微种植体支抗宏观结构的生物力学优化设计和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在正畸治疗过程中,支抗装置的设计、选择、应用至关重要。随着科学技术的迅猛发展,微型种植体逐渐取代了传统的支抗装置,在种植体的大家族里扮演越来越重要的角色。微型种植体的优点显而易见:它体积小、植入过程简便,术中创伤小,术后易于恢复,无需病人配合,植入部位灵活多变,临床效果显著。同时,它的缺点也不容忽视。种植体的松动、脱落、周围炎症、价格昂贵,年龄限制等问题急待解决。在这些问题中,尤以种植体周围骨吸收所造成的种植体脱落的临床病例更为突出,这与种植体的外形设计密切相关,合理的设计能够更好使微型种植体进行生物力学的传导,从而降低种植体的脱落率。
     国内目前对带有详尽参数的个性化种植体的研究尚处于探索阶断,以往国内外此方面的相关报道主要以单变量、离散的研究为主,在实际运用过程中,不能更真实的模拟、描述具体情况。本课题目的在于,借助当前最先近的机械工程优化设计方法,利用Pro/E和AnsysWorkbench做为设计平台,研究Ⅲ类骨质中的种植体的宏观结构优化设计。为临床提供更为详尽的种植体的宏观结构参数,生产出更具合理性的种值体,提高国产种植体的市场竞争力。
     实验一:首先应用Pro/E软件建立包括微种植体、皮质骨、松质骨的实体模型。然后利用Pro/E和AnsysWorkbench的双向无缝参数传递功能,将上颌和微种植体模型导入AnsysWorkbench中,进行单元划分,从而建立自适应改变的微种植体和上颌骨三维有限元模型。进行力学加载检测模型的准确性。该模型为微种植体的生物力学优化设计和分析提供技术平台。
     实验二:设定微种植体的直径(D)和长度(L)为变量,D取值范围为1.0-2.0mm,L取值范围为6.0-16.0mm,以垂直于微种植体长轴2N的力加载于微种植体头部。设定皮质骨、松质骨、微种植体平均主应力峰值和微种植体平均位移峰值为目标函数,比较分析直径和长度对颌骨、微种植体应力以及微种植体位移分布的影响。同时对这两个参数对目标函数的敏感度进行分析。实验结果显示,随着微种植体直径和长度的增加,皮质骨、松质骨和微种植体平均主应力峰值分别下降80.94%、91.84%和86.11%。随着D的增加,目标函数显著减小。而随着L的增加,目标函数的变化幅度则较小。当直径大于1.5mm,长度大于11.0mm时,目标函数变化稳定且取值最低。敏感度分析结果显示微种植体直径对目标函数的影响远大于长度。实验结果证实了直径对于颌骨应力和微种植体稳定性的重要作用。直径大于1.5mm的长微种植体更适合上颌磨牙区。
     实验三:设定微种植体螺纹形态为变量,包括V形、矩形、支撑形和反支撑形。微种植体力学加载及目标函数设定同实验二。实验结果显示,支撑形螺纹可将皮质骨平均主应力峰值降至最低,V形螺纹可将松质骨平均主应力峰值降至最低。V形和矩形螺纹可以获得较小的微种植体平均主应力峰值。四种螺纹形态对微种植体平均位移峰值的影响不显著,反支撑形螺纹略低于其他三种。结果表明支撑形螺纹可以显著减小微种植体植入后颌骨内应力,同时具有较低的微种植体位移,因此,更适合于微种植体的设计。
     实验四:设定微种植体的螺纹数量为变量,包括单螺纹微种植体、双螺纹微种植体和三螺纹微种植体。微种植体力学加载及目标函数设定同实验二。实验结果显示,单螺纹微种植体在正畸力加载条件下对皮质骨造成的平均主应力峰值较小。单螺纹和双螺纹微种植体对松质骨造成的平均主应力峰值较小。三螺纹设计可以减小微种植体平均主应力峰值。三种螺纹规格对微种植体位移峰值的影响无显著性差异,单螺纹略低于其他两种。结果表明单螺纹设计可以显著减小皮质骨、松质骨应力和微种植体位移,微种植体位移也较小,更加适合于正畸微种植体。
     实验五:按照优化结果加工制造微种植体。将优化微种植体和常规微种植体分为四个组,进行轴向拔除实验和旋出扭矩实验。实验结果显示,经过优化的微种植体最大轴向拔出力和最大旋出扭矩大于常规微种植体。实验结果表明对微种植体的直径、长度、螺纹形态和规格的优化,可以显著提高微种植体在离体骨中的生物力学性能,增加微种植体的即刻稳定性。
     综上所述,宏观结构的优化可以显著提高微种植体的生物力学性能。直径大于1.5mm,长度大于11.0mm的支撑形单螺纹微种植体更适合在上颌磨牙区使用。
The design, selection and application of anchorage is crucial in the treatment of orthodontics. With the development of technique, mini-implant gradually took the place of traditional anchorage and played a more and more important role. Mini-implants in small diameters have been developed to facilitate the surgical insertion procedure, minimize patients’compliance; allow immediate loading after initial wound healing, and anchor at different positions of the alveolar bone. However, there are also problems need to be solved, such as loosening, local inflammation, expense and age. Of these problems, mini-implant loosening caused by surrounding bone resorption, which is related to the macrostructure of mini-implant, is commonly seen. Optimal macrostructure improve the biomechanical characters of mini-implant and decrease the failure rate.
     So far, the researches of individualized mini-implant parameters are still in an exploratory stage. The former researches were mainly about dispersed univariate, which were not suitable to mimic the real situation. This study aimed to analyze the effect of macrostructure and select the optimal design in type III bone by using Pro/E and Ansys Workbench. The results can provide references to orthodontists and manufacturers.
     In experiment 1, 3D finite element models of mini-implant,cortical and cancellous bones were constructed by Pro/E. These models were then imported to Ansys Workbench by bidirectional parameters transmitting. Self-adapting assembled 3D finite element models of mini-implant-bone complexes were rebuilt. The accuracy of the models was evaluated. This finite element model provides a technical platform for further optimum design and analyses of orthodontic mini-implant.
     In experiment 2, mini-implant diameter (D) and length (L) were set as variables. D ranged from 1.0 to 2.0mm, and L ranged from 6.0 to 16.0mm. A load of 2 N was applied to the head of the mini-implant, in the mesiodistal horizontal direction paralleling to the buccal surface of maxilla. The max EQV stresses in cortical and cancellous bones and max displacements in mini-implant were set as objective functions. The effects of design variables to objective functions, as well as the sensitivities of the objective functions to design variables were evaluated. The results showed that the max EQV stresses in cortical and cancellous bones and the max displacement of mini-implant decreased by 80.94%, 91.84% and 86.11%, respectively with the increasing of D and L. The objective functions decreased significantly with the increasing of D while the decrease with the increasing of L is smaller. When D exceeded 1.5mm and L exceeded 11.0mm, the highest stability and the lowest levels of stress and displacement were obtained. Analysis of sensitivity indicated that D was more effective than L in reducing maxilla and mini-implant stresses and enhancing mini-implant stability.
     In experiment 3, the thread form of mini-implant was set as variables, including V–shaped design, square design, buttress design and reverse buttress design. The force and objective functions settings were the same as those in experiment 2. The results showed that the minimum max EQV stress in cortical bone was achieved by using buttress design thread mini-implant. The minimum max EQV stress in cancellous bone was achieved by using V-shaped design thread mini-implant. The effect of thread form on the max displacement of mini-implant is not noticeable. V-shaped design thread is the best thread form to mini-implant.
     In experiment 4, the number of mini-implant thread was set as variables, including single thread, double threads and triple threads. The force and objective functions settings were the same as those in experiment 2. The results showed that the minimum max EQV stress in cortical bone was achieved by using single thread mini-implant. The minimum max EQV stress in cancellous bone was achieved by using single and double thread mini-implants. The effect of thread number on the max displacement of mini-implant is not noticeable. Single thread is the best thread design to mini-implant.
     In experiment 5, optimized mini-implants were manufactured. Twenty optimized mini-implants and twenty control mini-implants were divided into 4 groups. The axial pull-out test and removing torque test were carried out. The results showed that optimized mini-implant had better biomechanical characters.
     To sum up, optimization of macrostructure can improve the biomechanical characters of mini-implant. V-shaped design single thread mini-implant with diameter exceeding 1.5mm and length exceeding 11.0mm were the optimal biomechanical choice for the maxillary posterior region in a screwed orthodontic mini-implant.
引文
[1]马俊青,王林,王震东.微型支抗种植体稳定性的动物实验研究[J].口腔医学,2004,24(1):13.
    [2]陈岩,李云华,孟兴凯.口腔正畸微种植体的实验研究[J].内蒙古医学院学报,2006,28(6):507.
    [3] Cainsforth BL,Hilgley LB.A study of orthodontic anchorage possibilities in basal bone.Am J Orthod Dentofac Orthop.1945,31:406-16.
    [4] Sugawara J. J Clin Orthod, 1999, 33(12):689-696.
    [5] Wehrbein H, Diedrich P. Endosseous titanium implants during and after orthodontic anchorage. Clin Oral Implants Res, 1993 (4): 76-82.
    [6] Wehrbein H, Feifel H, Diedrich P. Palatal implant anchorage reinforcement of posterior teeth: A prospective study. Am J Orthod Dentofacial Orthop, 1999 (116): 678-686.
    [7] Giancotti A, Muzzi F, Santini F. Palatal implant - supported distalizing devices: Clinic application of the Straumann orththosystem. World J Orthod, 2002(3): 135-139.
    [8] Bantheon HP, Bemhart T, Crismani AG. Stable orthodontic anchorage with palatal ossoeintegrated implants. World J Orthod, 2002(3): 109-116.
    [9] BLOCK MS, Hoffman DR.A new device for absolute anchorage for orthodontics Am J Orthord,1995(107):251-258.
    [10] Kyung HM.M: cro-implant anchorage. A lecture in Nanjin Med: cal Universty,2003,1.
    [11] Branemark PI. Osseointegration and its experimental background.J Prosthet Dent. 1983;50(3):399-410.
    [12] Gainsforth BL ,Higley LB.A study of orthodontic an chorage possibilities in basal bone.Am J Orthod Dentofac Orthop.1945,31:406-16
    [13] Creekmore TD, Eklund MK. The possibility of skeletal anchorage [J]. J Clin Orthod, 1983,17:266-269.
    [14] Kanomi R Mini-implant for orthodontic anchorage 1997(11).
    [15] Kyung HM.M: cro-implant anchorage. A lecture in Nanjin Med: cal Universty,2003,1.
    [16] Kyung HM, Park HS, Bae SM. Development of orthodontic micro- implants for intraoral anchorage.J Clin Orthod,2003,37(6): 321- 328.
    [17] Melsen B,Costa A.Immediate loading of implants used for orthodontic anchorage. Clin.Orthod .Res,2003,3:23-28.
    [18] Freudenthaler JW, Haas R, Bantleon HP. Bicortical titanium Screws for critical orthodontic anchorage in the mandible:a preliminary report on clinical applications.Clin-Oral-implants-Res,2001,12(4):258-263.
    [19] Suchanek W,Yoshimura M. Processing and propertiesof hydroxyapatite - based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998 , 13(1) :94~117.
    [20] Laing P G, J r Fergosun A B , Hodge E S. Tissue reaction in rabbit muscle exposed to metallic implants.J Biomed Mater Res , 1967 , 1 : 135– 149.
    [21] Perl D P , Brody A R. Alzeimer’s disease :X - ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle - bearing neurons. Science , 1980 , 208 : 297~299.
    [22] Y Okazaki , S Rao , T Tateishi and Y Ito.Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mate Sci Eng A ,1998 , 243 : 250~256.
    [23] Kuroda D , Niinomi M, Morinaga M , Kato Y ,Yashiro T. Design andmechanical properties of newβtype titanium alloys for implant materials. MaterSci and Eng A , 1998 , 243 : 244~249.
    [24] Akahori T , Niinomi M. Fracture characteristics of fatigued Ti - 6Al - 4V ELI as an implant material .Mat Sci and Eng ,1998 , A243 : 237~243.
    [25] Ducheyne P , Willems G, Martens Mand Helsen J .In vivo metal - ion release fromporous titanium -fiber material . J Biomed Mater Res , 1984 , 18 :293~308.
    [26] Esposito M, Lausmaa J , Hirsch JM , Thomsen P .Surface analysis of failed oral titanium implants. J Biomed Mater Res. 1999 , 48(4) : 559~568.
    [27] Dubruille JH,Viguier E ,Le Naour G,et al . Evaluation of combinations of titanium, zirconia , and alumina implants with 2 bone fillers in the dog. Int J Oral Maxillofac Implants ,1999 ,14(2) : 271~277.
    [28] Guglielmotti MB , Renou S , Cabrini RL . A histomorphometric study of tissue interface by laminar implant test in rats. Int J Oral Maxillofac Implants ,1999 , 14(4) : 565~570.
    [29] Hure G, Donath K, Lesourd M, Chappard D , BasleMF. Does titanium surface treatment influence the bone - implant interface - SEM and histomorphometry in a 6 - month sheep study. Int J Oral Maxillofac Implants , 1996 ,11(4) :506~511.
    [30] Pebe P , Barbot R , Trinidad J , Pesquera A , JLucente , R Nishimura. Counterorque testing and histomorphometric analysis of various implant surfaces in canines :a pilot study. Implant Dent ,1997 ,6(4) :259~265.
    [31] Wen H B , Dalmeijer RA , Cui FZ , Van CA Blitterswijk , Kde Groot. Preparation of calcium phosphate coating on porous tantalum. J Mater Sci Lett , 1998 , 17 : 925~930
    [32] Kangasniemi P Li , I , K de Groot. Bonelike hydroxyapatite induction by a gel - derived titania on a titanium substrate. J Am Ceram Soc , 1994 , 77 (5) : 1307– 1312.
    [33] Li T , Lee J , Kobayashi T, Aoki H . Hydroxyapatite coating by dipping method and bone bonding strength. J Mater Sci , Mater in Med , 1996 , 7 :355~357.
    [34] Tanne K,Koening,Burstone C.Moment to Force Ratios and the Center of Rotation[J].AJO-DO,1988,94:426-431.
    [35] Jeon P D,Turley PK,Ting K.Analysis of Stress in the Peri-odontium of the Maxillary First Molar with a Three-dimension Finite Element Model[J].Am J Orthod Dentofacial Orthop,1999,115(3):267-274.
    [36] Qian H,Chen J,Katona T R.The Influence of PDL Principal Fibers in a 3-Dimensional Analysis of Orthodontic Tooth Movement[J].Am J Orthod Dentofacial Orthop,2001,120(3):272-279.
    [37] Shaw A M,Sameshima G T,Vu H V.Mechanical Stress Gen erated by Orthodontic Forces on Apical Root Cementum: A Finite Element Model[J].Orthod Craniofacial Res,2004,7:98-107.
    [38]刘东旭,王春玲,付传云.三种牙移动方式时牙周应力分布的三维有限元研究[J].口腔正畸学,2003,1o(3):102-103.
    [39] Cobo J,Argltes J,Puente M.Dentoalveolar Stress from Bodily Tooth Movement at Different Levels of Bone Loss[J].Am J Orthod Dentofacial Orthop,1996,110:256-262.
    [40] Geramy A.Initial Stress Produced in the Periodontal Mam-brane by Orthodontic Loads in the Presence of Varying Loss of Alveolar Bone:a Three-dimensional Finite Element Analysis[J].Eu J Orthod,2002,24:21-33.
    [41]陈凤山,杨陆一,梁傥.矫治力作用于不同高度牙槽骨其牙周组织的应力分析[J].口腔正畸学,1999,6(3):106-110.
    [42] Morikawa H,Yamanami S,Nishihira M.Bone Resorption Rate of Moved and Fixed Teeth during Alveolar Bo ne Remodeling by Orthodontic Treatment[J].Jsme Int J Ser C,1999,42(3):590-596.
    [43] Kawarizadeh A,Bo urauel C,Zhang D L.Correlation of Stressand Strain Profiles and the Distribution of Osteoclastic Cells Induced by Orthodontic Loading in Rat[J].European Journalof 0ral Sciences,2004,112:140-147.
    [44] Dorow C,Sander F G.Development of a Model for the Simulation of Orthodontic Load on Lower First Premolars Usingthe Finite Element Method[J].Journal of Orofacial Orthope-dics,2005,66(3):208~218.
    [45] Holberg C,Schwenzer K,Rudzki J.Three-dimensional Soft Tissue Prediction Using Finite Elements Part I:Implementation of a New Procedure[J].Journal of Orofacial Orthopedics,2005,66(2):110-121.
    [46] Rieger MR.A finite element survey of eleven endosseous implants.J Prosthet Dent,1990,63:457.
    [47] Meijer HJ.Stress distribution around dental implants:Influence of srperstructure,length of implants,and height of mandible.J Prosthel Dent, 1992,68:96.
    [48] Lum LB.A Diomecharical retional for the use of short implants.J Oral Implantol,1991,17:126.
    [49]董玉英,董福生.人工种植牙生物力学研究进展.中国口腔种植学杂志.1999, 4(1):39-42.
    [50] Mailath G, Stoiber B, Watzek G, Matejka M. Bone resorption at the entry of osseointegrated implants-a biomechanical phenomenon. Finite element study [in German]. Z Stomatol 1989, 86(4):207-216.
    [51] Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990, 16(1):6-11.
    [52]邹敬才,刘宝林,唐文杰.人工种植牙直径对骨界面应力分布影响.口腔领面外科杂志,1996,6(1):104-106.
    [53] Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995, 10(3):326-334.
    [54] Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990, 16(1):6-11.
    [55]王宝彦,李晓红,刘蒸.一段式螺旋型种植体有限元应力分析.实用口腔医学. 2001, 18(1):394-396.
    [56] Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000, 5(1):22–31.
    [57] Steigenga JT. The effect of implant thread geometry on strength of osseointegration and the bone implant contact, master’s thesis. Ann Arbor, Universi ty of Michigan, 2003.
    [58] Misch CE. Contemporary Implant Dentistry, 2nd ed. St. Louis: Mosby; 1999.
    [59] Cowin SC. Bone Mechanics. Boca Raton: CRC Press; 1989.
    [60] Hoshaw, S.J., Brunski, J.B., Cochran, G.V.B., Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants. 1994, 9(6):345-360.
    [61] Bumgardner JD, Boring JG, Cooper RC Jr, et al. Preliminary evaluation ofa new dental implant design in canine models. Implant Dent. 2000, 9(3):252–260.
    [62]刘鸿文,陈瀚,吴士艳等.材料力学(上册).北京:人民教育出版社. 1979∶132-133.
    [63] Misch CE. Contemporary Implant Dentistry, 2nd ed. St. Louis: Mosby; 1999.
    [64] Misch CE, Bidez MW, Sharawy M.A bioengineered implant for a predeterminedbone cellular response to loadingforces. A literature review and case report. J Periodontol. 2001, 72(9):1276-1286.
    [65] Misch CE, Degidi M. Five-Year Prospective Study of Immediate/Early Loading of Fixed Prostheses in Completely Edentulous Jaws with a Bone Quality-Based Implant System. Clin Implant Dent Relat Res, 2003, 5(1):17-27.
    [66] Steigenga JT. The effect of implant thread geometry on strength of osseointegration and the bone implant contact, master’s thesis. Ann Arbor, Universi ty of Michigan, 2003.
    [67] Nikllis I,Levi A,Nicolopoulos C.Immediate loading of 190 endosseous dental Implants:a prospective observationalstudy of 40 patient treatments with up to 2-years date[J]. Int J Oral Maxillofac Implants,2004,19(1). 116-123.
    [68] Roberts WE, Smith RK, Zilberman Y, et al Osseous adaptation to continuous loading Of rigid endosseous implants [J].Am J Orthod,1984,86(2): 95-1l l.
    [69] Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003, 12(4):306-17.
    [70] Tanaka E, Hanaoka K, Tanaka M, et a1.Viscoelastic properties of bovine retrodiscal tissue under tensile stress—relaxation[J].Eur J 0ral,Sci.2003,111(6):518-522.
    [71] Yetkinler DN,Litsky AS.Viscoelastic behaviour of acrylic bone cements[J].Biomaterials,1998,19(17):1551-1559.
    [72]张彦,邓悦,赵俊.双螺纹设计对种植体稳定性的影响中华中西医杂志. 2006,7(22):2020-2023.
    [73] Kim WT, Cha YF, Oh SJ, et al. The three dimensional finite element analysis of stress according to implant thread design under the axial load. J Korean Assoc Oral Maxillofac Surg. 2001, 27(2): 3 - 8.
    [74]兰泽栋,林珠,李宁.支抗种植体外形影响骨界面应力分布的研究.实用口腔医学杂志200l,l7(3):246-248.
    [75]杨德圣,刘洪臣,董军,刘海亮.骨质量和种植体螺纹对种植稳定性影响的三维有限元分析.口腔颌面修复学杂志,2005,6(2):118-120
    [76] J. P. Geng, Q. S. Ma, W. Xu, K. B. C. Tan, G. Liu. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004; 31(3): 233-239.
    [77] S. Hansson, M. Werke. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomechanics. 2003, 36(9) :1247–1258.
    [78]刘萍主编.数值计算方法.北京:人民邮电出版社.2003:15- 45.
    [79]孙靖民主编.机械结构优化设计.哈尔滨:哈尔滨工业大学出版社. 2004:25-75.
    [80]詹友刚主编. Pro/ENGINEER中文野火版教程通用模块.北京:清华大学出版社.2003:1-15.
    [81]齐欢,王小平主编.系统建模与仿真.北京:清华大学出版社.2004:215-268.
    [82] Misch CE, Bidez MW, Sharawy M.A bioengineered implant for a predeterminedbone cellular response to loadingforces. A literature reviewand case report. J Periodontol. 2001, 72(9):1276-1286.
    [83] Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop. 1978, (135):192–217.
    [84] Borchers L, Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res. 1983, 62(2):155-159.
    [85] Chen J, Lu X, Paydar N, Akay HU, Roberts WE. Mechanical simulation of the human mandible with and without an endosseous implant. Med Eng Phys. 1994, 16(1):53–61.
    [86] Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res. 2004;15:239-48.
    [87]魏斌牙颌系统三维有限元建模方法的进展[J].口腔材料器械杂志, 2002,11(2):86-87.
    [88] Cochran DL. The scientific basis for clinical experiences with Straumann implants including the ITI dental implant system: A consensus report. Clin Oral Implant Res. 2000, 11(1):33–58.
    [89] Block CM, Tillmanns HW, Meffert RM. Histologic evaluation of the LaminOss osteocompressive dental screw: a pilot study. Compend Contin Educ Dent 1997, 18(7):676–685.
    [90] Hojjatie B, Anusavice KS. Three dimensional finite element analyses of glass ceramic dental crowns. J Biomechanics. 1990, 23(11):1157–1166.
    [91] Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124:373-8.
    [92] Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommendedplacement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17:109-14.
    [93] Garfinkle JS, Cunningham LL Jr, Beeman CS, Kluemper GT, Hicks EP, Kim MO. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents. Am J Orthod Dentofacial Orthop. 2008;133:642-53.
    [94] Dilek O, Tezulas E, Dincel M. Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008: 105: e20-e27.
    [95] Tseng YC, Hsieh CH, Chen CH, Shen YS, Huang IY, Chen CM. The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg. 2006;35:704-7.
    [96] Wilmes B, Ottenstreuer S, Su YY, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop. 2008;69:42-50.
    [97] Kong L, Sun Y, Hu K, Liu Y, Li D, Qiu Z, Liu B. Selections of the cylinder implant neck taper and implant end fillet for optimal biomechanical properties: a three-dimensional finite element analysis. J Biomech. 2008;41:1124-30.
    [98] Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res. 2005;16:480-5.
    [99] Motoyoshi M, Matsuoka M, Shimizu N. Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg. 2007;36:695-9.
    [100] Lee CY. Immediate load protocol for anterior maxilla with cortical bonefrom mandibular ramus. Implant Dent. 2006;15:153-9.
    [101] Kong L, Sun Y, Hu K, Liu Y, Li D, Qiu Z, Liu B. Selections of the cylinder implant neck taper and implant end fillet for optimal biomechanical properties: a three-dimensional finite element analysis. J Biomech. 2008;41:1124-30.
    [102]刘鸿文,陈瀚,吴士艳等.材料力学(上册).北京:人民教育出版社. 1979∶132-133.
    [103] Misch CE, Bidez MW, Sharawy M.A bioengineered implant for a predeterminedbone cellular response to loadingforces. A literature review and case report. J Periodontol. 2001, 72(9):1276-1286.
    [104] Misch CE, Degidi M. Five-Year Prospective Study of Immediate/Early Loading of Fixed Prostheses in Completely Edentulous Jaws with a Bone Quality-Based Implant System. Clin Implant Dent Relat Res, 2003, 5(1):17-27.
    [105] Steigenga JT. The effect of implant thread geometry on strength of osseointegration and the bone implant contact, master’s thesis. Ann Arbor, Universi ty of Michigan, 2003.
    [106] Sykaras N, Iacopino AM, Marker VA, et al. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000, 15(5):675–690.
    [107]吴子祥,雷伟,孙明林,崔庚,于良.膨胀式椎弓根螺钉脊柱后路内固定的生物力学测试.医用生物力学. 2004;19(2):98-102.
    [108]吴子祥,雷伟.膨胀式椎弓根螺钉抗旋出性能的生物力学测试.中国矫形外科杂志. 2004;12(9):695-697.
    [109]张新平,于思荣,何镇明.牙科用钛合金研究现状.稀有金属材料与工程. 2004; 33(12):1243-1247.
    [110] Winter W, Heckmann SM, Weber HP. A time-dependent healing function for immediate loaded implants. J Biomech 2004;37(12):1861-1867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700