农杆菌介导的枣树遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枣树(Ziziphus jujuba Mill.)是我国原产重要果树。枣树由于花小、人工去雄难、坐果率低且胚败育现象严重,使得其杂交育种非常困难。枣疯病是由植原体引起致死性传染病害,几乎分布于国内外所有枣区,绝大多数枣树品种都对其敏感,已成为制约枣产业发展的严重障碍。随着生物技术的不断发展,基因工程已成为现代植物改良育种的有效手段。本研究旨在探索建立农杆菌介导的枣树遗传转化体系,并利用发根农杆菌提高枣树对枣疯病的抗性,为枣树遗传改良和枣疯病防治提供技术支撑。主要研究结果如下:
     1.建立了冬枣的花药再生体系。诱导花药愈伤的适宜培养基为1/2MS+1.0mg/L 2,4-D+20g/L麦芽糖+5.5g/L琼脂;花药愈伤的适宜增殖培养基为MS+0.4mg/L TDZ+0.1mg/L NAA +20g/L麦芽糖+5.5g/L琼脂;1.0mg/L TDZ和0.4mg/L NAA的组合是诱导冬枣花药愈伤出芽的适宜生长调节剂组合,诱导出芽率达100%,平均出芽数为3.9个/块;0.2mg/L BA、0.1mg/L IBA和1.5g/L PVA是玻璃苗恢复的适宜组合,玻璃苗恢复率为48.9%;在添加1.5mg/L IAA的生根培养基中,生根率最高(43.3%),根长最长(4.2cm)。
     2.首次建立了月光枣的花药再生体系。诱导花药愈伤的适宜培养基为1/2MS+1.0mg/L 2,4-D+20g/L麦芽糖+5.5g/L琼脂;月光花药愈伤的适宜增殖培养基为MS+0.6mg/L TDZ+0.1mg/L NAA+20g/L麦芽糖+5.5g/L琼脂。适宜月光愈伤分化出芽的培养基为:MS+5.5g/L琼脂+20g/L麦芽糖+0.8mg/L TDZ+4.0mg/L AgNO3。其诱导出芽率为100%,平均出芽数为10.4个/块;在培养基MS+5.5g/L琼脂+30g/L蔗糖+0.2mg/L BA+0.1mg/L IBA+1.5g/L PVA中玻璃苗可恢复成正常苗;添加2.0mg/L IBA的生根培养基中月光生根率最高;GA3的添加对于枣愈伤的生长和玻璃苗的恢复均为抑制作用。
     3.建立了根癌农杆菌介导的冬枣叶片遗传转化体系。适宜的遗传转化条件为:根癌农杆菌的OD600为0.8,侵染20min后,在共培养基MS+5.5g/L琼脂+20g/L麦芽糖+1.0mg/L TDZ+0.1mg/L IBA+200μM AS(pH5.8)中暗培养3d。首次将双抗虫基因(Bt基因和蛋白抑制剂基因API)转入冬枣中,得到了8个转基因株系。
     4.建立了冬枣叶片及冬枣疯组培苗的发根农杆菌介导的遗传转化体系。冬枣叶片诱导毛根的适宜条件是在菌液浓度OD600为0.8时侵染叶片20min,在共培养基1/2MS+4.0mg/L IBA+5.5g/L琼脂+30g/L蔗糖(pH5.8)中暗培养3-5d,然后转接入培养基1/2MS0+CRO100mg/L中,光照条件为光照/黑暗为14/10h。冬枣疯组培苗茎段诱导出毛根的适宜条件为:在菌液中添加50μM的AS预活化1~2h,OD600为0.8侵染5~10min,共培养5d,共培养基为MS+5.5g/L琼脂+20g/L蔗糖+100mg/L CRO,光照条件为光照/黑暗为14/10h。首次通过发根农杆菌侵染使冬枣疯组培苗转化为正常植株,得到了30个抗病性提高的转健苗株系。
Chinese jujube (Ziziphus jujuba Mill.) is an important native fruit tree of China. Conventional croos is very difficult in Chinese jujube for reasons of very low fruit-setting, very high embryo abortion as well as very small flower. With the development of biotechnology, genetic engineering has become an effective means for modern plant breeding improvement.This study is aimed at to establishing an Agrobacterium-mediated genetic transformation system and laying a foundation for genetic engineering in Chinese jujube. The main results of the study are as follows:
     1. An optimized regeneration system for anther wall of Z. Jujuba Mill.‘Dongzao’was established. The optimal medium for inducing callus from anther is 1/2MS+1.0mg/L 2,4-D+20g/L maltose+5.5g/L agar. The optimal medium of callus proliferation is MS+0.4mg/L TDZ+0.2mg/L NAA+20g/L maltose+5.5g/L agar. The combination of 1.0 mg/L TDZ and 0.4 mg/L NAA is the best one to shoots induction from callus with the highest shoot induction rate (100%) and a high number of shoots per callus (3.9). The combination of 0.2 mg/L BA, 0.1 mg/L IBA and 1.5 mg/L PVA promoted the highest rate of hyperhydric shoots restoration (48.9%).The highest rooting (43.3%), and highest root length (4.2 cm) was recorded at 1.5 mg /l IAA.
     2. A high efficient regeneration system using anther wall of Z. Jujuba Mill.‘Yueguang’was firstly established. The optimal medium for inducing callus for anther wall was 1/2MS+1.0mg/L 2,4-D+20g/L maltose+5.5g/L agar. The optimal medium of callus proliferation is MS+0.6mg/L TDZ+0.2mg/L NAA+20g/L maltose+5.5g/L agar. The optimal differentiation medium of callus was MS+5.5g/L agar+20g/L maltose+0.8mg/L TDZ+4.0mg/L AgNO3with the highest shoot induction response (100%) and highest number of shoots per callus (10.4). The combination of 0.2 mg/L BA, 0.1 mg/L IBA and 1.5 mg/L PVA promoted the highest rate of hyperhydric shoots restoration. The highest rooting (43.3%), and highest root length (4.2 cm) was recorded at 2.0 mg /L IBA. The addition of GA3 inhabited the growth of callus and hyperhydric shoots restoration.
     3.The genetic transgenic system of‘Dongzao’leaf mediated by Agrobacterium tumefacienswas investigated and the optimal conditions were determined as follows: bacterial concentration OD600 0.8, infection time 20 min, co-culture 3 days and the co-culture medium MS+20g/L maltose+5.5g/L agar+1.0mg/L TDZ+0.1mg/L IBA+200μΜAS.
     Two insect-resistant genes (Bt gene and protease inhibitor gene, API) were firstly into‘Dongzao’and . 8 transgenic lines have been obtained.
     4. The genetic transgenic system of Z. Jujuba Mill.‘Dongzao’and‘Dongzao’with witches’broom disease (JWB) mediated by Agrobacterium rhizogenes were firstly established. For‘Dongzao’leaf, the optimal conditions were determined as follows: bacterial concentration OD600 0.8, infection time 20 min, co-culture 3-5 days, the co-culture medium was 1/2MS+30g/L sugar+5.5g/L agar+4.0mg/L IBA and the medium of inducing hairy root was 1/2MS+30g/L sugar+5.5g/L agar+100mg/L CRO under a 14-h light and 10-h dark cycle. For stems of diseased‘Dongzao’, the optimal conditions were determined as follows: bacterial concentration OD600 0.8 with activation of 50μΜAS for 1-2h before infection, infection time 5-10 min, co-culture 5 days, the co-culture medium was MS+30g/L sugar+5.5g/L agar and the medium of inducing hairy root was MS+30g/L sugar+5.5g/L agar+100mg/L CRO under under a 14-h light and 10-h dark cycle. This is the first time to thansform Chinese jujube with JWB into healthy one via Agrobacterium rhizogenesinfection. 30 recovering plantlet lines have been obtained.
引文
[1]曲泽洲,王永惠.中国果树志枣卷[M].北京:中国林业出版社, 1993, 13-14.
    [2]陈贻全.中国枣树学概论[M].北京:中国科学技术出版社, 1991, 9-10.
    [3]刘中汉.经济林木栽培与利用[M].甘肃科技出版社, 1998, 397-404.
    [4]林伯年.果树组织培养研究综述[J].中国果树, 1978, (3-4): 19-27.
    [5]张福泉,王嘉长,李峰等.枣茎段离体培养初报[J].中国果树, 1983, (3): 46-47.
    [6]Oh SD, Ko JA. Effect of low temperature pretreztment and plant growth regulstors on anther differention and callus formation in vitro anther culture of Chinese jujube(Zizyphus jujuba Mill.) [C]. [韩国],全北大学校论文集(自然科学版), 1991, 33: 247-256.
    [7]王震星,杨恩芹.金丝小枣花药离体培养再生植株研究[J].河北果树, 1996(3) :9-10.
    [8]王震星,杨恩芹,刘贵仁,等.低温和激素处理对枣花药离体培养效果的影响[J].天津农业科学, 1995, 1(3): 9-10.
    [9]王震星,刘贵仁,杨恩芹,等.金丝小枣花药培养及染色体倍性的观察[J]落叶果树, 1996, (2) :26-28.
    [10]王震星,张磊.枣的花药离体培养及染色体倍性的观察[J].北方果树, 1998(2) :5-6,24.
    [11]王震星,张磊,刘玉芹.枣的花药离体培养和染色体倍性变异(简报)[J].植物生理学通讯, 1998, 34(3): 180-182.
    [12]武晓红.枣花药再生植株及单倍体的获得[D]. 2008,河北农业大学硕士学位论文.
    [13]王嘉长,张福泉,金芳.鸣山大枣继代培养适宜培养基的研究[J].甘肃农业大学学报, 1990 , 25(1).
    [14]陈正华.木本植物组织培养及其应用[M]北京:高等教育出版社,1986.
    [15]刘贵仁,严仁玲,王震星,等.金丝小枣茎段离体培养及胚培养的研究[J]华北农学报, 1988, 3(4): 116-119.
    [16]朱文勇,杜学梅,郭黄萍.影响枣试管苗分化的因素[J].植物生理学通讯. 1995, 31(4): 276-278.
    [17]陈宗礼,延志莲,齐龙.大枣组织培养中外植体预处理的研究[J].延安大学学报(自然科学版), 1994, 13(1): 66-69.
    [18]陈宗礼,延志莲,齐龙,等.狗头枣组培苗试管内生根的研究[J].延安大学学报(自然科学版),1996, 15(4): 40-45.
    [19]李云,土宇,田砚亭,等.枣树离体培养和脱除枣疯病原MLO技术研究进展[J].核农学报, 2002, 16(6): 360-365.
    [20]孙浩元,田砚亭.桐柏大枣组织培养快速繁殖技术研究[J].河北林果研究, 2000, 15(2): 147-152.
    [21]王志,孟庆国,杜增良,等.无核枣的组织培养和快速繁育[J].上海农业学报, 2002, 18(2): 15-18.
    [22]王玉珍.冬枣茎尖离体培养成苗[J].植物生理学通讯, 1996, 32(1): 26-27.
    [23]延志莲,陈宗礼,薛皓,等.大木枣体眠枝水培芽及其离体培养芽诱导的研究[J].延安大学学报(自然科学版), 2000, 19(1) :66-71.
    [24]王玉英.金丝小枣体眠芽培养成苗[J].植物杂志, 1986, 5: 42-43.
    [25]伍成厚,何业华,谢碧霞,等.鸡蛋枣的组织培养与快速繁殖技术[J].吉首大学学报, 2004, 25 (1): 26-28.
    [26]伍成厚,何业华,谢碧霞,等.梨枣组织培养的研究[J].经济林研究,2004, 22(2) :17-19.
    [27]王国平,李晓梅,陈秋芳.枣不定芽再生体系的研究[J].中国农学通讯, 2006, 22(4) : 281-283.
    [28]胡影,崔建国,施满,等.枣叶片愈伤组织的诱导和器官分化[J].甘肃林业科技, 1993, 18(4): 18-19, 28.
    [29]陈宗礼,延志莲,齐龙.枣叶片离体培养再生植株[J].植物生理学通讯, 1996(1) :27-28.
    [30]陈宗礼,延志莲,薛皓,等.沾化冬枣叶片培养和植株再生[J].植物生理学通讯, 2002, 38(6): 584.
    [31]何振艳,王玉国,石武良,等.山西特有品种梨枣叶片的组织培养及植株再生[J].植物生理通讯, 2002, 38(5): 457.
    [32]伍成厚,何业华,谢碧霞.枣树愈伤组织继代培养的研究[J].临沂师范学院学报, 2004, 26(3): 59-61.
    [33]何业华,熊细满,谢碧霞,等.枣树组织培养愈伤组织诱导的研究[J].中南林学院学报, 1997, 17(1): 13-18.
    [34]马均.枣胚轴组织培养的初步研究[J].林业科技. 2001, 26: 55-57.
    [35]段乃彬,王永清.枣树胚离体培养的研究[J].四川林业科技. 2002, 23 (2): 42-45.
    [36]祁业凤,刘孟军.枣的胚败育及幼胚培养研究[J].园艺学报, 2004, 31(1): 78-80.
    [37]杜学梅,李登科,王永康.枣胚培养技术体系的建立[J].园艺学报, 2005, 32(3): 496-499.
    [38]石荫坪,耿如霞,白瑞云,等.枣胚乳三倍体的育成及生物学细胞学研究[J].山东果树, 1985, (1): 241-245.
    [39]何业华,胡芳名,谢碧霞,等.枣树原生质体培养及其植株再生[J].中南林学院学报, 1999, 19(3): 29-31,47.
    [40]何业华,胡芳名,谢碧霞,等.经济林木离体培养研究进展[J].中南林学院学报, 2000, 19(1) : 20-23.
    [41]赵维峰.枣树原生质体分离及电融合的研究[D].海南:华南热带农业大学. 2005.
    [42]谢从华,柳俊.植物细胞工程[M].高等教育出版社. 2004.
    [43]程佑发,王勋陵.枣树体细胞胚发生和组织学研究[J].西北植物学报. 2001, 21(1) :142-145.
    [44]李登科,杜学梅,王永康.六月鲜枣愈伤组织诱导及胚状体发生[J].果树学报. 2004, 21(5): 414-418.
    [45]王娜.枣体细胞胚胎发生及倍性种质创新[D].河北农业大学, 2007.
    [46]Fraley RT,Rogers 5C,Horsch RB et al. Expression of bacterial genes in plant cells. Proc.Nall. Acad. Sci,1983, 80:4803-4807.
    [47]Bevan MW,Flavell RB,Chilton MD. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature. 1983. 304:184-187.
    [48]McGranahan GH, Leslie CA, Uratsu S, et al. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants[J]. Biotechnoolgy, 1988, 6: 800-804.
    [49]杨莉,徐昌杰,陈昆松.果树转基因研究进展与产业化展望[J].果树学报,2003, 20 (5): 331-337.
    [50]杨宁,杨红,杨颖丽,等.核果类果树组织培养及遗传转化的研究进展[J].西北师范人学学报(自然科学版), 2005, 41(1): 94-100.
    [51]王关林,方宏绮.果树基因工程研究进展和展望[J].中国果树, 2002, (3): 43-49.
    [52]曾黎辉,吕柳新.木本果树遗传转化研究进展[J].果树学报, 2002, 19 (3) :191-198.
    [53] Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring gene into plants[J]. Science, 1985, 227: 1229-1231.
    [54]Norelli JL, Aldwinckle HS, Deslefano BL, et al. Transgenic `Malling 26’apple expressing the attacin E gene has increased resistance to Erwinia amylovora [J]. Euphytica, 1994, 77:123-128.
    [55]Yao JL, Cohen D, Atkinson R, et al. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala[J]. Plant Cell Reports, 1995, 14:407-412.
    [56]师效欣,王斌,杜国强,等.根癌农杆菌介导或豆胰蛋白酶抑制剂基因转入苹果土栽品种[J].园艺学报, 2000, 27 (4) : 282-284.
    [57]刘庆忠,赵红军.培育苹果转基因植株的研究[J].落叶果树,2001 (1): 5-9.
    [58]Moore GA, Tang AGF, Facciotti D. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants[J]. Plant Cell Reports, 1992, 11: 238-242.
    [59]陈善春,张进仁,黄自然等.抗菌肽基因介导的柑橘抗溃疡病基因工程研究[J].中国农业科学, 1997, 30 (3): 7-13.
    [60]Nakamura Y, Sawada H, Kobayashi S, et al. Expression of soybean h-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants[J]. Plant Cell Reports, 1999, 18:527-532.
    [61]Yazawa M, Suginuma C, Ichikawa K, et al. Regeneration of transgenic plants from hairy root of kiwi induced by Agrobacterlum rhizogenes[J].Japn J Breeding, 1995, 45 (2): 241-244.
    [62]Tao R等.采用苏云金芽抱杆菌的cryIA (c)基因使柿子具有遗传工程抗虫性[J].生物技术通报, 1998, 3: 55.
    [63]张志宏,吴禄平.草萄主栽品种Tudla遗传转化体系的建立[J].农业生物技术学报,1997, 5(3): 305-307.
    [64]McGranahan GH, Leslie CA, Uratsu S, et al. Improved efficiency of the walnut somatic embryo gene transfer system[J]. Plant Cell Reports, 1990, 8: 512-516.
    [65]Deng MD, Cornu D, Zay-Allemand C. Genetic transformation of walnut somatic embryos to study in vitro rhizogenesis[J]. Plant Phtsiol, 1991, 96: 153.
    [66]汤浩茹,Wallbraun M,任正隆等.通过农杆菌介导法将哈兹木酶ThEn-42基因导入核桃[J].园艺学报,2001, 28(1): 12-18.
    [67]方宏筠,王关林.黑核桃体细胞胚状体发生及其基因转化系统的建立[J] .园艺学报,2000, 27(6): 406-412.
    [68]Fitch MMM, Manshardt RM, Gonsalve D. Transgenic papaya plants from Agrobacterium-mediatedtransformation of somatic embryo[J]. Plant Cell Reports, 1993, 12: 245-249.
    [69]周鹏,郑学勤. PRSV-CP转基因番木瓜表达与抗病能力关系的研究[J].热带作物学报,1996, 17(2): 77-83.
    [70]Lambert C, Tepfer D. Use of Agrobacterium rhizogenes to creat transgenic apple trees having an altered organogenic response to hormones[J].Theor Appl Genet, 1992, 85: 105-109.
    [71]曾黎辉,陈振光,吕柳新.发根农杆菌转化龙眼研究初报[J] .福建农林大学学报,2000, 29 (1): 27-30.
    [72]李卫,陈亮,蔡得田等.柑橘基因转化新方法的研究[J].植物学报, 1997, 39 (8 ): 782-784.
    [73]洪勇,何永睿,陈善春等.柑橘栽培品种高效基因转化新技术研究[J].热带作物学报,2000, 21(2): 37-41.
    [74]Klein TM, Wolf ED, Wu R, et al. High-velocity microprojectile for delivery nucleic acids into living cell[J]. Nature, 1987, 327: 70-73.
    [75]Sanford JC, Klein TM, Wolf ED. Delivery of substances into cells and tissues using a particle bombardment process[J]. J Part Sci Technol, 1987,5: 27-37.
    [76]Fitch MMM, Manshardt RM, Gonsalve D, et al. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ring spot virus[J]. Biotechnoolgy, 1992, 10: 1466-1472.
    [77]Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method[J]. Plant Cell Reports, 1995, 15:1-7.
    [78]Serres R, Stang E. Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants [J]. J Am Soc Hort Sci,1992, 117 (1): 174-180.
    [79]Ye XJ, Susan KB. Genetic transformation of peach tissues by particle bombardment [J]. J Amer Soc Hort Sci, 1994, 119(2): 367-373.
    [80]樊军锋,李嘉瑞,韩一凡等. mt1D/gutD双价耐盐基因转化秦美猕猴桃的研究[J].西北农林科技大学学报(自然科学版),2002, 30(3):53-58.
    [81]Sagi L, Panis B, Remy S, et al. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment [J]. Biotechnoolgy, 1995, 13: 481-485.
    [82]徐立新,何雪梅.用基因枪法将gus基因导入香蕉细胞[J].海南大学学报, 1994, 12(4): 308-310.
    [83]周维燕.植物细胞工程原理与技术[M].北京:中国农业大学出版社, 2001.
    [84]Hansen G, Chilton MD.“Agrolistic”transformation of plant cells, integration of T-strands generated in planta [J]. Proc Natl Arad Sri USA, 1996, 93:14978-14983.
    [85]Scorza R, Cordts JM, Gray DJ, et al. Producing transgenic Thompson Seedless' grape plant[J]. J Am Soc Hort Sci, 1991, 21(4): 616-619.
    [86]Vardi A, Beichman S, Aviv D. Genetic transformation of protoplasts and regeneration of transgenic plants [J]. Plant Science, 1990, 69:199-206.
    [87]Lee J. Transformation of `Nova tangelo' and‘Rohde Red Valencia' sweet orange with the coatprotein gene of citrus tristeza closterovirus[J]. Dissertation Abstracts International, 1998, 58(7): 3395.
    [88]Schell JL.用柑橘速衰纺锤病毒(CTV)外被蛋白基因转化nova橘柚[J].生物技术通报,1996, 2: 87.
    [89]Oliveira MM, Miguel CM, Requel MH. Transformation studied in woody fruit species[J]. Plant Tissue Culture and Biotechnology, 1996, 2(2): 76-93.
    [90]赵慧,宋桂英.将菜豆几丁酶基因导入苹果砧木的研究[J].激光生物学报, 1998, 7(3): 163-167.
    [91]Soloki M, Alderson P G, Tucker G. Genetic transformation of grapeusing Agrobacterium, biolistics and silicon carbide. In: Davey M R, Alderson P G, Lowe K C, et al eds. Tree biotechnology[M]. Nottingham: Nottingham University Press, 1998. 325-330.
    [92]Griesbach R T. A method for transforming whole plants via the eletrophoreses of shoot tips[J]. HortScience, 1995, 30(4):788.
    [93]Liu Q, Salish S, Hammerschlag F A. Etiolation of 'Royal Gala' apple (Malus×Domestica Borkh.) shoots promotes high frequency shoot organogenesis and enhancedβ-glucuronidase expression from stem internodes[J]. Plant Cell Report, 1998, 18: 32-36.
    [94]程家胜.苹果基因转移技术研究初报[J].园艺学报, 1992, 19 (2): 101-104.
    [95]方宏筠,王关林,王火旭,等.抗菌肤基因转化樱桃矮化砧木获得抗根瘤病的转基因植株[J].植物学报, 1999, 41(11): 1192-1198.
    [96]孟辉.沾化冬枣基因工程改良的基础研究.山东大学, 2005.
    [97]张志宏,方宏筠,景士西,等.苹果主栽品种高效遗传转化系统的建立及影响因子的研究[J].遗传学报, 1998, 25 (2): 160-165.
    [98]秦玲,李嘉瑞,李明,等.影响苹果离体叶片早期转化效率因素的研究[J].西北植物学报, 2004, 24(1): 25-30.
    [99]Weiser J. Impact of Bacillus thuringiensis on applied entomology in eastern Europe and in the Soviet Union. In Miteilungen aus der Biologischen Bundesanstalt fur Land-Und Forstwirtschsft Berlin-Dahlem (Eds. A. Krieg and A.M. Huger), Heft, 1986, 233, 9937-50, Paul Parey, Berlin.
    [100]Hannay C. L. Crystalline inclusions in aerobic spore-forming bacteria .Nature. 1953, 172: 1004.
    [101]Hannay C. L. and Fitz-James P. The protein crystals of Berliner. Can. J. Microbiol. 1955, 1: 674-710.
    [102]Norris J.R. The protein crystal toxai of Bacillus thuningiensis: biosynthesis and physical structure. In Microbial Control of Insects aced Mites (Eds. H. D. Burges and N. W. Hussey), 1971, 229-246, Academic Press, London.
    [103]Coolcsey K. E. The protein crystal toxin of Bacillus thuringiensis: Biochemistry and mode of action. In Microbial Control of Insects and Mites (Eds.H.D.Burges and N.W. Hussey), 1971, 247-274, Academic Prers. London.
    [104]Fast P. G. The crystal toxin of Bacillus throeingieruis. In Microbial Control of Pests and Plant Dieases (Eds.H.D.Burges), Academic Press, London, 1981, 221-248.
    [105]Von Tersch M. A., Slatin S. L., Kulesza C. A. ,et a1. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin Cry IIIBz and Cry III Bz domain I peptide. App. Environ. Microbiol, 1994, 60: 3711-3717.
    [106]Wu S. J. and Dean D. H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIAδ-endotoxin. J. Mo1. Biol., 1996, 255: 628-640.
    [107]Li J., Carroll J. and Ellar D.J. Crystal structure of insecticidolδ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353: 815 -821.
    [108]Bosch D., Schipper B., Vander, Kleij H., et al. Recombinant proteins with new properties: possibilities for resistance management. Bio/Technology, 1994, 12: 915-918.
    [109]Chen X. J., Lee M. K. and Dean D. H. Site-directed mutations in a highly conserved region of Bacillus thuringiensisδ-endotoxin affect inhibition of short circuit current across Bombyx mori midgets. Proc. Natl. Acad. Sci. USA, 1993, 90: 9041-9045.
    [110]Aronson A. L, Wu D. and Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene.J. Bacteriol, 1995, 177: 4059-4065.
    [111]Manthanvan S., Sudha P. M. and Pechimuthu S. M. Effect of Bacillus thuringiensis on the midgut cells of Bombyx mori larvae: a histopathological and histochemical study. J. Inver. Pathol., 1989, 53: 217-227.
    [112]Koziel M. G., Beland G. L., Bowman C. ,et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 1993, 11:194-200.
    [113]Bravo A., Hendricloc K., Jansens S., et al. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J. Invert. Pathol., 1992, 60: 247-253.
    [114]Gill S. S., Cowles E. A. and Piettantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol., 1992, 37: 615-636.
    [115]Schnepf H.E. and Whiteley H.R.1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc.Natl.Acad.Sci. USA, T8: 2893-2897.
    [116]王关林,方宏筠.植物基因工程原理与技术[M],科学出版社, 1998, 323-329.
    [117]Barton K. A., Whiteley H. R. and Yang N. S. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidoptern insects. Plant Physiol., 1987, 85: 1103-1109.
    [118]Fischhoff D. A., Bowdish K. S., Perlak F. J., et al. Insect tolerant transgenic tomato plants. Biohechnology, 1987, 5: 807-813.
    [119]Hilder V. A., Gatehouse A. M. R., Sheerman S. E., et al. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 300: 160-163.
    [120]Vaeck M., Reynaerts A., Hofte H., et al. Transgenic Plants protected from insect attack . Nature. 1987, 328: 33-37.
    [121]Delannay X., B. J. Lavallee, R. K. Prolcsch, et al. Field performance of transgenic tomato plantsexpressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology, 1989, 7: 1265-1269.
    [122]Perlak F. J., Deaton R. W., Armstrong T. A., et al. Insect resistant cotton plants. Bio/Technology, 1990, 8: 939-943.
    [123]Murray E. E., Rochleau T. R., Eberle M., et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol., 1991, 16: 1035-1060.
    [124]Perlak F. J., Fuchs R. L., Dean D. A., et a1. Modification of the coding sequence enhances plant expressing of insect control protein genes. Proc. Natl. Acad. Sci., USA, 1991, 88: 3324-3328.
    [125]Perlak F. J., Stone T.B., Muskoof Y. M., et al. Genetically improved by Colorado potato: proection from damage beetles. Plant Mol. Biol., 1993, 22: 313-321.
    [126]Adang M. J., Merlo D. J. and Murry E. E. Sythetic gene for Bacillus thuringiensis insecticidal protein-designed agaist insect pests. A01N063/00, Patent No. EP6882115, 1995.
    [127]Bosch H. J., and Stiekema W. J. New Bacillus thuringiensis hybrid toxin fragment (hybrid toxins, recombinant DNA, vectors, transformed plants and microorganisms) for insect. A01H005/00, Paten. No. W09506730, 1995.
    [128]Stewart C. N., Adang M. J., All J. N., et al. Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol., 1996, 112: 121-129.
    [129]Iannacone R., Grieco P. D. and Cellini F. Specific sequence modification of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol. Biol., 1997, 34: 485-496.
    [130]Peferoen M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnology, 1997, 15: 173-177.
    [131]Magbool S. B., Husana T., Riazuddin S., et al. Effective control of yellow stem borer and rice leaf folder in transgenic rice India varieties Basmati 370 and M7 using the novelδ-endotoxin cry2A Bacillus thuringiensis gene. Mol. Breed., 1998, 4: 501-507.
    [132]Schuler T. H., Poppy G. Y., Kerry B. R., et al. Insect-resistant transgenic plants. Trends in Biotechnology, 1998, 16: 168-175.
    [133]Meyer P. Understanting and controlling transgene expression. Trends in Biotechnology, 1995, 13: 332-337.
    [134]Taylor C. B. Comprehending cosuppression. The Plant Cell, 1997, 9: 1245-1249.
    [135]Allen G. C., Hall G. E., Childs L. C., et al. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell, 1993, 5: 603-613.
    [136]McBride K. E., Svab Z., Schaaf D. J., et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technol, 1995, 13: 362-365.
    [137]Hilbeck A., Baumgartner M., Fried P. M., et al. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea(Neuroptera:Chrysopidae). Environmental Entomology, 1998, 27(2): 481-487.
    [138]Losey J. E., Rayor L. S. and Carter M. E. Transgenic pollen harms monarch larvae. Nature, 1999, 399: 214.
    [139]Shi Y., Wang M. B., Powell K. S., et al. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J. Exp. Biol., 1994, 45: 623-631.
    [140]Pierpoint W. S. and Shewry P. R. (eds). Genetic engineering of crop plants for resistance to pests and diseases. British crop protection council, 1996, pp: 8-15.
    [141]Peferoen M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnology, 1997, 15: 173-177.
    [142]Fred S. B., Bruce G. H. and Roy C. F. Safety and Advantages of Bacillus thuringiensis-Protected Plants to Control Insect Pests. Regulatory Toxicology and Pharmacology, 2000, 32: 156-173.
    [143]McNabb H. S. A field trial of transgenic hybrid poplar trees: establishment and growth through the second season[J]. Agroculture Resarch Institute, 1991, 9: 155-159.
    [144]Klopeensten NB, Shi NQ, Keman A. Transgenic Populus hybrid express a wound-inducible potato proteinase inhibitor II-CAT fusion[J].Can. J.forestry. Res, 1991, 21:1321-1328.
    [145]Klopeensten NB, Mcnabb J, Hart E. Transformation of Populus hybrids to study and improve pest resistance[J]. Silvae Genetica, 1993, 42(2-3): 86-90.
    [146]郝贵霞,朱祯,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报, 1999, 41(12): 1276-1282.
    [147]田颖川,郑均宝,虞红梅等.转双抗虫基因杂种741毛白杨的研究[J].植物学报2000, 42(3): 263-268.
    [148]郑均宝,梁海永,田颖川,等.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学, 2000, 36(2): 55-62.
    [149]Chilton M D, et al. DNA from Agrabacterium rhizogenes inserts T-DNA into the genome of host plant root cell[J]. Nature, 1982, 295: 432-434.
    [150]Willmitzer L, et al. DNA from Agrabacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue[J]. Molecular and General Genetics, 1982, 186: 16-22.
    [151]Kiyokawa S, Kuchi Y K, Kamada H. Genetic transformation of Bgonia tuberhybrida by Ri rol genes[J]. Plant Cell Rep, 1996, 15: 606-609.
    [152]White F F, Taylor B H, Huffman G A, Gordon M P, Nester E W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrabacterium rhizogenes[J]. Bacterio, 1985, 164: 33-34.
    [153]梁机,陈晓阳,林善枝,等.发根农杆菌Ri质粒rol基因研究进展及在林木改良上的应用[J].植物学通报, 2002, 19(6): 650-658.
    [154]周达锋,卜学贤,陈维伦.发根农杆菌Ri质粒的分子生物学及其应用前景[J].植物学通报, 1993, 10(2): 24-34.
    [155]Wysokinska H and Chimel A. Transformed root cultures for Biotechnology[J].Acta Biotecnologica.1997, 17(2): 131-137.
    [156]刘伟华. Ri质粒诱导的植物发根培养系及其应用[J].生命科学, 1997, 9(2): 90-95.
    [157]李用芳,周延清.发根农杆菌及其应用[J].生物学杂志, 2007, 17(6): 29-31.
    [158]Strobel GA, Nachmias A. Agrobacterium rhizogenes promoters the initial growth of bare root stock almond[J]. J Gen Microbiol, 1985, 131: 1245-1249.
    [159]Strobel GA, Nachmias A, Hess WM. Improvements in the growth of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes[J]. Can J Bot, 1988, 66: 2581-2585.
    [160]郑均宝,王峰,刘群录.毛白杨转基因植株的研究[J].林业科学, 1995, 31(2): 181-184.
    [161]Christey M C. Use of Ri-mediated transformation for production of transgenic plants[J]. In Vitro Cell Dev Biol-Plant, 2001, 37: 687-700.
    [162]Mcafee B J, White E E, Pelcher L E, Lapp M S. Root induction in pine (Pinus) and larch (larix) spp. using Agrobacterium rhizogenes[J]. Plant Cell Tiss Org Cult, 1993, 34: 53-62.
    [163]Tzfira T, Vainstein A, Altman A. Rol-gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth an improved stem production index[J]. Trees, 1999, 14: 49-54.
    [164]Bell R L, Scorza R, Srinivasan C Webb K. Transformation of Beurre Bosc pear with the rolC genes[J]. J Amer Soc Hort Sci, 1999, 124(6): 570-574.
    [165]Tuominen H, Puech L, Regan S, et al. Cambial-region-specific expression of the Agrobacterium iaa genes in transgenic aspen visualized by a linked uidA reporter gene[J]. Plant Physiol, 2000, 123: 531-541.
    [166]Pellegrineschi A, Damon J P, Valtorta N, et al. Improvement of ornamental characters and fragrance production in lemon-scented geran ium through genetic transformation by Agrabacterium rhizogenes[J]. Bio/tech, 1994, 12: 64-68.
    [167]Giovannini A, Zottini M, Morreale G, et al. Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell Dev Biol-Plant, 1999, 35: 70-75.
    [168]Kiyokawa S, Kuchi Y K, Kamada H. Genetic transformation of Bgonia tuberhybrida by Ri rol genes[J]. Plant Cell Rep, 1996, 15: 606-609.
    [169]卜学贤,等. Ri质粒转化毛白杨的研究[J].植物学报, 1991, 33(3) 206-213.
    [170]孙敏,汤绍虎,杨兰英,等.转化毛状根获得罗芙木生物碱的研究[J].生物工程学报, 1993, 9(3): 287-290.
    [171]徐香玲. Ri质粒转化番茄的初步研究[J].生物技术, 1993, 3(1): 20-24.
    [172]刘伟华,姜静,王毅,等.Ri质粒转化桔梗再生植株的研究[J].生物技术,1994,4(2):24-29.
    [173]黄菊辉,周长久,秦凤琴,等.发根农杆菌的Ri T-DNA对茎用芥菜的遗传转化[J].植物学报, 1994, 32(12): 911-917.
    [174]施和平,李玲,潘瑞炽.极性和NAA浓度对发根农杆菌遗传转化黄瓜子叶的影响[J].热带亚热带植物学报, 1997, 5(3): 43-47.
    [175]刘春朝,王玉春,欧阳藩,等.青蒿毛状根合成青蒿素的培养条件研究[J].植物学报, 1998, 40(9): 831-835.
    [176]张荫麟.农杆菌转化后丹参植株再生[J].中国中药杂志, 1997, 22(5): 274-275.
    [177]王冲之,丁家宜. Ri质粒转化西洋参的研究I.西洋参毛状根培养系统的建立及鉴定[J].药用生物技术, 1999, 6(2): 80-84.
    [178]何玉科.发根农杆菌对甘蓝型油菜遗传转化[J].西北农业大学学报, 1989, 131: 1-8.
    [179]龚玉莲,施和平,李玲,等.少花龙葵毛状根的诱导和次生代谢物的产生[J].热带亚热带植物报, 2002, 10(1): 58-62.
    [180]杜旻,向德军,丁家宜,等.甘草毛状根培养系统的建立及化学成分分析[J].植物资源与环境报, 2001, 10(1): 7-10.
    [181]常振战,果德安,郑俊华,等.用生物反应器培养决明发根合成游离葱醒化合物[J].北京医科大学学报, 2000, 32(2): 142-144.
    [182]王振华,杜勤,刘浩,等.何首乌毛状根培养及大黄酚含量测定[J].中草药, 2001, 32(8): 695-696.
    [183]黄遵锡,等.云南植物研究, 1997, 19(3): 292-296.
    [184]Yoshikawa T, Furuga T. Plant Cell Report, 1987, 6(6): 449-453.
    [185]邱德有,朱微,朱至清.利用括楼发根生产天花粉蛋白的研究[J].植物学报, 1996, 38(6): 439-443.
    [186]Flores HE, et al. Plant physiol, 1993, 101: 363-371.
    [187]刘军,彭菲. Ri质粒介导药用植物的研究进展[J].湖南中医学院学报, 2004, 24(3): 61-64.
    [188]金红.枣疯病丛枝症状形成的生理病理学基础[D].北京:中国农业科学院植物保护研究所,1990.
    [189]周俊义,刘孟军,侯宝林.枣疯病研究进展[J].果树科学, 1998, 15(4): 354-359.
    [190]田国忠,朱永芳,张成良.植原体分类和鉴定新动向[M].植物病理学研究,北京:中国农业出片社, 1997, 9-13.
    [191]陈子文,陈永营,陈泽安.枣疯病研究的进展[J].南京农业大学学报, 1991, 14(4): 49-55.
    [192]徐绍华.枣疯病病枝超薄切片中类菌原体的电镜观察[J].微生物学报, 1991, 20(2): 219-220.
    [193]陈作义,沈菊英,龚祖,等.枣疯病病原的电子显微镜研究[J].科学通报, 1978, (12): 751.
    [194]王秀伶,刘孟军,刘丽娟.荧光显微技术在枣疯病病原鉴定中的作用[J].河北农业大学学报, 1999, 22(4): 46-49.
    [195]韩国安,郭永红,陈永置.用单克隆抗体检测枣疯病类菌原体[J].南京农业大学学报, 1990, 13(1): 123.
    [196]陈子文,张风舞, tian旭东,等.枣疯病传病途径的研究[J].植物病理学报, 1984, 14(3): 141-146.
    [197]La Y. J., Woo K. S. Transmission of jujube witches's-broom mycoplasma by the leafhopper(Hishimonus sellatus Uhler)[J]. J Korean For Soc, 1980, 48: 29-39.
    [198]王焯.枣疯病几个有关问题[J].落叶果树, 1995, (4): 8-10.
    [199]莽克强,李德葆,王小凤,等.枣疯叶内游离氨基酸纸层析的研究[J].微生物学报, 1974, 14(2): 224-229.
    [200]Kim Y H. Variation of phenolic substances in the leaves of jujube tree (Zizyphus jujuba Miller var. inermis Rehder) infected with witches'-broom diaease(1)[C].韩国全北大学校农大论文集, 1973,4: 24-29.
    [201]赵锦.枣疯病病原分布消长规律及其病害生理研究[D].保定:河北农业大学, 2003.
    [202]任国兰,郑铁民,陈功友,等.枣疯病发病因子和防治技术研究[J].河南农业大学学报, 1993, 27(1): 67-70.
    [203]尔吉辉.枣疯病的发生及综合防治技术[J].河北林果研究, 2000, 15(1): 61-64.
    [204]焦荣斌,李亚.太行山区枣疯病发生规律及防治对策[J].中国果树, 2001, (6): 40-41.
    [205]田国忠.枣疯病的预防和治疗策略研究[J].林业科技通讯, 1998(2): 14-17.
    [206]潘青华.枣疯病研究进展及防治措施[J].北京农业科学, 2002, (3): 4-8.
    [207]王焯,刘秀芳,周佩珍,等.枣疯病综合防治技术研究[J].中国果树, 1988, (2): 40-41.
    [208]江顺庆,吕明,江向勇.枣疯病综合防治技术[J].江西园艺, 2002,(2): 24-25.
    [209]侯保林,齐秋锁,赵善香,等.手术治疗枣疯病的初步探索[J].河北农业大学学报, 1987, 10(4): 11-17.
    [210]王焯,于保文,德全,等.四环素族等药物对枣疯病的初步治疗试验[J].中国农业科学, 1980, (4): 65-69.
    [211]王焯,周佩珍,于保文,等.枣疯病媒介昆虫-中华拟菱纹叶蝉生物学防治的研究[J].植物保护学报, 1984, 11(4): 247-252.
    [212]田旭东,张风舞,孙淑梅.凹缘菱纹叶蝉的越冬习性与传播枣疯病的关系[J].植物病理学报, 1988, 18(2): 103-106.
    [213]田砚亭,王红艳,牛晨,等.枣树脱除类菌原体技术的研究[J].北京林业大学学报, 1993, 15(2): 16-26.
    [214]戴洪义,沈德绪,林佰年.枣疯病热处理脱毒的初步研究[J].落叶果树, 1988, (10): 1-2.
    [215]朱文勇,杜学海,郭黄萍,等.骏枣茎尖培养脱除枣疯病MLO[J].园艺学报, 1996, 23(2): 197-198.
    [216]孙朝晖,温秀军,孙士学.枣疯病研究现状[J].河北林业科技, 1998, (2) :50-54.
    [217]温秀军,孙朝晖,孙士学,等.抗枣疯病枣树的品种及品系的选择[J].林业科学, 2001, 17(5): 87-92.
    [218]Babaoglu M, Yorgancilar M; TDZ-specific plant regeneration in salad burnet.. Plant Cell Tiss. Org. Cult. 2000, 440: 31-34.
    [219]Malik AK, Saxena PK. Thidiazuron induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol. 1992, 19: 731-40.
    [220]Chin-Yi LU. The use of thidiazuron in tissue culture. In Vitro Cell. Dev. Biol. 1993, 29: 92-96.
    [221]Hosokawa K, Nakano M, Oikawa Y & Yamamura S. Adventitious shoot regeneration from leaf, stem and root explants of commercial cultivars of Gentiana. Plant Cell Rep. 1998, 15(8): 578-581.
    [222]Faure O, Diemer F, Moja S & Jullien F. Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell Tiss. Org. Cult. 1998, 52: 209-212.
    [223]Magioli C, Rocha APM, de Oliveira DE & Mansur E. Efficient shoot regeneration of eggplant(Solanum melongena L.) induced by tihidiazuron. Plant Cell Rep. 1998, 17(8): 661-663.
    [224]Khan MMA, Hassan L, Ahmad SD, Shah AH, Batool F. In vitro regeneration potentiality of oil seed Brassica genotypes with differential BAP concentration. Pak J Bot. 2009, 41: 1233-1239.
    [225]Cogbill S, Faulcon T, Jones G, McDaniel M, Harmon G, Blackmon R, Young M. Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of Brassica rapa L. Plant Cell Tiss. Org. Cult. 2010, 101: 127-133.
    [226] Abbasi BH, Saxena PK, Murch SJ, Liu C-Z. Echinacea biotechnology: challenges and opportunities. In Vitro Cell Dev Biol Plant. 2007, 43: 481-492.
    [227]Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan MA. Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tiss. Org. Cult. 2001, 101: 371-376.
    [228]Abbasi BH, Ahmad N, Fazal H, Mahmood T. Conventional and modern propagation techniques in Piper nigrum. J Med Plant Res. 2001,4: 7-12.
    [229]Singh K., R.J. Weaver, J.O. Johanson. Effect of applications of gibberellic ac-id on berry size, shutter and texture of Thompson Seedless grapes. Am. J. Enol. Vit-ic. 1978, 29: 258-262.
    [230]Ahmad N, Fazal H, Abbasi BH, Rashid M, Mahmood T, Fatima N. Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell Tiss. Org. Cult. 2010, 102: 129-134.
    [231]Mariyana I, Johannes VS. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss. Org. Cult. 2010, 104: 13-21.
    [232]王娜,刘孟军,秦子禹.聚乙烯醇在枣和酸枣组织培养中的作用[J].果树学报, 2006, 23(2): 301-303.
    [233]刘巧泉,张景六,王宗阳,等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报, 1998, 24(3): 259-271.
    [234]Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35(2): 205-218.
    [235]董喜才,杜建中,王安乐,等.乙酰丁香酮在植物转基因研究中的作用[J].中国农学通报, 2011, 27(5): 292-299.
    [236]Zhang F L, Takahata Y, Watanabe M, et al. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabagae (Brassica campestris .L.ssp. pekinensis ) [J]. Plant Cell Rep, 2000, 19: 569-575.
    [237]Catlin D, Ochoa O, Mccormick S, et al. Celery transformation by Agrobacterium tumefaciens: cytological and genetic analysis of transgenic plants[J]. Plant Cell Rep, 1988, 7(2): 100-103.
    [238]David J. James, Sandra Uratsu, Jiasheng Cheng, Paola Negri, Peter Viss and Abhaya M. Dandekar. Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple[J]. Plant Cell Reports, 1993, 12(10): 559-563.
    [239]Chen B C, Qi Y B, Tang Y, et al. Agrobacterium tumifacient-mediated transformation for Torenia fournieri[J]. Journal of Agricultural biotechnology, 2005, 13(3): 299-303.
    [240]刘孟军,赵锦,周俊义.枣疯病[M].北京:中国农业出版社, 2010: 12-14.
    [241]庞辉,田应魁.植原体的系统分类[J].森林病虫通讯, 2000(2): 24-27.
    [242]Doi M Y, Terandka M, Yora K. Mycoplasma or PLT-group-like micro organisms found in the phleom elements of plants infected with mulbuerry dwarf,potato witches-broom,aster yellows or paulownia witches-broom[J]. Ann.phytopathol.Soc.Jpn, 1967, 33: 259-266.
    [243]廖晓兰,罗宽,朱水芳.植原体的分类及分子生物学研究进展[J].植物检疫,2002(3):167-172.
    [244]刘清神,许东林,林盘芳,等.广州桑树植原体分子检测及多样性初探[J].蚕业科学, 2006, 32(1): 1-5.
    [245]安凤秋,吴云锋,顾沛雯.巢式PCR(Nested-PCR)在植原体检测中的应用[J].陕西农业科学, 2008(3): 50-52.
    [246]刘晓光.组培条件下枣疯病抗性诱导研究[D].河北农业大学, 2011.
    [247]刘兴菊,刘英亘,梁海永,等.发根农杆菌转化三倍体毛白杨[J].西北林学院学报2006, 21(1): 76-79.
    [248]孔卫青,杨金宏,卢从德.发根农杆菌诱导桑树毛状根体系的建立[J].西北植物学报, 2010, 30(11): 2317-2320.
    [249]Zebra M, Banerjee S, Mathur A K, et al. Induction of hairy root in tea (Camellia sinensis L)using Agrobacterium rhizogenes[J]. CURRENT SCIENCE, 1996, 70(l):84-86.
    [250]Sehmülling, T. Sehell, J. Spena, A. 1988. A single genes from Agrobacterium rhizogenes influence plant development[J]. EMBO, 1988, 7: 2621-2629.
    [251]Nilsson, O. Moritz, T. Sundberg, B. Sandberg, G. Olsson, O. Expression of the Agrobacterium rhizogenes rolC in a deciduous forest tree alters growth and development and leads to stem fasciation[]J. Plant Physiol, 1996, 112: 493-502.
    [252]Richard L. Bell, Scoza Ralph, Srinivasan, Chinnathambi, Webb Kevin. Transformation of `Beurre Bosc' pear with the rolC gene. J Amer Soc Hort Sci, 1999, 124 (6): 570-574.
    [253]Gorpenchenko, T.Y. Kiselev, K.V. Bulgakov, V.P. Tchernoded, G.K. Bragina, E.A. Khodakovskaya, M.V. Koren, O.G. Batygina, T.B. Zhuravlev, Y.N. The Agrobacterium rhizogenes-rolC-gene induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses[J]. Planta, 2006, 223: 457-467.
    [254]Nilsson O. Little CH. Sandberg G. Olsson O. Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy[J]. Plant Mol Biol, 1996, 31: 887-895.
    [255]Martin-Tanguy. Metabolism and function of polyamines in plants: recent deveolpment (new approaches)[J]. Plant Growth Regul, 2001, 34: 135-148.
    [256]Casanova E. Valdes A.E. Zuker A. Fernandez B. Vainstein A. Trillas M.L Moysset L. rolC-transgenic carnation plants: adventitious organogenesis and levels of endogenous auxin and cytokinins[J]. Plant Science, 2004, 167: 551-560.
    [257]Veena V. Taylor C.G. Agrobacterium rhizogenes: recent developments and promisingapplications[J]. In Vitro Cell. Dev. Biol.-Plant, 2007 43: 383-403.
    [258]Leach F. Aoyagi K. Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated[J]. Plant Sci, 1991, 79: 69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700