基于GMI效应的弱磁传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨磁阻抗(Giant Magneto-impedance,简称GMI)效应是20世纪90年代在软磁材料领域发现的一个新的物理现象。利用GMI效应可开发高灵敏度、快速响应、低功耗的新型磁传感器,相比现在广泛应用的各种磁传感器,如磁通门传感器、霍尔传感器、巨磁电阻(GMR)传感器,巨磁阻抗传感器有着诸多无可比拟的优势。因此,GMI效应的物理机理、新材料、新工艺以及应用开发都已经成为该领域的研究热点,应用发展前景广阔。
     本文分析了非晶材料巨磁阻抗效应,非晶材料的处理方法和特性,以及影响巨磁阻抗(GMI)效应的因素。阐述了基于非晶带巨磁阻抗效应的传感器工作原理,设计并制作了基于非晶带巨磁阻抗效应的磁传感器,其中包括驱动信号电路、检波电路、放大滤波电路、负反馈电路和偏置电路,并通过OrCAD/PSpice对电路进行了验证和优化,完成了传感器的硬件设计。
     最后通过实验数据分析了基于非晶带巨磁阻抗效应磁传感器的工作特性,测试表明该传感器在一定磁场强度范围内线性度较好,灵敏度高,重复性好,可应用于各种微弱磁场检测领域。
Giant Magneto-Impedance (GMI) effect is a new phenomenon founded in the field of soft magnetic materials in the 1990s.The new type of magnetic sensor with high sensitivity, quick response and low power consumption, can be developed by GMI effect. Compared with the wide range of magnetic sensors, such as fluxgate sensors, Hall magnetic sensors, Giant Magneto-Resistive(GMR) sensors, Giant Magneto-Impedance has many obvious advantages. Due to the promising applications, the mechanism, the development of new materials and new technologies have attracted comparative research interest in the field of soft magnetic materials., GMI effect has even more enormous foreground of application.
     First this article aims to research fundamental theory of the GMI phenomena, the processing and characteristics of GMI materials, the factors that influenced on GMI effect. Then expatiates the sensor principle based on GMI. On the basis of GMI, the weak magnetic sensor is designed, which is composed of the excitation signal circuit, wave detection circuit, amplifier filter circuit, verified the circuit design, optimized the circuit parameters by circuit simulation software OrCAD/PSpice. The sensor circuit has been completed.
     Finally, a test has been completed on the characteristics of the magnetic sensor. The test turned out that the sensor has eminent properties such as excellent linearity and good repeatability, within a certain magnetic field. The sensor can be used in the weak magnetic measurement field including earth magnetic field and environmental magnetic field.
引文
[1]金惕若.空间磁场的测量.测控技术,2000
    [2]E.P.Harrison,GL.Turney,H.Rowc,Nature,1935,135:961-963.
    [3]K.Mohri,T.Kohzawa,K.Kawashima.IEEE Tran.Magn,1992,5(28):3150
    [4]Mohri K,Kawashima K,Kohzawa T.Magneto-inductive effect in amorphous wires.IEEE Trans Magn,1992 28(5):3150-3152
    [5]Panina L V,Mohri K,Bushida K.Giant Magneto-Impedance and Magneto-Inductive Effects in Amorphous alloys.J.AppPhys,1994,76(10):6198-6203
    [6]Inada K,Mohri K,Inuuzuka.Quick Response Large Current Senor Using Amorphous MI Resonant Multivibrator.IEEE Trans Magn,1994,30(6):4623-4625
    [7]董延峰,王治,丁燕红.天津理工学院学报,2002,18(4)
    [8]Takagi M,Kntoh M,Mohri K.Magnet Displacement Sensor Using MIElements for Eyelid Movement Sensing IEEE Trans Magn,1993,29(5):3340-3342
    [9]Mohri K,Kawashima,Kohsawa K.Magneto-Inductive Effect in Tension-Annealed Amorphous Wires and MI Sensor.IEEE Trans Magn,1993,19(6):3168-3170
    [10]Ripka P,Primdahl F,Nielsen O V.Magnetic-field measurement using the fluxgate.Sensors and Actuators A,1995,46-47,307-311
    [11]Huong Phan,Hua Xin Peng.Giant magnetoimpedance materials:Fundamentals and applications,Materials Science,2007.5
    [12]Byon K S,Yu S C,Kin J S.Magneto-impedance analyzed from the components of the permeability in annealed amorphous Fe_(83)Zr_7B_8Cu_2.IEEE Transaction on Magnetics.2000,36(51):3439-3441
    [13]Ludek Kraus.GMI modeling and material optimization Sensors and Actuators A 106(2003)187-194
    [14]库万军.纳米软磁合金薄带的巨磁阻抗效应,科学通报,28(1997)552
    [15]L.V.Panina,K.Mohri.Magneto-Impedance effect in amorphous wires,Appl.Phys.Lett,65(1994):1189-1191
    [16]A.Yelon,D.Menard,M.Britel,P.Ciureanu,Calculations of giant magneto impedance and of ferromagnetic resonance response are rigorously equivalent,Appl.Phys.Lett.69(1996)3084
    [17]Ciureanu P,Rudkowski P,Rudkowski.Giant magnetoimpedance effect in soft and ultrasoft magnetic fibers.Journal of Applied Physics.1996,79(8):5136-5138.
    [18]Menard D,Britel M,Ciureanu P.High frequency impedance spectra of soft amorphous fibers.Journal of Applied Physics.1997,81(8):4032-4034
    [19]Britel M R,Menard D,Melo L G.Magnetoimpedance measurements of ferromagnetic resonance and antiresonance.Applied Physics Letters.2000,77(17):2737
    [20]施方也,黄翩翩,林根金.驱动方式对玻璃包裹铁基纳米晶丝巨磁阻抗(GMI)效应的影响,浙江师范大学学报(自然科学版),29(3)
    [21]王宗篪.纵向驱动巨磁阻抗效应的解释.集美大学学报(自然科学版),2002,(70):66-69
    [22]张延忠.不同退火的纳米晶合金的结构和磁化率的温度关系.功能材料与器件学报,1997,3(3):153-161
    [23]曾桂仪,巴启先.退火温度对软磁合金微结构的影响,金属学报,1999,35(11):1178-1182
    [24]陈国钧.新一代软磁合金-超微晶合金的结构和磁学.金属材料研究,1991,17(4):17-27
    [25]杨晓红,郑金菊,任俊华.不同驱动方式下Fe基纳米晶丝的GMI研究,金华职业技术学报,6(6)
    [26]郭贻诚,铁磁学.人民教育出版社,1965,155
    [27]Matsumoto T,Ohnaka I,Inoue A,Hagiwara M.Scripta Metall 1981;15:293-306
    [28]Yoshizawa Y,Yamauchi K,Yamane T,Sugihara H.Appl.Phys,1988,64:6047Yoshizawa Oguma S,Yamauchi K.Appl.Phys,1988,64:6044
    [29]R.L.Sommer and C.L.Chien,Appl.Phys.Lett 67(1995)33-46
    [30]J.L.Costa-Kramer and K.V.Rao,IEEE Trans.Magn.,1995,31:1261
    [31]L.V.Panina,K.Mohri,K.Bu shida and M.Noda,J.Appl.Phys,1994,76:61-98
    [32]K.Kawashima,T.Kohzawa,H.Yoshida,K.Mohri.Magneto-inductive effect in tension-annealed amorphous wires and MI sensors,IEEE Trans.Magn,1993,29:3168-3170
    [33]F.Alves,R.Barrue.Anisotropy and domain patterns of flash stress-annealed soft amorphous and nanocrystalline alloys,J.Magn.Mater,2003,254-255:155-157
    [34]何峻,郭慧群.电流退火对铁基薄带巨磁阻抗效应的影响.物理学报,1999,48(增刊):159-163
    [35]高振,李德仁.脉冲电流退火对Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9合金薄带巨应力阻抗效应的影响.金属功能材料,2002,9(2):26-28
    [36]杨晓红,方允樟,郑金菊.脉冲频率对铁基纳米非晶丝的GMI影响研究,西华 大学学报,自然科学版,26(2)
    [37]赵湛,鲍丙豪.直流偏置电流对钴基非晶带环磁芯巨磁阻抗效应的影响 金属功能材料,12(5)
    [38]万副鼎,库万军,朱静.金属功能学报,4(1997)No2
    [39]稻叶保.振荡电路的设计与应用.科学出版社,2004
    [40]童诗白,华成英.模拟电子技术基础,高等教育出版社,2000
    [41]市川裕一,青木胜.高频电路设计与制作,科学出版社,2006.8
    [42]史军,刘永科.OrCAD/PSpice9在电子技术实验中的应用.中国科技信息,2005(23):21
    [43]李永平,董欣.PSpice电路设计实用教程,国防工业出版社,2004
    [44]张华,李君波.消除振铃现象的几种方法,舰船光学,40(2)
    [45]李朝辉.高速电路中的阻抗匹配与端接技术,微处理机,2007.6
    [46]李慧芳,郭庆新,居继龙.一种实用的阻抗匹配方法,中国传媒大学学报自然科学版,2007.3
    [47]申忠如,郭福田,丁晖.电气测量技术,科学出版社,2003
    [48]E.P.Harrison,G.L.Turney,H.Rowe,H.Gollop,Proc.Royal.Soc.157(1937)651
    [49]K.C.Mendes,F.L.A.Machado,L.G.Pereira.Giant Transversal Magneto -impedance and Hall Effect Measurements in Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9.Appl.Phys,79(1996):6555-6557
    [50]M.Knobel,M.L.Sanchez,C.Gomez-Polo.Giant magneto-impedanc effect in nanostructured magnetic wires,Appl.Phys,79(1996):1646-1654
    [51]M.Knobel,J.Shoenmaker,J.P.Sinnecker.Giant Magneto-Impedance in Nanocrystalline Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 and Fe_8Zr_7B_6Cu_1 Ribbons,Mater.Sci.Eng.A,26-228(1997):546-549
    [52]H.Q.Guo,H.Kromnuller,T.Dragon.Influence of Nano crystallization on the Evolution of Domain Patterns and the Magneto-impendence Effect in amorphous Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9.Appl.Phys,89(2001):514-520
    [53]R.Valenzuela,The analysis of magnetoimpedance by equivalent circuits.Magn.Magn.Mater,249(2002)300-304
    [54]Y.K.Kim,W.S.Cho,T.K.Kim,and C.O.Kim.Temperature dependence of magnetoimpedance effect in amorphous Co_(66)Fe_4Ni_8B_(14)Si_(15)ribbon.Appl.Phys,1998,vol.83(11)
    [55]G V.Kurlyandskaya.GMI sensitive element based on commercial Vitrovac amorphous ribbon.Sens.Actuators A,vol.110,pp.228-231,February 1,2004
    [56]朱蕴璞,孔德仁,王芳.传感器原理及应用,国防工业出版社,2005
    [57]赵英俊,杨克冲,杨叔子.非晶态合金传感器技术与应用,华中理工大学出版社,1998
    [58]西安无线电工业学校主编.电感器件,国防工业出版社,1961
    [59]周严.测控电路设计,南京理工大学出版社,2006
    [60]刘宝玲,胡春静.通信电子电路,北京邮电大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700