影响微型种植体—骨界面应力分布和骨整合形成的因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
错牙合畸形影响颅颌面的发育、口腔健康、口腔功能及面容,甚至影响精神和心理健康。据报道,错牙合畸形在我国的发病率高达72.92%。随着生活水平及口腔健康认识的提高,要求正畸治疗的患者越来越多。正畸治疗过程中,支抗控制是正畸治疗的基础,支抗不足是目前限制正畸学发展的重要因素。目前临床常用的支抗控制方法包括口内及口外装置,然而,所有的口内装置都有一定程度的支抗丧失,口外支抗如没有患者的良好配合则不能提供可靠的支抗。近年来出现的微型种植体由于尺寸小、植入部位灵活、手术简单、可以即刻载荷等优点,越来越多地用于正畸治疗,尤其对疑难病例的治疗显示出独特的优越性,受到国内外学者的广泛关注。然而微型种植体脱落情况时常发生,据报道微型种植体的成功率为83-89%。如何提高微型种植体的稳定性是目前的研究热点。
     种植体脱落大多发生在正畸加力前和加力过程中,多由于种植体植入手术不当及种植体-骨界面不合适的应力分布造成。种植体的稳定性受多方面因素的影响,种植体植入后必须满足初期稳定性及随后载荷给予的应力和应变的要求。良好的微环境有利于形成种植体-骨愈合及承受载荷,其中种植体的选择、植入手术、初期稳定性、载荷方向及愈合时间等是影响微型种植体稳定的重要因素。明确稳定性的影响因素及规范操作系统的研究对推广微型种植体支抗的应用意义重大。
     本研究通过建立不同长度不同载荷骨量、相同长度不同植入方向、相同长度不同载荷方向的下颌骨-微型种植体三维有限元模型,分析正畸载荷对骨组织内的应力分布及位移的影响,为临床合理选择、使用微型种植体,减少骨界面应力集中,提供理论依据;通过建立不同植入扭力及不同愈合期载荷的动物模型,探讨微型种植体不同植入扭力对种植体-骨界面愈合的作用,评价种植体-骨界面不同愈合期后载荷的生物力学及组织学特性,为临床选择合适的植入扭力并根据初期稳定性选择载荷时机提供参考;通过微型种植体不同愈合时间载荷的临床试验,探讨其稳定性的相关影响因素。本实验希望能为今后微型种植体的临床研究和应用奠定坚实的基础,提供可靠的理论依据和实验室数据。
     1.利用颌骨CT扫描图象,应用计算机辅助设计和ANSYS10.0软件建立下颌骨三维有限元模型。
     2.建立直径为1.6mm,长度分别为6mm、8mm、10mm、12mm四种长度种植体模型。
     3.装配实体微型种植体-下颌骨三维有限元模型
     3.1微型种植体植入位置:下颌第一磨牙与第二前磨牙牙根之间距离牙槽嵴顶4mm处。
     3.2装配6mm,8mm,10mm,12mm四种长度种植体垂直骨面植入模型。
     3.3装配8mm种植体与骨表面成90°垂直植入、牙合向30°植入(种植体向牙合平面方向倾斜60°,与骨表面成30°)、牙合向60°植入(种植体向牙合平面方向倾斜30°,与骨表面成60°)、近中向30°植入(种植体向近中方向倾斜60°,与骨表面成30°)、近中向60°植入(种植体向近中方向倾斜30°,与骨表面呈60°)的五种植入角度模型。
     1.选择6mm、8mm、10mm、12mm四种长度种植体垂直植入模型。
     2.分别在种植体顶端施加1.96N的载荷。
     3.载荷方向:通过种植体载荷点做一与牙合平面平行的直线,通过此直线做一与地平面垂直的平面,在此平面上分别给以水平向前及前上斜向45°方向的载荷。
     4.对各模型的不同载荷条件计算种植体周围骨界面Von-Mises应力峰值及位移峰值。
     1.选择90°垂直植入、胎向30°植入、牙合向60°植入、近中向30°植入、近中向60°植入的五种植入角度模型。
     2.在种植体顶端施加1.96N水平向前的载荷。
     3.计算种植体周围骨界面Von-Mises应力峰值。
     1.选择牙合向30°植入、近中向30°植入两种模型。
     2.在种植体顶端施加1.96N大小的载荷。
     3.载荷方向
     3.1牙合向30°植入:通过种植体载荷点做一与殆平面平行的直线,通过此直线做一与地平面垂直的平面,在此平面上分别给以水平向前、前上45°方向、垂直向上方向的载荷。
     3.2近中向30°植入:通过种植体载荷点做一与牙合平面平行的直线,通过此直线做一与地平面垂直的平面,在此平面上分别给以水平向前、水平向后、前上45°方向、后上45°方向、垂直向上方向的载荷。
     4.对各模型的不同载荷条件计算种植体周围骨界面Von-Mises应力峰值。
     1.动物与分组:年轻成年雄性Beagle狗4只,按照植入力分为14N±1Ncm扭力组及11±1Ncm扭力组。
     2.实验步骤与方法
     2.1将36颗直径1.5mm、长7mm的微型种植体分别种植在Beagle狗的下颌第2、3、4前磨牙及第一磨牙范围内两牙根之间,两组种植体随机分配在每只狗的左右侧。
     2.2每组分别于植入后7天和28天取材、固定。
     2.3制作种植体及周围骨组织不脱矿的硬组织切片,用光学显微镜观察骨界面愈合情况,用图文分析软件测量、计算骨组织界面形态学指标。
     2.4用扫描电镜观察种植体-骨界面的结合情况。
     2.5结果采用方差分析法分析两组扭力值之间和不同时间后骨组织界面形态计量学指标之间差异。P<0.05时认为具有统计学意义。
     1.动物与分组:8只年轻成年雄性Beagle狗。实验组:种植体分别于植入后即刻、愈合1周、愈合3周及愈合8周后行初载荷,载荷持续10周后取材。对照组:种植体不载荷,分别于植入后1周、3周、8周、10周后取材。
     2.1将64枚种植体植入在Beagle狗的下颌骨内,种植体植入位置同实验五。
     2.2植入扭力选择12±1Ncm。植入种植体时测量植入扭力。
     2.3实验组种植体分别在植入后即刻、植入后1,3,8周后给以100g的载荷,对照组不载荷。
     2.4按照实验设计时间旋出种植体,测量两组种植体旋出扭力峰值。
     2.5扫描电镜观察旋出种植体表面情况。
     2.6用方差分析法分析不同愈合时间后载荷及不载荷旋出扭力峰值间的差异。P<0.05时认为具有统计学意义。
     1病例选择:2005年12月至2009年12月选用正畸门诊需强支抗的错殆畸形患者植入种植体,进行早期载荷或延期载荷。共46例,男11,女35,平均年龄17.5岁。
     2种植体植入位置:按照错牙合奇形治疗的需要及局部解剖情况,将微型种植体植入牙弓前部及后部的唇、颊侧或腭侧牙槽嵴。
     3分组:①早期载荷:植入后4周载荷,载荷力为75-100g,12周后150-200g;②延迟载荷:种植体植入后12周开始载荷,载荷力为150-200g。
     4记录宿主基本情况、植入位置、植入后疼痛否、口腔卫生情况、愈合期、种植体脱落情况等。
     5计算种植体脱落率,卡方检验分析种植体脱落的相关临床因素。P<0.05时具有统计学意义。
     1.成功建立6mm、8mm、10mm、12mm四种长度微型种植体垂直植入的下颌骨-种植体模型。
     2.成功建立8mm长度种植体的90°垂直植入、牙合向30°植入、牙合向60°植入、近中向30度植入、近中向60°植入五种植入角度的下颌骨-种植体模型。
     3.建立的有限元模型的几何相似性、生物力学相似性及临床适应性均达到实验要求。
     1.不同加载条件下应力集中部位均出现在种植体颈部骨界面内。
     2.不同长度种植体相同方向载荷时骨界面应力峰值及位移峰值变化不大。
     3.6mm、8mm、10mm、12mm长度种植体水平前向牵拉的应力峰值分别为3.765 Mpa、3.726 Mpa、3.627Mpa、3.5 Mpa,位移峰值范围为1.266-1.288μm。前上斜向牵拉的应力峰值分别为4.51 Mpa、4.477Mpa、4.392 Mpa、4.075 Mpa,位移峰值范围为1.668-1.694μm。
     1.不同载荷骨量明显影响骨界面应力分布:水平前向牵拉的应力峰值及位移峰值均低于前上斜向牵拉。
     2.不同加载条件下应力集中部位均出现在种植体颈部骨界面内。
     3.殆向30度植入、牙合向60度植入、90度植入、近中向60度植入、近中向30度植入的Von-Mises应力峰值分别为3.386 MPa、3.536 MPa、3.726 MPa、1.385 MPa、0.436 MPa。
     4.骨界面应力均匀分布依次为:近中向30°植入、近中60°植入、牙合向30°植入、牙合向60°植入、90°植入。
     1.不同加载条件下应力集中部位均出现在种植体颈部。
     2.种植体牙合向30度植入:水平前向载荷、前上方向载荷、垂直向上载荷的应力峰值分别为3.396 MPa,1.143 MPa,1.096 MPa。骨界面应力均匀分布的载荷依次为:垂直向上载荷、前上方向载荷、水平前向载荷。
     3.种植体近中向30度植入:水平前向载荷、水平后向载荷、前上方向载荷、后上方向载荷、垂直向上载荷的应力峰值分别为0.436 MPa,0.452MPa,1.936 MPa,1.817 MPa,2.618 MPa。骨界面应力均匀分布的载荷依次为:水平前向载荷、水平后向载荷、后上方向载荷、前上方向载荷、垂直向上载荷。
     在4只狗的下颌共植入36颗种植体,其中2颗种植体脱落。11±1Ncm扭力植入组成功率100%,14±1Ncm扭力植入组成功率88.9%,两者差别无统计学意义(P>0.05),总成功率为94.4%。
     14±1Ncm扭力植入种植体植入后7天,可见种植体颈部或根尖部皮质骨有染色的弥散性损伤及染色性交叉岔折损伤,植入后28天,仍可见少量重染损伤区,微破裂明显减少。而11±1Ncm扭力植入种植体植入后7天,种植体颈部皮质骨可见少量分散的微破裂,而植入后28天,微破裂消失。
     11±1Ncm扭力植入组与14±1Ncm扭力植入组7天和28天的种植体-骨接触率无明显区别(P>0.05)。但11±1Ncm扭力组28天时50μm和150μm范围内种植体-骨界面密度(分别为53.15%,51.53%)明显高于14±1Ncm扭力组(分别为32.56%,34.55%),P<0.05。
     共植入64颗种植体,其中有3颗脱落。载荷组成功率96.9%,非载荷组成功率90.6%,差异无统计学意义(P>0.05),总成功率为93.8%。
     微型种植体植入后,载荷及非载荷的界面骨组织均随着时间的延长进行愈合。适量正畸载荷可以促进骨组织的愈合。微型种植体植入后即刻载荷及愈合1周、愈合8周后载荷的界面骨组织愈合良好,但植入后3周载荷的愈合较差。
     非载荷种植体不同愈合时间的旋出扭力值无明显区别,平均为2.42±0.29Ncm。载荷组种植体在即刻载荷及愈合1周、3周及8周后载荷的旋出扭力分别为4.10±0.39Ncm、4.25±0.70Ncm、2.42±0.44Ncm、4.42±0.38Ncm,愈合3周后载荷的旋出扭力值与非载荷种植体旋出扭力值相似(P>0.05),明显低于其它愈合时间载荷的旋出扭力值,P<0.05。
     共植入微型种植体109枚。其中有10颗种植体松动、脱落,6颗发生在载荷前,1颗在早期载荷1个月内,3颗发生在延期载荷期间。种植体总成功率为90.83%。脱落较多发生在上颌腭侧、下颌前部及后部颊侧。早期载荷与延期载荷成功率无明显区别。种植体植入后距离牙根较近及种植体周围炎容易导致种植体脱落。
     1微型种植体植入方向及角度影响种植体骨界面应力分布。应根据载荷方式选择种植体植入方向,尽量使植入方向与载荷方向一致,并尽量减少种植体与骨面间的植入角度。
     2微型种植体长度在6-10mm范围变化时,正畸载荷对种植体-骨界面应力分布影响不大。在此范围内临床上不用刻意选择长微型种植体
     3载荷方向影响种植体-骨界面应力分布。临床微型种植体载荷时,尽量沿着种植体植入方向的种植体长轴加载(与种植体植入方向一致或相反),载荷方向与种植体植入方向的种植体长轴垂直时容易造成骨界面应力集中。
     4种植体初期稳定性是形成骨整合的基础。适度的植入扭力有利于建立一个良好的种植体-骨愈合微环境。种植体植入后,应将种植体与周围骨组织间压力控制在一定的范围内,保证骨组织的血液供应。合适的植入扭力(11Ncm)骨界面损伤小、愈合快,有利于种植体稳定性。过强的植入扭力(14Ncm)可以造成种植体周围应力集中区骨质严重微损伤,且骨愈合过程减慢。临床植入微型种植体时,适度的植入力较好,而不是越大越好。
     5微型种植体植入后,早期适度的机械刺激有助于种植体-骨愈合。
     6微型种植体植入到骨整合完成前(3周左右)出现种植体稳定性危险期。在种植体植入后,可以进行即刻或愈合1周后正畸载荷,否则应选择愈合后载荷,但应避免愈合危险期加载。
     7初期稳定性是微型种植体选择早期载荷的重要条件,对初期稳定性好的微型种植体进行即刻载荷或早期载荷不影响其骨整合的形成。
     8为了减少种植体脱落率,应控制种植体周围炎症,尤其是上颌腭侧及下颌后部颊侧植入种植体时。
Objective:Malocclusion affects craniofacial development, oral health and founction, facial esthetics, psysical and psychological health seriously. In China, the prevalence of malocclusion is reported by 72.92%. The number of patients requiring orthodontics thearoy has undergone a marked increase in recent decades with the standard of living and awareness of oral health. Anchorage control is a fundamental aspect of orthodontic biomechanics. Poor anchorage control is one important limiting factor for Orthodontics development. There have been many attempts to divise suitable anchorage methods, including introral and extraoral appliances. All intraoral appliances, however show some loss of anchorage. Extraoral appliances do not privide reliable anchorage without patient's comppliance. Especially, mini-implants have increasingly been used in cesent years for orthodontic anchorage because of their small size, flexible insertion site, ease placement, can immediately loading, and accepeted attention by scholar. However, mini-implants still fail frequently. Miyawaki and Cheng et al repoted that the success rates for mini-implants were 83-89% How to improve implant stability is the research focus.
     The fell off implants happen mostly before orthodontics loading and during the process of loading. Failure of oral implants may often be attributed to inadequate operation and biomechanical coupling between implant and bone. The stability of implant was influenced by many factors. Implants must satisfy requirements of primary satility, and later they must withstand the srtesses and strains to which they subjected. Good micro-environment is conducive to the formation of implant-bone healing and to withstand load. The choice of implant, implant surgery, initial stability, load direction, and healing time are the important factors on stability of mini-implants. Therefore, the studies that make clear the influencing factors on the stability and standardize the operating system are important to popularize and use mini-implant.
     This research established some models of mandible with mini-implant including different insertion angles, mini-implant lengths and loading directions. Analyzing the stress distribution and displacement in bone influenced by orthodontics loading. The purpose was to offer a theoretical basis to rational choice and use mini-implant in clinical, reduce stress concentration in bone interface. To Study the effection of different insertion torque on bone healing by means of establishing animal models with different insertion torque and healing periods under loading. This study is to observe the biomechanical and histologica properties of peri-implant bone under different heailing period. It can also provide a reference for chosing rational insertion torque and loading period according to initial stability. To explore the relevant factors of stability through clinical loading tests under different healing period. The results would provide experimental data and theory for the future clinical studies and pro-clinic applies.
     1 Experiment one:Establishing the FEA models of the jaw with mini-implant
     1.1 Obtaining three dimensional radiographic data of the jaw by CT scan, the three-dimensional finite element analysis mandible model was established.
     1.2 The four kinds of mini-implant models were established. And the diameter was 1.6mm, the length were 6mm,8mm,10mm and 12mm respective.
     1.3 The insertion region of implant was in the between first molar and second premolar. Four lengths of 6,8,10,12mm of implant modles were inserted vertically into designed site of mandibular and 8mm length of implant was embbed vertically,30°tilted mesiolly,60°tilted mesiolly,30°
     tilted occlusally,60°tilted occlusally, respectively.
     Four lengths of 6,8,10,12mm of implant-mandible modles were chosen. A force of 1.96N was applied.mesioly and 45°tilted mesiol-vertically in modles. The stress distribution under every condition was recorded and analyzed.
     The chosen models were that the implants were inserted vertically,30°tilted mesiolly,60°tilted mesiolly,30°tilted occlusally,60°tilted occlusally, respectively. A load of 1.96N was applied mesiolly to the head of implant, caculated the maximum Von-Mises stress.
     The model with implant inserted 30°tilted mesiolly was loaded by a force of 1.96N mesiolly, mesiol-vertically, vertically, distal-vertically, distally, respectively. The model with implant inserted 30°tilted occlusally was loaded by a "force of 1.96N mesiolly, mesiol-vertically, vertically, respectively. The stress distribution under every condition was recorded and analyzed.
     5.1 Experimental design:The implants were equally divided into 14±1Ncm and 11±1Ncm insertion torque among 4 adult male Beagle dogs.
     5.2 Empirical procedure and method:Thirty-six mini-implants (1.5mm in diameter,7mm in length) were placed buccaly at the interradicular with second, third, forth premolars and first molar bilaterally of the mandibular of dogs.14±1Ncm insertion torque and 11±1Ncm insertion torque were made on two groups at the time of fixture placement. Bone tissue responses were evaluated by histological analysis at 7 days and 28 days after implant placement. Following an observation period of 7 and 28 days, the mini-implants and the surrounding bone were removed. Undecalcified serial sections were made and the degree of ossointeration studied. All measurements were statistically evaluated using independent t-ests to determine any difference in insertion torques and histomorphometric analysis, (bone-implant contact and bone area). A P value less than 0.05 was considered significant.
     6.1 Experimental design:8 twelve month-old male beagle dogs were divided into two groups. The test mini-implants remain in the low jaw for an additional 10 wks of force application (100 g) after 0,1,3 and 8 weeks of bone healing. Healing control (HC) implants were further divided into 4 groups (1,3,8 and 10 weeks). It is important to note that the HC implants to termination of the experiment were placed in the jaw for 1,3,8, or 10 wks prior so that bone could be assessed at the initiation of loading.
     6.2 Empirical procedure and method:Sixty-four mini-implants were placed in low jaw among 8 twelve month-old male beagle dogs. The location and surgical procedure of this study were sismilar to which in study four. The insertion torques was 12±1Ncm. Recorded the insertion torques while the implants were embedded. The test mini-implants of force application (100 g) after different bone healing period according to disign. Maximum removal torque (MRT) testing was performed to evaluate the interfacial shere strength of each test groups. Surface analysis of removed implants were performed by SEM. MRT of two groups after different healing period were compared with the use of ANOVE. A P value less than 0.05 was considered significant。
     Forty-six patients who required skeletal anchorage for orthodontic therapy were included in a prosective study. A total of 109 mini-implants (1.5mm in diameter,7mm in length) were placed in 46 patients (11 males,35 females, and average age of 17.8 years old). A variety of orthodontic loading were applied after varied healing period including early and delayed loading. Possibe correlation between various clinical parameters and mini-implant failure and complications were evaluated by the chi-aquare or Fisher exact tests where appropriate. AP value less than 0.05 was considered significant.
     1 Experiment one:The three-dimentional FEA models of mandible and mini-implants were established:Four lengths of mini-implant models obtained were 6mm、8mm、10mm and 12mm. Five insertion angle models of mini-implant with 8 mm of length were established, embedding angle were vertical,30°tilted occlusally,60°tilted occlusally,3°tilted mesiolly,60°tilted mesiolly, respectively. The geometric, biomechanics similarity and clinical adaptability of modles established achieved the test requirements.
     2 Experiment two:Stress distribution on bone under different mini-implant lengths:The results showed that the peak stress occurred at the cervical bone margin adjacent to the implants on different loading conditions. The change of the length didn't show much influence on the stress ditribution. When given load mesiolly, the maximum stress varied from 3.765Mpa to 3.5Mpa, the maximum displacement varied from 1.288μm tol.266μm. When load was applied 45 degree mesiol-vertically, the maximum stress varied from 4.51Mpa to 4.075 Mpa, maximum displacement varied from 1.694μm to 1.668μm.
     3 Experiment three:Stress distribution on bone adjacent to a mini-implant under different embeded direction:The results showed that the peak stress occurred at the cervical bone margin adjacent to the implants. When inserted with 30°ilted mesiolly, the peak stress is less than other models obviously and the stress distributions of 60°ilted mesiolly was more even secondly. When mini-implants inserted with angle of 90°nd 60°ilted occlusally, the stress concentration was more obvious and the peak stress was the highest.
     4 Experiment four:Stress distribution on bone under different loading directions of mini-implan:The rerults showed that when mini-implants inserted with angle of 30°tilted occlusally, stress distribution of loading vertically was evener than loading mesiol-vertically, loading mesiolly was the unevenest. When inserted with 30°tilted mesiolly, stress distributions of loading mesiolly and distally were more even, and the difference with them was little. The strees distribution of vertical loading was the unevenest.
     5.1Clinical observation when mini-implants inserted with 11±1Ncm and 14±1Ncm torque value:A total of 36 implants were placed in mandible of 4 beagle dogs,2 of them failed. The survival rates of implants with 11±1Ncm and 14±1Ncm torque value were 100%,88.9%, respectively. There were no significant differences between two groups. The total success rate was 94.4%.
     5.2Observation by light microscope when mini-implants inserted with 11±1Ncm and 14±1Ncm torque value:The histomorphologic analysis showed that diffuse staining and cross-hatch staining were discovered in cortical bone of implant neck or apex with 14±1Ncm torque after 7 day. The microdamage still exist after 28 day. In contrast, cross-hatch staining was discovered in cortical bone of implant neck with 11±1Ncm torque after 7 day, but disappeared after 28 day.
     5.3The histomorphometry analysis:The results showed that there were no significant differences for the BIC between 11±1Ncm group and 14±1Ncm group at 7 day and 28 day. But the BA within 50μm and 150μm for the 11±1Ncm group (53.15%,51.53%, respectivly) were great than 14±1Ncm group (32.56%,34.55%, respectivly) at 28 day.
     6.1 Clinical observation:A total of 64 implants were placed in mandible of 8 beagle dogs,3 of them failed. The success rates were 96.9% for loading mini-implants,90.6% for unloadings, and 93.8% for overall.
     6.2SEM observations:The results indicate that the mineral formation in the nanosized layer adjacent to the titanium surface of mini-implant increases over time for loading and unloading groups. The striking finding was the loading promotes the bone healing around implants, except healing of 3 wks.
     6.3Removeal torque value changes:There were no signifacant differences for removeal torque value of unloading implants, mean of 2.42±0.29Ncm. The mean removal torque values for the loading implants were 4.10±0.39Ncm at 0 week,4.25±0.70Ncm at 1 week,2.42±0.44Ncm at 3 weeks and 4.42±0.38 Ncm at 8 weeks. During the process of healing, the removal torque values of tested implants were significant highter than control implants except at 3 weeks.
     Implant mobility or complete exfoliation was found for ten implants among 109 mini-implants. Six of them failed before the appilication of orthodontic load, one implant was lost after loading of less than 1 month, and three were lost during delayed loading period. The overal mini-implants success rate was 90.83%. Mini-implants on the buccal and labial side of the mandible and palatal side of maxilla had a higher failure rate. There was no significant difference between early loading and delayed loading. Root contact during placement of mini-implants and inflammation increased significantly the possibility of implant failure.
     1 Insertion direction and angle of the mini-implant can affect the stress distribution of infacial bone. Embbeding direction of the implant shoud be accordance,with loadingdirection as much as possible, and decrease the angle between bone sueface to long axies of implant.
     2 The change of the length within 6mm-12mm didn't show much influence on the stress distribution. There is no use to select longer mini-implants strictly.
     3 Loading direction and angle of the implant can affect the stress distribution of infacial bone. Loading direction of implant should be accordance with or contrary to the insertion direction of implant for orthodontic anchorage. When loading derection was perpendicular with long axis of the implant, the interfacial bone will result in stress concentration.
     4 Primary stability is basis of osseointergation formation of mini-implants. Suitable insertion torque of mini-implant is in favor of good micro-environment of peri-implant bone healing. The strees between the implant and infacial bone should Control within certain limits to guarantee blood supply for bone. Appropriate insertion torque produce bone interface with little microdamage, and healing speedy. Heavy insertion torque can cause intense bone microdamage around interface of implant-bone by strong stress concentration, damnify the healing of the implant-bone interface. The mini-implants should be placed using an appropriate insertion torque, over-tighting should be avoided.
     5 Suitable mechanical stimulation contributed to healing of bone-implants after mini-implant was inserted.
     6 There are a stable dangerous period, after mini-implant was inserted and before the bone remodeling to complete. As a function of healing time, orthodontics loading immediately or 1 week,8 week after implant was inserted appear a positive effect on peri-implant bone remodeling and implant stability except at 3 weeks of healing period.
     7 Initial stability is an important condition for early loading of mini-implant. When implant inserted with good primary stability, early orthodontics loading is considered no impact to implant-bone healing.
     8 To reduce the failure rate, the inflammation around the implant body should be controled, particularly mini-implants were inserted on the buccal and labial side of the mandible and palatal side of maxilla.
引文
1 Fritz U, Diedrich P, Kinzinger G, et al. The anchorage quality of mini-implants towards translatory and extrusive forces. J Orofac Orthop, 2003,64:293-304
    2 Wilmes B, Ottenstreuer S, Su YY, et al. Impact of implant design on primary stability of orthodontic mini-implants,2008,69(1):42-50
    3 Murphy WH, Williams KR, Gregory MC. Stress in bone adjacent to dental implant. J Oral Rehabil,1995,22(12):897-903
    4 Meijer HJA, Starmans FJM. Bosman F, et al. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil,1993,20(2):147-157
    5 Roesler H. The history of some fundamental concepts in bone biomechanics. J Biomechanics,1987;20(11-12):1025-1034
    6陈新民,赵风云.不同状态人体牙槽骨的弹性性质.口腔材料器械杂志,1993;2(1):6-8
    7 Sato Y, Teixeira ER, Tsuga K, et al. The effectiveness of a new algorithm on a three-dimensional finite element model construction of bone trabeculae in implant biomechanics. J Oral Rehabil,1999,26(8):64-70
    8 Motoyoshi M, Yano S, Tsuruoka, et al. Biomechanlical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin. Oral Impl. Res.2005,16:480-485
    9 Chun HJ, Shin HS, Han CH, et al. Influence of implant abutment type on stress distribution in bone under various loading condition using finite element analysis. Int J Oral Maxillofac Implants,2006,21:195-202
    10王海力,郑立,王晓等.下颌骨模型精确度对种植体周围应力分布的影响,中国口腔种植学杂志,2006年,11(1):5-8
    11 Chun HJ, Park DN, Han CH, et al. Stress distributions in maxillary bone surrounding overdenture implants with different overdenture attachments. J oral Rehabilitation,2005,32:193-205
    1 Park HS, Jeong SH and Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2006,130:18-25
    2单丽华,董福生,宫伟伟,等.微型种植体植入角度对骨界面应力峰值的影响.中国组织工程研究与临床康复,2008,12(52):10227-10230
    3龙红月,兰泽栋,林珠,等.正畸力作用方向对支抗种植体-骨界面应力分布的影响.中国口腔种植学杂志,2004,9(1):10-14
    4 Himmlova L, Dostalova T, Kacovsky A, et al. Influence of implant length and diameter on stress distribution:a finite element analysis. J Prosthet Dent,2004,91(1):20-5
    5 Rieger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent,1990,63:457-463
    6兰泽栋,林珠,龙红月等.支抗种植体长度对骨界面应力分布的影响.中国口腔种植学杂志,2003,8(3):112-115
    7朱胜吉,荣起国,周彦恒.微螺钉型种植体支抗长度及直径对应力分布影响的三维有限元研究.口腔正畸学,2006,13(2):49-52
    8王震东,王林,倪晓宇等.不同长度微种植体支抗应力差异的三维有限元研究.口腔医学,2005,25(2):95-96
    9 De Pauw GA, Dermaut LR, Johansson GB, et al. A histomorphometric analysis of heavily loaded and non-loaded implants. Int J Oral Maxillofac Implants,2002,17(3):405-412
    10 Lock MS, The effect of diameter and length of hydroxylapatite-coated dental implants on ultimate puppout force in dog alveolar bone. J Oral Maxllofac Surg,1990,48:174
    11 Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length.Angle Orthod. 2008;78(2):234-40
    12 Freire JN, Silva NR, Gil JN, et al. Histomorphologic and histomophometric evaluation of immediately and early loaded mini-implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop, 2007,131(6):704-709
    1 Tseng YC, Hsieh CH, Chen CH et al. The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg,2006,35(8):704-7
    2 Park HS, Jeong SH and Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2006,130:18-25
    3 Freire JN, Silva NR, Gil JN, et al. Histomorphologic and histomophometric evaluation of immediately and early loaded mini-implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop, 2007,131(6):704-9
    4 Gedrang T, Bourauel C, Kobel C, et al. Tree-dimensional analysis of endosseous palatal implants and bone after vertical, horizontao, and diagonal force application. European J Orthodontics Orthdontics,2003, 25:109-115
    5 Motoyoshi M, Yano S, Tsuruoka. et al. Biomechanical effect of abutment on stability of orthodontic mini-impalnt. A finite element analysis. Clin Oral Impl Res,2005,16:480-485
    6 Huang HL, Hsu JT, Fuh LJ, et al. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant:a non-linear finite element study. J Dent,2008,36(6):409-17
    7 Kyung HM, Park HP, Bae SM, et al. Development of Orthodontic Micro-Implants for Intraoral Anchorage. J Clin Orthod,2003,37(6): 321-328
    8 Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod,2008;78(6):1065-70
    9 Fritz U, Diedrich P, Kinzinger G, et al. The anchorage quality of mini-implants towards translatory and extrusive forces. J Orofac Orthop, 2003,64:293-304
    10 丁熙,陈树华,陈日齐等.倾斜角度对种植体骨界面生物力学影响的三维有限元分析.中国口腔种植学杂志,2002,7(4):162-165
    11张扬,张丹,冯翠娟.微小种植体正畸支抗生物力学的三维有限元分析,上海口腔医学,2005,14(3):281-283
    12 Kao HC, Gung YW, Chung TF, et al.The influence of abutment angulation on analysis,2008,23(4):623-30
    13 Mischkowski RA, Kneuertz P, Florvaag B, et al. Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area,2008,37(10):948-54
    14马俊青,倪晓宇,王震东等.微型支抗种植体不同承载方向的三维有限元研究.临床口腔医学杂志,2004,20(6):328-320
    15 Aoki H, Ozeki K, Ohtani Y, et al. Effect of a thin HA coating on the strees/strain distritution in bone around dental implants using three-dimentional finite element analysis. Bio-MeD.Mat.Eng,2006,16: 157-169
    16 Koca OL, Eskitascioglu G, Usumez A. Three-dimentinal finite-element analysis of functional streeses in different bone locations produced by impalnts placed in the maxillary posterior region of the sinus floor. J Prosthet Dent,2005,93:38-44
    17 Huang HL, Chang CH, Hsu JT, et al. Comparison of implant body designs and threaded designs of dental implants:a 3-dimensional finite element analysis,2007,22(4):551-62
    1 Tseng YC, Hsieh CH, Chen CH, et al. The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg,2006,35(8):704-7
    2 Gedrang T, Bourauel C, Kobel C, et al. Tree-dimensional analysis of endosseous palatal implants and bone after vertical, horizontao, and diagonal force application. European J Orthodontics Orthdontics,2003,25: 109-115
    3 Motoyoshi M, Yano S, Tsuruoka, et al. Biomechanical effect of abutment on stability of orthodontic mini-impalnt. A finite element analysis. Clin.Oral Impl. Res,2005,16; 480-485
    4 Fritz U, Diedrich P, Kinzinger G, et al. The anchorage quality of mini-implants towards translatory and extrusive forces. J Orofac Orthop, 2003,64:293-304
    5 Kao HC, Gung YW, Chung TF, et al. The influence of abutment angulation on analysis. Int J Oral Maxillofac Implants,2008,23(4): 623-30
    6 Chen YJ, Chang HH, Huang CY,et al.. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res.2007 Dec;18(6):768-775
    7 Garfinkle JS, Cunningham LL Jr, Beeman CS, et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop.2008 May;133(5):642-53.
    8 Chol BH, Zhou SJ, Kim YH. A clinical evaluation of titanium miniplates as anchors for orthodontic treatment. Am J Orthod Dentofacial Orthop, 2005,128:382-384
    9 Cheng SJ, Tseng IY, Lee JJ, et al. A Prospective Study of the Risk Factors Associated with Failure of Mini-implants Used for Orthodontic Anchorage. Int J Oral Maxillofac Implants,2004,19:100-106
    10 Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod,2008,78(6):1065-70
    11 Buchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implant Res, 2005,16(4):473-9
    12 Kyung HM, Park HP, Bae SM, et al. Development of Orthodontic Micro-Implants for Intraoral Anchorage. J.Clin.Orthod,2003,37(6): 321-328
    13 De Pauw GA, Dermaut LR, Johansson GB, et al. A histomorphometric analysis of heavily loaded and non-loaded implants. Int J Oral Maxillofac Implants,2002,17(3):405-412
    14龙红月,兰泽栋,林珠等.正畸力作用方向对支抗种植体-骨界面应力分布的影响.口腔种植学杂志,2004,9(1):10-14
    15赖红昌,张志勇,张保卫等.三种载荷条件下种植体骨界面应力分布特征.上海口腔医学,2002,11(3):253-255
    16马俊青,倪晓宇,王震东等.微型支抗种植体不同承载方向的三维有限元研究.临床口腔医学杂志,2004,20(6):328-330
    17 Esposito M, Grusovin MG, Willings M, et al. The effectiveness of immediate, early, and conventional loading of dental implants:a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants,2007,22(6):893-904
    1 Wilmes B, Ottenstreuer S, Su YY, et al. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop,2008, 69(1):42-50
    2 Gapski R, Wang HL, Mascarenhas P, et al. Critical review of immediate implant loading. Clin Oral Implants Res,2003,14(5):515-52
    3 Buchter A, Kleinheinz J, Wiesmann HP, et al. Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin. Oral Impl. Res,2005,16:1-8
    4 Wilmes B, Rademacher C, Olthoff G, et al. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop,2006,67:162-74
    5 Ottoni J, Oliveira Z, Mansini R.Correlation between plancement torque and survival of single-tooth implants. Int J Oral Maxillofac implants,2005, 20:769-776
    6 Andreas Beer, Andre Gahleitner, Anders Holm, et al. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clin Oral Implants Res,2003,14:616-620
    7 Tricio J, van Steenberghe D, Rosenberg D, et al. Implant stability related to insertion torque force and bone density:An in vitro study. J Prosthet Dent,1995,74(6):608-612
    8 Degidi M, Piattelli A. Comparative analysis of 702 dental implants subjected to immediate functional loading and immediate nonfunctional loading to traditional healing periods with a follow-up of up to 24 months. Int J Oral Maxillofac Implants,2005,20:99-107
    9 Chaddad K, Ferreira AFH, Geurs N, et al. Influence of Surface Characteristics on Survival Rates of Mini-Implants. Angle Orthodontist, 2008,78(1):107-113
    10 Motoyoshi M, Hirabayashi M, Uemura M, et al. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res,2006,17(1):109-114
    11 hmae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop, 2001,119:489-97
    12 Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK, Roberts WE, Garetto LP. The use of small titanium screws for orthodontic anchorage. J Dent Res,2003,82(5):377-381
    13 Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pullout strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop,2005,127(3):307-313
    14 Park HS. Clinical study on success rate of microscrew implants for orthodontic anchorage. Korean J Orthod,2003,33:151-156
    15 Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants,2004,19(1):100-106
    16 Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury:a vital-microscopic study in the rabbit. J Prosthet Dent,1983,50:101-107
    17 Tehemar SH. Factors affecting heat generation during implant site preparation:a review of biologic observations and future considerations. Int J Oral Maxillofac Implants,1999,14:127-136
    18 Fernandes Ede L, Unikowski IL, Teixeira ER, et al. Primary stability of turned and acid-etched screw-type implants:a removal torque and histomorphometric study in rabbits. Int J Oral Maxillofac Implants,2007, 22(6):886-892
    19 Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. Orofac Orthop, 2008,69(2):121-34
    20 Fazzalari Nl, Forwood MR, Manthey BA, et al. Three-dimentional confocal images of microdamage in cacellous bone. Bone,1998,23(4): 373-378
    21 Tami AE, Nasser P, Verbergt O, et al. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res,2002, 17(11):2023-2037
    22 Rantani S, Zidi M. A theoretical model of the effect of continiuum on a bone adaptation model. J Biomech,2001,34(40):471-479
    1 Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop,2003,124:373-378
    2 Cheng SJ, Tseng IY, Lee JJ, et al. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants,2004,19:100-106
    3 Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop,2004,126:42-47
    4 Wilmes B, Ottenstreuer S, Su YY, Impact of Implant Design on Primary Stability of Orthodontic Mini-implants. J Orofac Orthop,2008,69:42-50
    5 Szmukler-Moncler S, Piattelli A, Favero GA, et al. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res,2000,11(1):12-25
    6 Gapski R, Wang HL, Mascarenhas P, et al. Critical review of immediate implant loading. Clin Oral Implants Res,2003,14(5):515-527
    7 Sφballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl, 1993,255:1-58
    8 Huang HM, Chiu CL, Yeh CY, et al. Early detection of implant healing process using resonance frequency analysis. Clin. Oral Impl. Res,2003,14: 437-444
    9 Attard NJ, Zarb GA. Immediate and early implant loading protocols:a literature review of clinical studies. J Prosthet Dent,2005,94:242-258
    10 Roberts WE. When planning to use an implant for anchorage, how long do you have to wait to apply force after implant placement. Am J Orthod Dentofacial Orthop,2002,121(1)14-17
    11 Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg,2007,36(8): 695-9
    12 Odaman J, Lekholm U, Jemt T, et al. Osseointegrate implants as orthodontic anchorage in the treatment of partially edentolos adult patients, Eur J Orthod,1994,16:187-201
    13 Wehrbein H, Glatzmaier J, Mundwiller U, et al.The orthosystem:a new implant system for orthodontic anchorage in the palate. J Orfac Orthop, 1996,57:142-53
    14 Saito S, Sugimoto N, Morohashi T, et al. Endosseous titanium impalntd as anchors for mesiodistal tooth movement in the beagle dog. Am J Orthod Dentofacial Orthop,2000,118:601-7
    15 Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res,2000,3:23-8
    16 Park HS, Kwon TG. Sliding mechanics with microscrew implant anchorage. Angle Orthod,2004,74:703-10
    17 Fernandes Ede L, Unikowski IL, Teixeira ER, et al. Primary stability of turned and acid-etched screw-type implants:a removal torque and histomorphometric study in rabbits. Int J Oral Maxillofac Implants,2007, 22(6):886-92
    18 Kim SH, Cho JH, Chung KR, et al. Removal torque values of surface-treated mini-implants after loading. Am J Orthod Dentofacial Orthop,2008,134(1):36-43
    19 Morais LS, Serra GG, Muller CA, et al. Titanium alloy mini-implants for orthodontic anchorage:Immediate loading and metal ion release. Acta Biomater,2007,3(3):331-335
    20 Garfinkle JS, Cunningham LL, Beeman CS, et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop,2008,133:642-53
    21 Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants:a review of the literature. Int J Oral Maxillofac Implants,2005,20:425-431
    1 Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants,2004,19:100-106
    2 Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop,2004,126:42-47
    3 Buchter A, Wiechmann D, Gaertner C, Hendrik M, Vogeler M, Wiesmann HP, et al. Load-related bone modeling at the interface of orthodontic micro-implants. Clin Oral Implants Res,2006,17:714-22
    4 Cho HJ. Clinical applications of mini-implants as orthodontic anchorage and the peri-implant tissue reaction upon loading. J Calif Dent Assoc, 2006,34:813-20
    5单丽华,陈京奕,石彦涛.Delta卡环指针在微型种植体植入中的应用.河北医药,2006,28(7):581-582
    6 Roberts WE. Bone dynamics of osseointegration, ankylosis, and tooth movement. J Indiana Dent Assoc,1999,78(3):24-32
    7 Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg,2007,36(8): 695-9
    8 Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants:a review of the literature. Int J Oral Maxillofac Implants,2005,20:425-431
    9 Freudenthaler JW, Haas R, Bantleon HP. Bicortical titanium screws for critical orthodontic anchorage in the mandible:a preliminary report on clinical applications. Clin Oral Implants Res,2001,12:358-363
    10 Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage:a preliminary report. Int J Adult Orthodon Orthognath Surg,1998,13: 201-209
    11 Park HS, Kwon TG. Sliding mechanics with microscrew implant anchorage. Angle Orthod,2004,74:703-10
    12 Maino BG, Bednar J, Pagin P, et al. The spider screw for skeletal anchorage. J Clin Orthod,2003,37(2):90-97
    13 Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res,2000,3:23-8
    14 Garfinkle JS, Cunningham LL, Beeman CS, et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop,2008,133:642-53
    15 Buchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res, 2005,16(4):473-479
    16 Brunski JB. Avoid pitfalls of overloading and micromotion of intraosseous implants. Dent Implantol Update,1993,4(10):1-5
    17 Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop,2005,127:307-13
    18 Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2005,128:190-4
    19 Fritz U, Ehmer A, Diedrich P. Clinical suitability of titanium microscrews for orthodontic anchorage——reliminary experiences. J Orofac Orthop, 2004,65:410-8
    20 Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop,2003,124(4):373-378
    21 Chen J, Esterle M, Roberts WE. Mechanical response to functional loading around the threads of retromolar endosseous implants utilized for orthodontic anchorage:coordinated histomorphometric and finite element analysis. Int J Oral Maxillofac Implants,1999,14(2):282-289
    22 Deguchi T, Takano-Yamammoto T, Kanomi R, et al. The use of small titanium scrows for orthodontic anchorage. J Dent Res,2003,82(5): 377-381
    1 Kim JW, Baek SH, Kim TW, et al. Comparison of stability between cylindrical and conical type mini-implants. Angle Orthodontist. 2008,78(4)692-698
    2 Ferguson SJ, Broggini N, Wieland M, et al. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mete Res.2005,23,292-297
    3 Cheng SJ, Tseng IY, Lee JJ, et al. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. International Journal of Oral Maxillofacial Implants,2004,19:100-106
    4 RobertsW E, Helm FR, Marshall KJ, et al. Rigid endosseous implants for orthodontic and orthodontic and orthopedic anchorage. Angle Orthod, 1989,59(4):247-256
    5 Gainforth BL, Higley LB. A study of orthodontic anchorage possibilities in basal bone. Am J Orthod Dentorfac Orthop,1945,31:406-16
    6 Buchter A, Kleinheinz J, Wiesmann HP, et al. Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin. Oral Impl. Res,2005,16:1-8
    7 Park HS, Jeong SH and Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2006,130:18-25
    8 Tseng YC, Hsieh CH, Chen CH et al. The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg,2006,35(8):704-7
    9 Garfinkle JS, Cunningham LL, Beeman CS., et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop,2008,133:642-53
    10 Li LH, Kim HW, Kim YW, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004,25:2867-2875
    11 Aldikacti M, Acikgoz G, Turk Tamer, et al. Long-term evaluation of sandbasted and acid-etched implants used as orthodontic anchors in dogs. Am J Orthod Dentofacial Orthop,2004; 125(2):139-47
    12 Buchter A, Kleinheinz J, Wiesmann HP, et al. Interface reaction at dental implants inserted in condensed bone. Clin Oral Impl Res 2005,16():509-517
    13 Fritz U, Diedrich P, Kinzinger G, et al. The anchorage quality of mini-implants towards translatory and extrusive forces. J Orofac Orthop 2003;64(4):293-304
    14宿玉成主编,现代口腔种植学,人民卫生出版社,2004
    15 Wilmes B, Rademacher C, Olthoff G, et al. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop,2006;67(3):162-74
    16 Wilmes B, Ottenstreuer S, Su YY, et al. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop, 2008,69(1);42-50
    17 Kitagawa T, Tanimoto Y, Nemoto K, et al. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J, 2005,24(2):219-224
    18 Deguchi T, Takano-Yamamoto T, Kanomi R, et al. The use of small titanium screws for orthodontic anchorage. J Dent Res,2003,82(5): 377-381
    19 Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2006,130(1):18-25
    20 Shih-Jung Cheng. Aprospective stidy of the rish factors associated with failure. Int J oral maxillofac implants,2004,19,100-106
    21 Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants,2007,22(5):779-84
    22 Friberg B, Sennerby L, Meredith N, et al. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg,1999,28:297-303
    23 Degidi M, Piattelli A. Comparative analysis of 702 dental implants subjected to immediate functional loading and immediate nonfunctional loading to traditional healing periods with a follow-up of up to 24 months. Int J Oral Maxillofac Implants,2005,20:99-107
    24 Attard NJ, Zarb GA. Immediate and early implant loading protocols:a literature review of clinical studies. J Prosthet Dent,2005,94:242-258
    25 Higuchi KW, Slack JM. The use of titanium fixtures for intraoral anchorage to facilitate orthodontic tooth movement. Int J Oral Maxillofac Implants,1991,6:338-344
    26 Costa A, Raffainl M, Melsen B. Mini-screws as orthodontic anchorage:a preliminary report. Int J Adult Orthodon Orthognath Surg,1998,13(3): 201-9
    27 Chung K, Kim SH, Kook y. Orthodontic microimplant for distalization of mandibular dentiton in Class III correction. Angle Orthod. 2004;75:19-128
    28 Park HS, Bae SM, Kyung HM, et al. Micro-implant anchorage for treatment of skeletal class I Bialveolar protrusion. J Clin Orthod,2001, 35(7):417-22
    29 Brunski JB, Factors affecting bone dental implant interface. Clin Mater, 1992,10(3):153-201
    30 Frost HM. Skeletal structure adaptations to mechanical usage (SATMU):1. Redefining Wolffs law:the bone modeling problem. Anat Rec,1990,226: 403-13
    31 Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin.Orthod. Res,2003,3:23-28
    32 Serra G, Morais LS, Elias CN, et al. Sequential bone healing of immediately loading mini-implants. Am J Orthod Dentofacial Orthop. 2008;134(1):44-52
    33 Chaddad K, Ferreira AF, Geurs N, et al. Influence of surface characteristics on survival rates of mini-implants. Angle Orthodontist, 2008:78(1);107-113
    34 Ottoni J, Oliveira Z, Mansini R. Correlation between plancement torque and survival of single-tooth implants. Int J Oral Maxillofac implants.2005, 20:769-776
    35 Deguchi T, Takano-Yamamoto TT, Kanomi R, et al. The use of small titanium screws for orthodontic anchorage. J Dent Res, 2003;82(5):377-381
    36 Ohmae M, Saito SS, Morohashi T, et al. A clinial and histological evaluation of titanium mini-implants as ahchors for orthodontic inrusion in the beagle dog. Am J Orthod Dentofacial Orthop.2001;119(5):489-97
    37 Parfitt, AM, Drezner MK, Glorieum FH, et al. Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res, 1987,2:595-610
    38 Oyonarte R, Pilliar RM, Deporter D, et al. Peri-implant bone response to orthodontic loading:Part 1. A histomorphometric study of the effects of implant surface design. Am J Orthod Dentofacial Orthop,2005, 128(2):173-81
    39 Oyonarte R, Pilliar RM, Deporter D, et al. Peri-implant bone response to orthodontic loading:Part 2. Implant surface geometry and its effect on regional bone remodeling. Am J Orthod Dentofacial Orthop,2005, 128(2):182-9
    40 Carr AB, Larsen PE, Gerard DA. Histomorphometric comparison of implant anchorage for two types of dental implants after 3 and 6 months' healing in baboon jaws. J Prosthet Dent 2001;85(3):276-80
    41 Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop,2005,128:190-4
    42 Marinho VC, Celletti R, Bracchetti G, et al. Sandblasted and acid-dental implants:a histologic study in rats. Int J Oral Maxillofac Implants,2003, 18(1):75-81
    43 Oxlund BS, Ortoft G, Andreassen TT, et al. Low-intention, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone,2003,32(1):69-77
    44 Mellal A, Wiskott HW, Botsis J, et al. Stimulating effect of implant loading on surrounding bone, comparison of tress numerical models and Validation by in vivo data. Clin Oral Impl Res,2004,15(3):239-248
    45 Kitamura E, Stegaroiu R, Nomura S, et al. Biomechanical aspects of marginal bone resorption around osseointergrated implants:considerations based on three-dimentional finite element analysis. Clin Oral Impl Res, 2004,15(5):401-414
    46 Buchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res, 2005,16(4):473-479
    1 Akin-Nergiz N, Nergiz L, Schuli A, et al. Reactions of peri-implant tissues to continuous loading of osseointegrated implants. Am J Orthod Dentofacial Orthop 1998;114(3):292-8
    2 Li LH, Kim HW, Kim YW, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004,25:2867-2875
    3 Roberts WE, Smith RK, Zilberman Y, et al. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod, 1984,86(2(:95-111
    4 Saito S, Sugimoto N, Morohashi T, et al. Endosseous titanium implants as ahchors for mesiodistal tooth movement in the beagle dog. AM J Orthod Dentofacial Orthop,2000;118(6):601-7
    5 Schroeder A, Van der Zypen E, Stich H, et al. The reactions of bone, connection tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg,1981;9:15-25
    6 Rodrigo O, Robert MP, Douglas D, et al. Peri-implant bone response to orthodontic loading:Part 2:implant surface geometry and its effect on regional bone remodleing. Am J Orthod Dentofacial Orthop,2005,128: 182-9
    7 Al-Nawas B, Wagner W, Grotz KA. Insertion torque and resonance frequancy analysis with loading implants. Int J Oral Maxillofac implants.2006;21(5):726-732
    8 Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials.1999,20:2311-2321
    9 Leung MT, Lee TC, Rabie AB, et al. Use of miniscrews and miniplates in orthodontics.J Oral Maxillofac Surg 2008,66:1461:1466
    10 Lim WH, Lee SK, Wikesjo UM, et al.A Descriptive Tissue Evaluation at Maxillary Interradicular Sites:Implications for Orthodontic Mini-Implant Placement. Wiley InterScience,2007,20:760-765
    11 Ottoni JM, Oliveira ZF, Mansini R, et al. Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofac Implants 2005;20:769-76
    12 Wilmes B, Su YY, Sadigh L, et al. Pre-drilling Force and Insertion Torques during Orthodontic Mini-implant Insertion in Relation to Root Contact. J Orofac Orthop 2008;69(22):51-8
    13 Chen YH, Chang HH, Chen YJ, et al. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate:an animal study. Clin. Oral Impl. Res.2008,19(13),99-106
    14 Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg, 2008; 37:334-340
    15 Wilmes B, Ottenstreuer S, Su YY, et al. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop, 2008,69(1);42-50
    16 Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. Orofac Orthop, 2008,69(2):121-34
    17 Yamada H. Strength of biological materials.Ist ed. Huntinton:RE Krieger. 1973,19-75
    18 Melsen B, Lang NP. Biological reactions of alveolar bone to orthodonticloading of oral implants. Clin. Oral Impl. Res.2001,12:144-152
    19 Wehrbein H, Diedrich P. Endosseous titanium implants during and after orthodontic load-an experimental study in the dog. Clin Oral Impl Res, 1993,4:76-82
    20 Ohmae M, SaitoS, Morohashi T, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofac Orthop,2001,119(5):489-97
    21 Park HS. The use of micro-implant as orthodontic anchorage. Seoul, Korea: Narae;2001
    22 Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res,2000,3:23-8
    23 Bae SM, Park HS, Kyung HM, Kwon OW, Sung JH. Clinical application of micro-implant anchorage. J Clin Orthod,2002,36:298-302
    24 Park HS, Kwon TG. Sliding mechanics with microscrew implant anchorage. Angle Orthod,2004,74:703-10
    25 Garfinkle JS, Cunningham LL, Beeman CS, et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy. Am J Orthod Dentofacial Orthop,2008,133:642-53
    26 Motoyoshi M, Hirabayashi M, Uemura M, et al. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res,2006,17(1):109-114
    27 Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg,2007,36(8): 695-9
    28 Motoyoshi M, Yano S, Tsuruoka. et al. Biomechanical effect of abutment on stability of orthodontic mini-impalnt. A finite element analysis. Clin.Oral Impl. Res,2005,16:480-485
    29 Aoki H, Ozeki K, Ohtani Y, et al. Effect of a thin HA coating on the strees/strain distratution in bone around dental implants using three-dimentional finite element analysis. Bio-MeD. Mat. Eng,2006,16: 157-169
    30 Gedrang T, Bourauel C, Kobel C, et al. Tree-dimensional analysis of endosseous palatal implants and bone after vertical, horizontao, and diagonal force application. European J Orthodontics,2003,25:109-115
    31 Kitagava T, Tanimoto y, Nemoto K, et al. Influence of cortical quanlity on stress distribution in bone aroud dental implant. Dent Mater J. 2005;24(2):219-24
    32 Kitamura E, Stegaroiu R, Nomura S, et al. Biomechanical aspects of marginal bone resorption around osseointergrated implants:considerations based on three-dimentional finite element analysis. Clin Oral Impl Res, 2004,15(5):401-414
    33 Chun HJ, Shin HS, Han CH, Influence of implant abutment type on stress distribution in bone under various loading condition using finite element analysis. Int J Oral Maxilllofac Implants.2006;21(2):195-202
    34 Pillar RM, Sagals G, Meguid SA, Threaded versus porous-surfaced implants as anchorage units for orthodontic treatment:three-dimentional finit element analysis of peri-implant bone tissue stresses. Int J Oral Maxilldfac Implants,2006,21(6):879-89
    35 Aoki H, Ozeki K, Ohtani Y, Effect of a thin HA coating on the stress/strain distribution in bone aroud dental implants using three-dimentional element analysis. Biomed Mater Eng.2006;16()3):157-69
    36 Sevimay M, Turhan F, Kilicarslan MA, et al. Three-dimentional finit element analysis of the effect of different bone quality on sress distribution in an implant-supported crown. L Prosthet Dent,2005;93(4):227-34
    37 Koca OL, Eskitascioglu g, Usumez A, et al. Three-dimentional finite element analysis of functional stresss in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent,2005,93(1):38-44
    38 Motoyoshi M, Hirabayashi M, Uemura M, ey al. Recommended placement torque when tightening an orthodontic mini-implant. Clin. Oral Impl. Res. 2006,17:109-114
    39 Buchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin. Oral Impl. Res,2005, 16:473-479
    40 Mellal A, Wiskott HW, Botsis J, et al. Stimulating effect of implant loading on surrounding bone, comparison of tress numerical models and Validation by in vivo data. Clin Oral Impl Res,2004,15(3):239-248
    41 Oyonarte R, Pilliar RM, Deporter D, et al. Peri-implant bone response to orthodontic loading:Part 1. A histomorphometric study of the effects of implant surface design. Am J Orthod Dentofacial Orthop,2005, 128(2):173-81
    42 Deguchi T, Takano-Yamamoto TT, Kanomi R, et al. The use of small titanium screws for orthodontic anchorage. J Dent Res, 2003;82(5):377-381
    43 Buchter A, Kleinheinz J, Wiesmann HP, et al. Interface reaction at dental implants inserted in condensed bone. Clin Oral Impl Res 2005,16():509-517
    44 Oyonarte R, Pilliar RM, Deporter D, et al. Peri-implant bone response to orthodontic loading:Part 2. Implant surface geometry and its effect on regional bone remodeling. Am J Orthod Dentofacial Orthop,2005, 128(2):182-9
    45 Roberts W E, Helm FR, Marshall KJ, et al. Rigid endosseous implants for orthodontic and orthodontic and orthopedic anchorage. Angle Orthod,1989, 59(4):247-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700