微型仿生机器人系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比轮式和履带式移动机器人,基于仿生学原理的足式机器人虽然结构比较复杂,控制相对繁琐,但却有其独特的优点:足式机器人自由度多,可以实现复杂灵活的运动方式,且因为足式机器人行走过程中的支撑点是离散的,借助对立足点的判断和选择,可以在极不规则的路面上行走,适应性极强,在军事侦察、灾后搜救、航空航天、工业管道、医学检测等领域都有广泛的应用前景。
     本文介绍了一种微型仿生四足机器人,对其机械结构和运动方式进行了理论分析和软件仿真,并制作了机器人样机,其长度41mm,宽度49mm,高度29mm。利用两套平面连杆机构的有效组合,模拟了足式运动的抬腿、前跨、后拉等动作,实现机器人的爬行运动。通过可旋转式的机身实现机器人的转向,以微型电机配合微型齿轮减速器作为机器人驱动源。微型仿生蠕动机器人;;仿生学;;直线驱动器;;微机电系统
Compared with tracked and wheeled robot, foot-walking robot based on the principle of bionics has its unique advantages, although the structure and control is more complicated: foot-walking robot has more DOF, it can make complex and flexible movement, and because of foot-walking robot walks in the process of discrete point, with the careful choice of standing point, it’s highly adaptive and can walk on very irregular roads. Foot walking robot will have a wide range of applications in military reconnaissance, search and rescue post, Aerospace, industrial pipelines, medical testing, and other fields.
     This paper introduces a kind of four-footed micro-bionic robot. The prototype is made based on analysis and simulation of its mechanical structure and moving principle. The external dimensions of bio-robot is: length 41 millimeter, width 49 millimeter, height 29 millimete. It simulates foot-movement like leg lifting, stepping, pulling after by using effective combination of 2 sets of linkage. It rotates by rotary main body and the driver source is micro-moto combined with micro-gear reducer.
     With the development of science and technology, there has been a huge demand for new mechanisms which can enter the cavities of human body to perform minimal invasive or non-invasive diagnosis, or able to enter industrial pipes to do online fault detecting. Bionics principle and MEMS technology are new tools to achieve such kind of mechanisms. Under the support of the National High Technology Research and Development Program of China (National 863 Program) & National Science Foundation(NSF), this paper introduced a miniature bionic creeping robotic system for clinical diagnosis and treatment of human’s intestines diseases. The research is mainly about:
     (1)Discussed the design ideas and motion principle, focused on inchworm-like and earthworm-like creeping motion.
     (2)Studied the technology of Micro-linear Driver , designed several kinds of micro DC motor driver and made the sample device. The aim is to provide a new effective approach and reference for the design of robotic endoscope system. The result shows that the miniature bionic creeping robotic system runs stably and has good move performance. This generation of miniature bionic creeping robotic system is very important for the further research.
引文
[1]张扬.高灵活性微小型六足仿生机器人的研究[学士论文].上海:上海交通大学. 2005
    [2]宗光华,刘海波,程君实等译,机器人技术手册,日本机器人学会编,北京:科学出版社,1996
    [3]周兆英,叶雄英,李勇等,微型系统和微型制造技术,微米纳米科学与技术,1996,2(1):1-11
    [4]宗光华,微型机械和微型机器人的研究与发展,机器人,1992,14(1):59-64
    [5]吴添斌.微型仿生四足机器人系统研究[学士论文].上海:上海交通大学. 2008
    [6] Fred Delcomyn and Mark E. Nelson: Architectures of a biomimetic hexapod robot, Robotics and Autonomous Systems, 30 (2000) 5-15
    [7] Jung-Min Yang and Jong-Hwan Kim: Fault-Tolerant Locomotion of the exapod Robot, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND YBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 1, FEBRUARY 1998,pp.109-116
    [8] Gary B. Parker and Zhiyi Lee: Evolving Neural Networks for Hexapod Leg ontrollers, Proceedings of the 2003 IEEURSJ, InU Conference on Intelligent Robots nd Systems, Las Vegas. Nevada October 2003, pp.1376-1381
    [9] Makoto Kaneko, Kazuo Tanie, Mohamad Nor Mohamad Than: A Control lgorithm for Hexapod Walking Machine Over Soft Ground, IEEE JOURNAL OF OBOTICS AND AUTOMATION, VOL. 4, NO. 3, JUNE 1988
    [10] Yanto Go and Alan Bowling: A Design Study of a Cable-Driven Hexapod, In roceedings of the IEEE/RSJ International Conference on Intelligent Robots and ystems, vol. 3, pages 2593-2600, August 2005
    [11] Yan Guozheng, Dai Yi: A Novel Biomimetic Hexapod Micro-robot, 2002 nternational Symposium on Micromechatronics and human science
    [12] Katsuhiko INAGAKI and Hisato KOBAYASHI: Adaptive Wave Gait for exapod Synchronized Walking, International Conference on Robotics and Automation.1994.
    [13] Jun Yang and Z. Jason Geng: Closed Form Forward Kinematics Solution to a lass of Hexapod Robots, IEEE TRANSACTIONS ON ROBOTICS AND UTOMATION, VOL. 14, NO. 3, JUNE 1998第35页
    [14] Stanley Kwok-Kei Chu and Grantham Kwok-Hung Pang: Comparison etween Different Model of Hexapod Robot in Fault-Tolerant Gait, IEEE RANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: YSTEMS AND HUMANS, VOL. 32, NO. 6, NOVEMBER 2002
    [15] John E. McInroy and Jerry C. Hamann: Design and Control of Flexure Jointed exapods, IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 4, AUGUST 2000
    [16] Uluq Saranli, Martin Buehler and Daniel E. Koditschek: Design, Modeling and Preliminary Control of a Compliant Hexapod Robot, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA April 2000
    [17] David Wettergreen and Chuck Thorpe: Developing planning and reactive control for a hexapod robot, Proceedings of the 1996 IEEE, International Conference on Robotics and Automation, Minneapolis, Minnesota - April 1996
    [18] Gary B. Parker: Evolving Cycle Control for a Hexapod Robot Performing Area Coverage, Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics & Automation, July 29– August 1, 2001, Banff, Alberta, Canada
    [19]徐小云.六足移动式微型仿生机器人的研究.机器人, 2002年05期
    [20]庞振基,黄其圣,精密机械设计,机械工业出版社,2000
    [21]吴宗泽,机械设计师手册(上、下),机械工业出版社,2002
    [1] Peeters, E., Challenges in commericlizing MEMS. IEEE Computational science & engineering, 1997: p. 44-48.
    [2]陈训如等,微创胆道外科手术学.北京军事医学科学出版社, 2000.
    [3] R.S. Mackay, B.J., Endoradiosonde. Nature, 1957. 179: p. 1239-1240.
    [4] R.S. Mackay, B.J., Radio telemetering from within the human body. Science,1961. 134: p. 1196.
    [5] G. Iddan, G.M., A. Glukhovsky, P. Swain, Wireless capsule endoscopy. Nature,2000. 405(25): p. 417.
    [6] Lab, R.S., Endoscopic Capsule, NORIKA System. http://www.rfnorika.com/e_system/e_system_001.html.
    [7]王文兴,人体胃肠道无创诊查系统及其实验研究[博士论文],上海:上海交通大学, 2004
    [8] K.Ikuta, M.T., S.Hirose, Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. Proc. IEEE Int. Conf. Robotics and Automations, 1988: p. 427-430.
    [9] Suzumori, K., Iikura, S., Tanaka. H, Development of flexible microactuator and its applications to robotic mechanism. Int. Conf. on Robotics and Systems, 1991: p. 1622-1626.
    [10] Hoeg H.D., S., A. B., Burdick J.W., Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope. Proc. of the 2000 IEEE, 2000: p. 1599-1606.
    [11] B.Slatkin, J.B., and W.Grundfest, The development of a Robotics and Automation. Proc. of IEEE Int. Conf. on Robotics and Automation, 1995: p. 162-171.
    [12] Slatkin, A.B., Burdick, J., and Drundfest, W., The Development of a Robotic Endoscope. Proc., IEEE/RSJ Int. Conf. on Intelligent Robots and System, 1995: p. 162-171.
    [13] P. Dario, M.C.C., B.Lencioni, B. Magnani, D.Reynaerts, M.G.Trivella, A.Pietrabissa, A microrobot for colonoscopy. Proc. of the 7 Int. Symposium on Micro Machine&Human Science, 1996: p. 223-228.
    [14] P. Dario, A.M., Robotics for Surgery. Proc. of the Second Joint EMBS/BMESConference: p. 1813-1814.
    [15] P. Dario, M.C.C., and A.Pietrabissa, Development and in vitro tests of a miniature robotic system for computer assisted colonoscopy. J. Comput. Aided Surg., 1999. 4: p. 4-14.
    [16] P. Dario, P.C., A. Menciassim, B.Kim, Modelling and experimental validation of the locomotion of endoscopic robots in the colon. ISER02 International Symposium on Experimental Engineering, 2001.
    [17] Dario, P., Carrozza, M.C., Lencioni,L., Magnani, B., and D'Attanasio, S., A micro robotic system for colonoscopy. Proc. of IEEE Int. Conf. on Robotics and Automation, 1997: p. 1567-1572.
    [18] Menciassi, A., Park, J. H., Lee, S., Gorini, S., Dario, P., Park, J. O., Robotic conf. on Intelligence Robotics and Systems, 2002.
    [19] Phee, L., Arena, A., Gorini, S., Menciassi, A., Draio, P., Jeong, Y. K., Park,J. O., Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract. Int. Conf. on computational Intelligence Robotics and Autonomous Systems, 2001.
    [20] Phee, L., Menciassi, A., Gorini, S., Pernorio, G., Arena, A., Draio, P., An innovative locomotion principle for minirobots moving in the gastrointestinal trast. Int. Conf. of Robotics& Autonomous, 2001: p. 1125-1130.
    [21] Carrozza, M.C., Lencioni,L., Magnani, B., Dario, P., Reynaert D., Trivella M.G., Pietrabissa A., A microrobot for colonoscopy. Proc. of the MSH, 1996: p. 223-228.
    [22] M.C.Carrozza, L.L., B.Magnani, S.D'Attanasio, and P.Dario, The development of a microrobot system for colonoscopy. The development of a microrobot system for colonoscopy, 1997. 1205: p. 779-788.
    [23] L. Phee, D.A., Arianna Menciassi, Cesare Stefanini, Maria Chiara Carrozza, Paolo Dario,, Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 2002. 49: p. 613-616.
    [24] ByungKyu Kim, Y.J., Hyun-young Lim, Tae Song Kim, Jong-Oh Park, Smart colonoscope system. Proc. of IEEE/RSJ, Int. conf. on Intelligent Robots and Syatems, 2002: p. 1367-1372.
    [25] ByungKyu Kim, Y.J., Hyun-young Lim, Jong-Oh Park, Arianna Menciassi, and Paolo Dario, Functional Colonoscope Bobot System. Proc. IEEE, International Conference on Robotics&Automation, 2003: p. 1092-1097.
    [26] Kim, B.K., Lee,J.H.,Lim,Y.M., Park,J.O., Kim,S.H., Hong,Y.S., Locomotive colonoscope. proc. of the 32nd ISR, 2001: p. 1829-1833.
    [27] Young Mo Lim, J.L.J.P., Byungkyu Kim, A self-propelling endoscopic system. Proc. of the 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and System, 2001: p. 1117-1122.
    [28] Kim, K.D., Lim,H.Y., Kim,B.K., Park,J.O., Radial type locomotive mechanism with worm for robotic endoscope. Transaction of the ICASE. 8(3): p. 220-225.
    [29] Kim, K.D., Lim,H.Y., Kim,B.K., Park,J.O., Hong,Y.S., A locomotive mechanism for colonoscopies. Transaction of the KSME, 2002. 26(7): p. 1296-1301.
    [30] G.Thomann, T.R., M.Betemps, O.Blasi, The design of an instrumented surgical tool for the intestinal inspection. proc. of the 2002 IEEE Int. Workshop on Robot and Human Interactive Communication: p. 448-453.
    [31] G.Thomann, M.B., T.Redarce, The design of an new type of micro robot for the intestinal inspection. Proc. of 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems: p. 1385-1390.
    [32] G.Thomann, M.B., T.Redarce, The development of a bendable colonoscopictip. Proc. of the 2003 IEEE Int. Conf. on Robotics&Automation: p. 658-663.
    [33] G. Chen, G.T., M.Betemps, T. Redarce, Identification of the flexible actuator of a colonscope. Proceedings of the IEEE/RSJ international conference on robotics &systems, 2003: p. 3355-3360.
    [34] J.Peirs, D.R., H.Van Brussel, A miniature manipulator for integration in a selfpropelling endoscope. sensors and actuators, 2001. 92: p. 343-349.
    [35] J.Peirs, D.R., H.Van Brussel, Design of miniature parallel manipulator for integration in a self-propelling endoscope. sensors and actuators, 2000. 85: p. 409-417.
    [36] D. Reynaerts, J.P., H.Van Brusse, Shape memory micro-actuation for a gastrointestinal intervention system. sensors and actuators, 1999. 77: p. 157-166.
    [37] J. Peirs, D.R., H. Van Brussel, Design of miniature parallel manipulator for integretion in a self-propelling endoscope. Sensors and Actuators, 2000. 85: p. 409-417.
    [38] J. Peirs, D.R., H. Van Brussel, A miniature manipulator for integration in a self-propelling endoscope. Sensors and Actuators, 2001. 92: p. 343-349.
    [39] Wan Sing Ng, S.J.P., Choen Seow and Brian Lawrence Davies, Development of a robotic colonoscope. Digestive Endoscopy, 2000. 12: p. 131-135.
    [40] Robert H.Sturges, S.L., A flexible, tendon-controlled device for endoscopy. Proc.of the 1991 IEEE Int. Conf. on Robotics and Automation: p. 2582-2591.
    [41] Elizabeth V.Mangan, D.A.K., Roger D. Quinn, and Hillel J.Chiel, Development of a Peristaltic endoscope. Proc. of the 2002 IEEE Int. Conf. on Robotics&Automation: p. 347-352.
    [42]周银生,医用微型机器人无损伤体内驱动方法.科学通报, 1999. 44(20): p. 2210-2213.
    [43]何斌,医用微型机器人动力学建模及其行为智能控制研究[博士论文],浙江:浙江大学, 2001
    [44]颜国正,新型机器人驱动内窥镜系统的研究.高技术通讯, 2000.10(5): p. 60-62.
    [45]高立明,新型能动内窥镜机器人系统及胃肠动力研究[博士论文],上海:上海交通大学, 2000.
    [46]迟冬祥,用于肠道检查的微小机器人内窥镜系统.中国医疗器械杂志, 2002. 26(3):p.180-184.
    [47]张涛,微型仿生机器人系统关键技术研究[硕士论文],上海:上海交通大学, 2006
    [48]施卫平,任露泉.蚯蚓蠕动过程中非光滑波纹形体表的力学分析.力学与实践, 2005:p. 73-74.
    [49]安瑞永,黄薇.蚯蚓运动行为的观察与研究.生物学通报, 1995. 30(6): p. 42.
    [50]叶东东,胃肠道微型仿生机器人诊查系统及运动相容性研究[博士论文],上海:上海交通大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700