324-11330, (2008).
    91 Lowenstam, H. A. & Weiner, S. (Oxford university press, Oxford,1987).
    92 Mann, S, Webb, J. & Williams, R. J. P. (VCH, New York,1989).
    93 Weiner, S. & Wagner, H. D. The material bone:Structure mechanical function relations. Annu. Rev. Mater. Sci.28,271-298, (1998).
    94 Naik, R. R. & Stone, M. O. Integrating biomimetics. Mater. Today 8,18-26, (2005).
    95 Mell, J. C. & M., B. S. in Nature encyclopedia of life sciences (Nature publishing group,2003).
    96 Botstein, D. & Fink, G. R. Yeast: an experimental organism for modern biology. Science 240,1439-1443, (1988).
    97 Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B. & Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem.276,19679-19682, (2001).
    98 Shchukin, D. G., Sukhorukov, G. B. & Mohwald, H. Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem. Mater.15, 3947-3950, (2003).
    99 Antipov, A. et al. Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules. Macromol. Rapid Comm.24,274-277, (2003).
    100 Shchukin, D. G., Sukhorukov, G. B. & Mohwald, H. Smart inorganic/organic nanocomposite hollow microcapsules. Angew. Chem. Int. Ed.42,4472-4475, (2003).
    101 Shchukin, D. G. & Sukhorukov, G. B. Nanoparticle synthesis in engineered organic nanoscale reactors. Adv. Mater.16,671-682, (2004).
    102 Wernerwashburne, M., Braun, E., Johnston, G. C. & Singer, R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev.57,383-401, (1993).
    103 Herman, P. K. Stationary phase in yeast. Curr. Opin. Microbiol.5,602-607, (2002).
    104 Romanoff, A. L. Study of the physical properties of the hens eggshell in relation to the function of shell-secretory glands. Biol. Bull.56,351-356, (1929).
    105 Zhang, S. G. Beyond the Petri dish. Nat. Biotechnol.22,151-152, (2004).
    106 Cai, Y. R. et al. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:A smart and biocompatible drug release system. Chem. Mater.19, 3081-3083,(2007).
    107 Kitamura, K., Kaneko, T. & Yamamoto, Y. Lysis of viable yeast cells by enzymes of Arthrobacter luteus. Arch. Biochem. Biophys.145,402-&, (1971).
    108 Varghese, J. N. et al. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. P. Natl. Acad. Sci. USA 91, 2785-2789,(1994).
    109 Prather, M. J., McElroy, M. B. & Wofsy, S. C. Reductions in ozone at high concentrations of stratospheric halogens. Nature 312,227-231, (1984).
    110 Staehelin, J., Harris, N. R. P., Appenzeller, C. & Eberhard, J. Ozone trends:A review. Rev. Geophys.39,231-290, (2001).
    111 Frederick, J. E. & Snell, H. E. Ultraviolet radiation levels during the Antarctic spring. Science 241,438-440, (1988).
    112 Solomon, S. Progress towards a quantitative understanding of antarctic ozone depletion. Nature 347,347-354, (1990).
    113 McKenzie, R. L., Aucamp, P. J., Bais, A. F., Bjom, L. O. & Ilyas, M. Changes in biologically-active ultraviolet radiation reaching the Earth's surface. Photoch. Photobio. Sci.6,218-231, (2007).
    114 Cullen, J. J., Neale, P. J. & Lesser, M. P. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258,646-650, (1992).
    115 Hunter, J. R., Taylor, J. H. & Moser, H. G. Effect of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mrdax, and the pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem. Photobiol.29,325-338, (1979).
    116 Wubben, D. L. U V-induced mortality of zoea I larvae of brown shrimp Crangon crangon (Linnaeus,1758). J. Plankton Res.22,2095-2104, (2000).
    117 Smith, R. C. Ozone, middle ultraviolet radiation and the aquatic environment. Photochem. Photobiol.50,459-468, (1989).
    118 Blaustein, A. R. et al. UV repair and resistance to solar UV-B in amphibian eggs:a link to population declines? P. Natl. Acad. Sci. USA 91,1791-1795, (1994).
    119 Blaustein, A. R., Kiesecker, J. M., Chivers, D. P. & Anthony, R. G. Ambient UV-B radiation causes deformities in amphibian embryos. P. Natl. Acad. Sci. USA 94, 13735-13737,(1997).
    120 Malloy, K. D., Holman, M. A., Mitchell, D. & Detrich, H. W. Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. P. Natl. Acad. Sci. USA 94,1258-1263, (1997).
    121 Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412,819-822, (2001).
    122 Vukusic, P.& Sambles, J R. Photonic structures in biology. Nature 424,852-855, (2003).
    123 Feldmann, C., Justel, T., Ronda, C. R. & Schmidt, P. J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater.13,511-516, (2003).
    124 Fishman, M. C. Genomics-Zebrafish-The canonical vertebrate. Science 294,1290-1291, (2001).
    125 Westerfield, M. (University of Oregon Press, Eugene, OR,2000).
    126 Dethlefsen, V., von Westernhagen, H., Tug, H., Hansen, P. D. & Dizer, H. Influence of solar ultraviolet-B on pelagic fish embryos:osmolality, mortality and viable hatch. Helgoland Mar. Res.55,45-55, (2001).
    127 Bonsignorio, D., Perego, L., DelGiacco, L. & Cotelli, F. Structure and macromolecular composition of the zebrafish egg chorion. Zygote 4,101-108, (1996).
    128 Wang, B. et al. Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed.47,3560-3564, (2008).
    129 Heuer, A. H. et al. Innovative materials processing strategies:a biomimetic approach. Science 255,1098-1105, (1992).
    130 Haley, T. J. Pharmacology and toxicology of the rare earth elements. J. Pharm. Sci.54, 663-&, (1965).
    131 Diffey, B. L. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 36, 299-328, (1991).
    132 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dynam.203,253-310, (1995).
    133 Langer, R. Drug delivery and targeting. Nature 392,5-10, (1998).
    134 Breimer, D. D.265-268.
    135 Ferrari, M. Cancer nanotechnology:Opportunities and challenges. Nat. Rev. Cancer 5, 161-171,(2005).
    136 Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380,364-366, (1996).
    137 Arap, W., Pasqualini, R.& Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279,377-380, (1998).
    138 Michieli, P. et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6,61-73, (2004).
    139 Cairns, R., Papandreou,1. & Denko, N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol. Cancer Res.4, 61-70,(2006).
    140 Kaufman, H. L. et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J. Clin. Invest.115,1903-1912, (2005).
    141 Henning, T., Kraus, M., Brischwein, M., Otto, A. M. & Wolf, B. Relevance of tumor microenvironment for progression, therapy and drug development. Anti-Cancer Drug.15, 7-14, (2004).
    142 Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol.14,198-206, (2004).
    143 Weigelt, B.& Bissell, M. J. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin. Canc. Biol.18,311-321, (2008).
    144 Kaasgaard, T. & Andresen, T. L. Liposomal cancer therapy:exploiting tumor characteristics. Expert Opin. Drug Del.7,225-243, (2010).
    145 Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Canc. Biol.18,356-364, (2008).
    146 Blansfield, J. A. et al. Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin. Cancer Res.14,270-280, (2008).
    147 Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7,139-147, (2007).
    148 Nagase, H. & Woessner, J. F. Matrix metalloproteinases. J. Biol. Chem.274,21491-21494, (1999).
    149 Egeblad, M.& Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2,161-174, (2002).
    150 McCawley, L. J. & Matrisian, L. M. Matrix metalloproteinases:they're not just for matrix anymore! Curr. Opin. Cell Biol.13,534-540, (2001).
    151 McCawley, L. J. & Matrisian, L. M. Tumor progression: Defining the soil round the tumor seed. Curr. Biol.11, R25-R27, (2001).
    152 Curran, S. & Murray, G. I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer 36,1621-1630, (2000).
    153 Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17,768-774,(1999).
    154 Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med.7,743-748, (2001).
    155 Atkinson, J. M., Siller, C. S. & Gill, J. H. Tumour endoproteases:the cutting edge of cancer drug delivery? Brit. J. Pharmacol.153,1344-1352, (2008).
    156 Kline, T., Torgov, M. Y., Mendelsohn, B. A., Cerveny, C. G. & Senter, P. D. Novel antitumor prodrugs designed for activation by matrix metalloproteinases-2 and-9. Mol. Pharm.1,9-22, (2004).
    157 Mansour, A. M. et al. A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res.63,4062-4066, (2003).
    158 Van Valckenborgh, E. et al. Targeting an MMP-9-activated prodrug to multiple myeloma-diseased bone marrow:a proof of principle in the 5T33MM mouse model. Leukemia 19,1628-1633, (2005).
    159 Chau, Y., Tan, F. E. & Langer, R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase Ⅱ and matrix metalloproteinase Ⅸ. Bioconjugate Chem.15,931-941, (2004).
    160 Terada, T., Iwai, M., Kawakami, S., Yamashita, F. & Hashida, M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J. Control. Release 111,333-342, (2006).
    161 Sarkar, D. et al. Chemical Engineering of Mesenchymal Stem Cells to Induce a Cell Rolling Response. Bioconjugate Chem.19,2105-2109, (2008).
    162 Rezler, E. M. et al. Targeted drug delivery utilizing protein-like molecular architecture. J. Am. Chem. Soc.129,4961-4972, (2007).
    163 Mai, J. H. et al. A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells. J. Control. Release 139,174-181, (2009).
    164 Banerjee, J. et al. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9. Bioconjugate Chem.20,1332-1339, (2009).
    165 Shalaby, W. S. W., Peck, G. E. & Park, K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. J. Control. Release 16,355-364, (1991).
    166 Franssen, O., Vos, O. P. & Hennink, W. E. Delayed release of a model protein from enzymatically-degrading dextran hydrogels. J. Control. Release 44,237-245, (1997).
    167 Holland, T. A., Tessmar, J. K. V., Tabata, Y. & Mikos, A. G. Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release 94,101-114, (2004).
    168 Kim, S.& Healy, K. E. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4,1214-1223, (2003).
    169 West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32,241-244, (1999).
    170 Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains:synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045-3051,(2001).
    171 Lutolf, M. P.& Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4,713-722, (2003).
    172 Lutolf, M. R. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol.21,513-518, (2003).
    173 Benton, J. A., Fairbanks, B. D. & Anseth, K. S. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30,6593-6603, (2009).
    174 Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840-3847,(2010).
    175 Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31,3736-3743, (2010).
    176 Macgillivray, R. T. A. et al. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J. Biol. Chem.258,3543-3553, (1983).
    177 Huebers, H. A. & Finch, C. A. The physiology of transferrin and transferrin receptors. Physiol. Rev.67,520-582, (1987).
    178 Thorstensen, K.& Romslo, I. The role of transferrin in the mechanism of cellular iron uptake. Biochem. J.271,1-10, (1990).
    179 Shindelman, J. E., Ortmeyer, A. E. & Sussman, H. H. Demonstration of the transferrin receptor in human breast cancer tissue:Potential marker for identifying dividing cells. Int. J. Cancer27,329-334, (1981).
    180 Recht, L., Torres, C. O., Smith, T. W., Raso, V. & Griffin, T. W. Transferrin receptor in normal and neoplastic brain tissue:implications for brain-tumor immunotherapy. J. Neurosurg.72,941-945, (1990).
    181 Trowbridge, I. S. & Domingo, D. L. Anti-transferrin receptor monoclonal-antibody and toxin-antibody conjugates affect growth of human tumor cells. Nature 294,171-173, (1981).
    182 Sutherland, R. et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. P. Natl. Acad. Sci. USA 78,4515-4519, (1981).
    183 Sahoo, S. K., Ma, W. & Labhasetwar, V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer 112, 335-340, (2004).
    184 Sahoo, S. K. & Labhasetwar, V. Enhanced anti proliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm.2,373-383, (2005).
    185 Batra, J. K. et al. Antitumor activity in mice of an immunotoxin made with anti-transferrin receptor and a recombinant form of Pseudomonas exotoxin. P. Natl. Acad. Sci. USA 86,8545-8549, (1989).
    186 Wagner, E. et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. P. Natl. Acad. Sci. USA 89,6099-6103, (1992).
    187 Barabas, K., Sizensky, J. A. & Faulk, W. P. Transferrin conjugates of adriamycin are cytotoxic without intercalating nuclear DNA. J. Biol. Chem.267,9437-9442, (1992).
    188 Nagase, H. & Fields, G. B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40,399-416, (1996).
    189 Fields, G. B., Vanwart, H. E. & Birkedalhansen, H. Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. Journal of Biological Chemistry 262,6221-6226, (1987).
    190 Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G. & Khademhosseini, A. A microwell array system for stem cell culture. Biomaterials 29,752-763, (2008).
    191 Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration:Engineering cell-invasion characteristics. P. Natl. Acad. Sci. USA 100,5413-5418, (2003).
    192 Garter, K. C., Brown, G., Trowbridge, I. S., Woolston, R. E. & Mason, D. Y. Transferrin receptors in human tissues:their distribution and possible clinical relevance. J. Clin. Pathol.36,539-545, (1983).
    193 Qian, Z. M., Li, H. Y., Sun, H. Z. & Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacological Reviews 54,561-587, (2002).
    194 Monteagudo, C., Merino, M. J., Sanjuan, J., Liotta, L. A. & Stetlerstevenson, W. G. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am. J. Pathol.136,585-592, (1990).
    195 Iizasa, T. et al. Elevated levels of circulating plasma matrix metalloproteinase 9 in non-small cell lung cancer patients. Clin. Cancer Res.5,149-153, (1999).
    196 Wiseman, B. S. & Werb, Z. Development-Stromal effects on mammary gland development and breast cancer. Science 296,1046-1049, (2002).
    197 Zheng, J. H., Chen, C. T., Au, J. L. S. & Wientjes, M. G. Time-and concentration-dependent penetration of doxorubicin in prostate tumors. AAPS PharmSci 3, 69-77, (2001).
    198 Dufes, C. et al. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles. Pharmaceut. Res.21,101-107, (2004).
    199 Abbott, A. Cell culture:Biology's new dimension. Nature 424,870-872, (2003).
    200 Sutherland, R. M. Cell and environment interactions in tumor microregions:the multicell spheroid model. Science 240,177-184, (1988).
    201 Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. Synthetic biology:new engineering rules for an emerging discipline. Mol. Syst. Biol.2,1-14, (2006).
    202 Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409,387-390, (2001).
    203 Sole, R. V., Rasmussen, S. & Bedau, M. Introduction. Artificial protocells. Philos. T. R. Soc.5362,1725-1725, (2007).
    204 Roodbeen, R.& van Hest, J. Synthetic cells and organelles:compartmentalization strategies. BioEssays 31,1299-1308, (2009).
    205 Karlsson, H. L., Cronholm, P., Gustafsson, J. & Moller, L. Copper oxide nanoparticles are highly toxic:A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol.21,1726-1732, (2008).
    206 Terry, .C, Dhawan, A., Mitry, R. R. & Hughes, R. D. Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology 53,149-159, (2006).
    207 Gill, I. & Ballesteros, A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers:An efficient and generic approach. J. Am. Chem. Soc.120,8587-8598, (1998).
    208 Carturan, G., Campostrini, R., Dire, S., Scardi, V. & Dealteriis, E. Inorganic gels for immobilization of biocatalysis:Inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin-layers of SiO2 gel deposited on glass sheets. J. Mol. Catal.57, L13-L16, (1989).
    209 Fennouh, S., Guyon, S., Jourdat, C., Livage, J. & Roux, C. Encapsulation of bacteria in silica gels. C. R. Acad. Sci. Paris Ⅱc 2,625-630, (1999).
    210 Finnie, K. S., Bartlett, J. R. & Woolfrey, J. L. Encapsulation of sulfate-reducing bacteria in a silica host. J. Mater. Chem.10,1099-1101, (2000).
    211 Premkumar, J. R. et al. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 55,1029-1038,(2001).
    212 Premkumar, J. R., Lev, O., Rosen, R. & Belkin, S. Encapsulation of luminous recombinant E-coli in sol-gel silicate films. Adv. Mater.13,1773-1775, (2001).
    213 Nassif, N. et al. Living bacteria in silica gels. Nat. Mater.1,42-44, (2002).
    214 Sun, Y. L., Ma, X. J., Zhou, D. B., Vacek, I. & Sun, A. M. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Invest.98,1417-1422, (1996).
    215 Ferreira, L., Karp, J. M., Nobre, L. & Langer, R. New opportunities:The use of Nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3,136-146, (2008).
    216 Hong, S. et al. Covalent immobilization of P-selectin enhances cell rolling. Langmuir 23, 12261-12268,(2007).
    217 Sackstein, R. The bone marrow is akin to skin:HCELL and the biology of hematopoietic stem cell homing. J. Invest. Dermatol.122,1061-1069, (2004).
    218 Karp, J. M.& Teol, G. S. L. Mesenchymal Stem Cell Homing:The Devil Is in the Details. Cell Stem Cell 4,206-216, (2009).
    219 Rogers, W. J., Meyer, C. H. & Kramer, C. M. Technology insight:in vivo cell tracking by use of MRI. Nat. Clin. Pract. Card.3,554-562, (2006).
    220 Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307,538-544, (2005).
    221 Bulte, J. W. M. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol.19,1141-1147, (2001).
    222 El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442,403-411, (2006).
    223 Sims, C. E. & Allbritton, N. L. Analysis of single mammalian cells on-chip. Lab Chip 7, 423-440, (2007).
    224 Miltenyi, S., Muller, W., Weichel, W. & Radbruch, A. High-gradient magnetic cell-separation with MACS. Cytometry 11,231-238, (1990).
    225 Bianco, P. & Robey, P. G. Stem cells in tissue engineering. Nature 414,118-121, (2001).
    226 Gonzalez-McQuire, R. et al. Coating of human mesenchymal cells in 3D culture with bioinorganic nanoparticles promotes osteoblastic differentiation and gene transfection. Adv. Mater.19,2236-+, (2007).
    227 Hu, Q. H. et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. 17,4690-4698,(2007).
    228 Cai, Y. R. et al. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem.17,3780-3787, (2007).
    229 Meinel, L. et al. Bone tissue engineering using human mesenchymal stem cells:Effects of scaffold material and medium flow. Ann. Biomed. Eng.32,112-122, (2004).
    230 Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer:a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8,299-308, (2008).
    231 Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med.16,1035-U1135, (2010).
    232 Al-Saraj, M., Abdel-Latif, M. S., El-Nahal, I. & Baraka, R. Bioaccumulation of some hazardous metals by sol-gel entrapped microorganisms. Non-cryst. Solids 248,137-140, (1999).
    233 Marseaut, S. et al. A silica matrix biosorbent of cadmium. Int. Biodeter. Biodegr.54, 209-214, (2004).
    234 Soltmann, U., Matys, S., Kieszig, G., Pompe, W. & Bottcher, H. Algae-silica hybrid materials for biosorption of heavy metals. J. Water Resource and Protection 2,115-122, (2010).
    235 Meunier, C. F., Rooke, J. C., Leonard, A., Xie, H. & Su, B. L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chem. Commun.46,3843-3859, (2010).
    236 Meunier, C. F., Rooke, J. C., Leonard, A., Van Cutsem, P. & Su, B. L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. J. Mater. Chem.20,929-936, (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700