多级孔IM-5和TNU-9沸石分子筛的合成、表征及其催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,已经探测到的天然气储量是非常巨大的,并且新发现储量的增长速度要远远大于液化石油等的增长速度。专家预测,这种趋势在21世纪将会体现的更加明显。甲烷在无氧条件下催化转化芳烃是一个十分重要的催化反应,他将为天然气的有效利用开辟新的途径。自从第一个高效的催化剂Mo/ZSM-5在1993年被发现以来,甲烷无氧芳构化反应就成为了工业上和学术上研究的一个热点方向。
     无机多孔材料在石油化工领域有着广泛的应用。多级孔复合材料作为一种新兴的材料,比如微孔-介孔复合材料,由于其具有微孔和介孔的双重特性,使其在一些催化反应中表现出了很好的活性。微孔为反应物提供孔道和择形效应,介孔的存在使反应物更容易接触到活性中心,促进产物的分离。
     IM-5是一种新型分子筛,它具有与众不同的二维十元环孔道系统。它的大体结构在2000年被Corma教授的小组报道,但直到2007年,它的具体的晶体结构参数才被发现。作为已知的最复杂的沸石分子筛之一,IM-5展现出了独特的骨架结构。它的骨架包括了24种不同类型的Si并且具有比ZSM-5大三倍的晶胞单元。它的孔道结构系统是由不同的二维孔道互相交联产生的。中间的二维孔道和旁边的孔道通过沿着[010]晶面的十元环相连,并且由此产生一个约为2.5nm大小的空穴。因此,IM-5分子筛的结构可以被定义为是由二维十元环孔道系统和一些三维特征的空穴构成。这些三维的空穴使它具有与之前的ZSM-5,ZSM-11等分子筛不同的结构特征,IM-5不但具有普通微孔材料的长程有序的二维孔道,同时空穴的存在能对反应物与活性中心的接触,生成物的扩散以及减少积碳的生成起到积极的作用。由于IM-5具有比ZSM-5更好的水热稳定性,使它在烃类催化裂化和NO吸附实验中表现出了较高的活性。IM-5优异的物理化学性质,使它在石油化工领域可以得到更广泛的应用。
     TNU-9是由Hong等人在2007年合成出了一种新型的十元环交叉结构的分子筛。TNU-9包含24个拓扑硅原子,其晶胞体积要大于ZSM-5。TNU-9有两套10元环的孔道。在两套10元环孔道相距较窄的地方,通过另一套10元环孔道互相连通,此外在TNU-9的孔道内部还包含一个较大的笼结构。作为已知的最复杂的沸石分子筛之一,TNU-9展现出了独特的骨架结构。同时,TNU-9作为高硅的沸石分子筛,具有非常好的水热稳定性。TNU-9已经在某些反应中表现出了较好的活性和择形性,TNU-9是一种新型分子筛,它具有独特的二维十元环孔道系统。本文主要从以下三个方面入手,围绕多级孔材料的合成及其应用展开工作。
     1.新型IM-5和TNU-9载体的合成条件考察及在甲烷无氧芳构化反应中的应用
     在本小组的对甲烷无氧芳构化反应载体的考察中,IM-5和TNU-9分子筛被证实是甲烷无氧芳构化的新型优良载体,IM-5和TNU-9比传统的ZSM-5载体具有更好的催化活性和稳定性。在本文中,动态和静态条件下合成了IM-5和TNU-9分子筛,并检验了不同晶化条件,不同晶化时间对两种载体合成的影响。与此同时,我们检验了不同合成状况下制成的材料的催化表现,并且对比了在不同的催化剂制备方法下,催化活性与以往有哪些不同。合成的IM-5和TNU-9材料的表征采用多种方法,如X射线衍射,红外FT-IR,SEM,TEM,N2吸附脱附,在催化剂性能测试中,动态条件下合成的IM-5和TNU-9样品的甲烷转化率比静态条件下合成样品的高,与此同时,苯的产率也较高。我们认为催化剂反应活性的差异是由于动态和静态条件下合成的分子筛具有不同的结构性质和酸性。在此之外,我们还检验了催化剂在不同的制备方法下,催化剂活性与以往有哪些不同,结果显示浸渍法制备的催化剂具有高的初始活性,但是稳定性欠佳,固态交换法制备的催化剂初始活性低。我们认为固态交换法和浸渍法制备的样品催化性质的差异,是由于不同催化剂制备方法下活性成分Mo物种在催化剂上的落位不同所致。
     2.模板法合成新型IM-5和TNU-9多级孔材料及其催化应用
     首先,我们以介孔材料SBA-15和MCM-48为硅源合成了多级孔IM-5和TNU-9材料,多级孔载体制成的催化剂展示了比传统催化剂更好的稳定性。
     其次,我们在IM-5和TNU-9的合成体系中添加葡萄糖作硬模板,合成出了带有一定量介孔的多级孔IM-5和TNU-9分子筛,含有介孔的IM-5和TNU-9分子筛催化剂表现出比常规IM-5和TNU-9分子筛催化剂更好的性能。
     再次,我们在IM-5和TNU-9的合成体系中添加不同量的介孔碳作硬模板,带有一定量介孔的IM-5和TNU-9复合材料被合成出来,我们考察了添加不同量介孔碳对催化活性的影响。
     微孔-介孔复合材料中介孔的存在有利于Mo物种迁移进入到催化剂的孔道中并且与酸位相互作用形成活性位,有利于芳烃产物的生成,提高催化剂的活性。同时,介孔的存在有利于产物的分离,减少生成物对孔道的堵塞作用,可以提高催化剂的稳定性。同时,微孔-介孔复合材料中介孔含量的多少对甲烷转化芳烃反应的结果有很大的影响,适当的添加介孔有利于提高催化剂的活性,过多的介孔存在对材料的微孔结构有较强的破坏,抑制催化剂的择形效应,不利于芳烃产物的生成。
     3.非模板法合成新型多级孔IM-5和TNU-9材料及其催化应用
     我们通过陈化法以及调整水硅比后陈化的方法合成出了带有介孔的IM-5和TNU-9复合分子筛,我们将多级孔IM-5和TNU-9分子筛制备成钼基催化剂,同时应用到甲烷无氧芳构化反应中,检验其活性。合成的IM-5和TNU-9材料的表征采用多种方法,如X射线衍射,红外FT-IR,SEM,TEM,N2吸附脱附,在催化测试中,陈化法和调整水硅比陈化法合成的IM-5和TNU-9催化剂展示了较高的芳烃产率和稳定性。我们认为不同条件下合成的分子筛具有不同的结构性质,这是导致催化剂反应活性差异的主要原因。多级孔IM-5和TNU-9分子筛合成的催化剂在甲烷无氧芳构化反应中的表现更加出色。
The known reserves of natural gas (mostly methane) are enormous and thereserves are increasing more rapidly than those of liquid petroleum. It is anticipatedthat this trend will extend well into the21st century and the effective utilization ofmethane is becoming more important than ever before. Since the first active catalystMo/ZSM-5was found in1993, methane non-oxidative aromatization has been avaluable and challengeable research subject in both academy and industry.
     Moreover, it has been found that materials with both micropores and mesoporescan remarkably enhance their activities in the catalytic reactions. Micropores inzeolite provide size and shape-selectivity for guest molecules, while mesopores leadto easier access to the active sites for reactants and better diffuse of the products.
     High-silica zeolite IM-5with an unusual2D10-MR channel system has beenreported by Benazzi et al. in1998. Due to its excellent physico-chemical properties,the zeolite IM-5could be applied in the petrochemical and refining industry ascommercial catalyst. For instance, IM-5is very active in hydrocarbon cracking andNO reduction due to its high thermal and hydrothermal stabilities which are evenbetter than those of ZSM-5. Although the general features of its pore system werededuced from a variety of catalytic reactions in2000, its detailed crystal structureinformation was not fully elucidated until2007. As one of the most complicatedzeolites hitherto solved, IM-5shows a special framework structure containing24topologically distinct Si atoms and an unusually large unit cell (C-centeredorthorhombic with a=14.2088, b=57.2368, c=19.9940) with nearly triplevolume than ZSM-5. IM-5consists of different2D channels with complex channelintersections connected by10-MR apertures. The central2D channel systemconnects to another2D channel system through10-MR along [010] and forms anapproximate2.5nm thick cavity. The structure of IM-5can be described asconsisting in a2D10-MR channel system with the presence of3D cavity, which isdifferent from the early zeolites, ZSM-5, ZSM-11, and MCM-22etc. The3D channel system with complex channel intersections gives IM-5a distinctive porestructure which can accommodate bulky intermediates in a catalytic reaction andIM-5also retains the long-range diffusion property of2D channel system.
     TNU-9, a new high-silica zeolite with an3D10-ring channel system, haspreviously been synthesized by Suk Bong Hong et al. Recently, the frameworkstructure of this zeolite has been solved through the combined use of powderdiffraction and electron microscopy. More recently, a complete account of thesynthesis, characterization and catalytic properties of TNU-9has been given in thework. As one of the most complex zeolites hitherto solved, the framework structureof TNU-9is that it contains24crystallographically and topologically distinct Siatoms in its large monoclinic unit cell (almost double that of ZSM-5) and possessesan unique3D10-ring channel system. Similar with MCM-22, TNU-9also ownslarge12-ring cavities around7.2that are accessible only through10-ring windows.Moreover, due to the unique pore structure and excellent hydrothermal stability,TNU-9exhibits superior shape selectivity for catalytic reaction such as theisomerization of m-xylene.1. Synthesis of zeolite IM-5and TNU-9under rotating and static conditions and thecatalytic performance in methane non-oxidative aromatization
     The hydrothermal crystallization of zeolite IM-5and TNU-9were investigatedunder rotating and static synthesis conditions. Mo-modified catalysts were preparedfor the methane non-oxidative aromatization. The physical properties and acidities ofthe samples were characterized by XRD, SEM, BET and IR spectroscopy. Comparedwith catalysts synthesized by static condition, catalyst synthesized by rotatingcondition showed both a higher conversion of methane and higher selectivity tobenzene in methane aromatization. We supposed that the higher catalytic activity maybe attributed to the preferable textural properties and acidities of zeolite. Moreover,the catalyst prepared by the physical mixing method exhibited lower initial activity,but better stability for methane aromatization than that prepared by the impregnationmethod. 2. Synthesis of mesoporous IM-5and TNU-9materials using three different methodsand the catalytic performance in methane non-oxidative aromatization
     Firstly, the mesoporous IM-5and TNU-9samples were synthesized by usingSBA-15and MCM-48as the silica source.
     Secondly, the mesoporous IM-5and TNU-9samples were synthesized by usingglucose as the hard template.
     The third, the mesoporous IM-5and TNU-9samples were synthesized by addingordered mesoporous carbon into the synthesise system.
     Mesoporous IM-5and TNU-9exhibited larger geometrical shape as conventionalmaterials. Moreover, Mo-modified catalysts were prepared for non-oxidativearomatization of methane. For comparison, conventional catalysts (without addition ofcarbon template) were synthesized for the same reaction. The physical property andacidity of the samples were characterized by XRD, SEM, TEM, BET and IRspectroscopy. Compared with conventional catalysts, mesoporous Mo-modified IM-5and TNU-9catalysts showed higher yields of aromatics. In addition, the stabilities ofmesoporous Mo-modified IM-5and TNU-9catalysts were better than that ofconventional catalysts. It is considered that the catalytic behavior of Mo-modifiedmesoporous IM-5and TNU-9catalysts may be attributed to the generation ofsecondary mesoporous systems within zeolite crystal, which could improve theaccessibility of reactants to the active sites and promote the diffusion of productsformed in the microporous channels.3. Synthesis of new mesoporous IM-5and TNU-9materials using aging method andthe catalytic performance in methane non-oxidative aromatization
     The new mesoporous IM-5and TNU-9materials were prepared by agingmethod. The physical property and acidity of the samples were characterized byXRD, SEM, TEM, BET and IR spectroscopy. Compared with conventional catalysts,mesoporous Mo-modified IM-5and TNU-9catalysts showed higher yields ofaromatics. In addition, the stabilities of mesoporous Mo-modified IM-5and TNU-9catalysts synthesized by aging method were better than that of conventional catalysts. We supposed that the higher catalytic activity may be attributed to the preferabletextural properties. Mesoporous catalysts showed better performance than that ofconventional catalysts.
引文
[1] Davis ME. Ordered porous materials for emerging applications[J]. Nature,2002,417(6891):813-821.
    [2] Tsapatsis M. Molecular sieves in the nanotechnology era[J]. AIChE Journal,2002,48(4):654-660.
    [3] Stein A. Advances in Microporous and Mesoporous Solids—Highlights ofRecent Progress[J]. Advanced Materials,2003,15(10):763-775.
    [4] Zeng HC. Synthetic architecture of interior space for inorganicnanostructures[J]. Journal of Materials Chemistry,2006,16(7):649-662.
    [5] Corma A, Davis ME. Issues in the Synthesis of Crystalline Molecular Sieves:Towards the Crystallization of Low Framework-Density Structures[J].Chem.Phys.Chem.,2004,5(3):304-313.
    [6] Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, et al. Aroute to high surface area, porosity and inclusion of large molecules incrystals[J]. Nature,2004,427(6974):523-527.
    [7] Minachev K, Isakov Y. Catalytic properties of zeolites-a general review[J].Adv Chem Ser,1973,121:451-460.
    [8] Haag W. Catalysis by Zeolites–Science and Technology[J]. Studies in SurfaceScience and Catalysis,1994,84:1375-1394.
    [9] Wilson S, Lok B, Flanigen E. Patent4,310,440[P]. January;1982.
    [10] Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM.Silicoaluminophosphate molecular sieves: another new class of microporouscrystalline inorganic solids[J]. Journal of the American Chemical Society,1984,106(20):6092-6093.
    [11] Flanigen EM, Lok BM, Patton RL, Wilson ST. Aluminophosphate molecularsieves and the periodic table[J]. Studies in Surface Science and Catalysis,1986,28:103-112.
    [12] Merrouche A, Patarin J, Kessler H, Soulard M, Delmotte L, Guth JL, et al.Synthesis and characterization of cloverite: a novel gallophosphate molecularsieve with three-dimensional20-membered ring channels[J]. Zeolites,1992,12(3):226-232.
    [13] Parise JB. Some gallium phosphate frameworks related to the aluminiumphosphate molecular sieves: X-ray structural characterization of{(PriNH3)[Ga4(PO4)4[middle dot]OH]}[middle dot]H2O[J]. Journal of theChemical Society, Chemical Communications,1985,(9):606-607.
    [14] Gérard F. Oxyfluorinated microporous compounds ULM-n: chemicalparameters, structures and a proposed mechanism for their moleculartectonics[J]. Journal of Fluorine Chemistry,1995,72(2):187-193.
    [15] Wallau M, Patarin J, Widmer I, Caullet P, Guth JL, Huve L.Room-temperature synthesis of crystalline solids in the systemZnO P2O5 R H2O, with R being an alkylamine or an alkylammoniumion[J]. Zeolites,1994,14(6):402-410.
    [16] Harvey G, Meier WM. The Synthesis of Beryllophosphate Zeolites. In: JacobsPA, Santen RAv, editors. Studies in Surface Science and Catalysis: Elsevier,1989. p.411-420.
    [17] Soghomonian V, Chen Q, Haushalter RC, Zubieta J. Vanadium PhosphateFramework Solid Constructed of Octahedra, Square Pyramids, and Tetrahedrawith a Cavity Diameter of18.4[J]. Angewandte Chemie InternationalEdition in English,1993,32(4):610-612.
    [18] DeBord JRD, Reiff WM, Warren CJ, Haushalter RC, Zubieta J. A3-DOrganically Templated Mixed Valence (Fe2+/Fe3+) Iron Phosphate withOxide-Centered Fe4O(PO4)4Cubes: Hydrothermal Synthesis, Crystal Structure,Magnetic Susceptibility, and M ssbauer Spectroscopy of
    [H3NCH2CH2NH3]2[Fe4O(PO4)4]·H2O[J]. Chemistry of Materials,1997,9(9):1994-1998.
    [19] Kessler H, Patarin J, Schott-Darie C. The opportunities of the fluoride route inthe synthesis of microporous materials. In: J.C. Jansen MSHGK, Weitkamp J,editors. Studies in Surface Science and Catalysis: Elsevier,1994. p.75-113.
    [20] Bibby DM, Dale MP. Synthesis of silica-sodalite from non-aqueoussystems[J]. Nature,1985,317(6033):157-158.
    [21] Huo Q, Xu R, Li S, Ma Z, Thomas JM, Jones RH, et al. Synthesis andcharacterization of a novel extra large ring of aluminophosphate JDF-20[J]. Journalof the Chemical Society, Chemical Communications,1992,(12):875-876.
    [22] Zones SI, Nakagawa Y. Boron-beta zeolite hydrothermal conversions: Theinfluence of template structure and of boron concentration and source[J].Microporous Materials,1994,2(6):557-562.
    [23] Bibby DM, Baxter NI, Grant-Taylor D, Parker LM. Nonaqueous Synthesis ofSilica Sodalite. Zeolite Synthesis: American Chemical Society,1989. p.209-220.
    [24]137th National Meeting[C]. Chemical&Engineering News Archive,1960,38(9):74-116.
    [25] Barrer RM, Baynham JW, Bultitude FW, Meier WM.36. Hydrothermalchemistry of the silicates. Part VIII. Low-temperature crystal growth ofaluminosilicates, and of some gallium and germanium analogues. Journal ofthe Chemical Society (Resumed),1959.
    [26] Vidal L, Marichal C, Gramlich V, Patarin J, Gabelica Z. Mu-7, a New LayeredAluminophosphate [CH3NH3]3[Al3P4O16] with a4×8Network:Characterization, Structure, and Possible Crystallization Mechanism[J].Chemistry of Materials,1999,11(10):2728-2736.
    [27] Vidal L, Gramlich V, Patarin J, Gabelica Z. Synthesis and structure of Mu-4,the new layered aluminophosphate [(C2H5)2NH2]4[Al8P10O40H2]·[H2O]2.5[J].European Journal of Solid State and Inorganic Chemistry,1998,35(8–9):545-563.
    [28] Delprato F, Delmotte L, Guth JL, Huve L. Synthesis of new silica-rich cubicand hexagonal faujasites using crown-etherbased supramolecules astemplates[J]. Zeolites,1990,10(6):546-552.
    [29] De Witte B, Patarin J, Guth J, Cholley T. Synthesis of mazzite-type zeolites inthe presence of organic solvents: study of the structure directing role ofp-dioxane[J]. Microporous Materials,1997,10(4-6):247-257.
    [30] L M. Chapter1The Zeolite Scene. In: H. van Bekkum EMF, Jansen JC,editors. Studies in Surface Science and Catalysis: Elsevier,1991. p.1-12.
    [31] Guggenbichler JPH, A.. PCT Int Appl WO0109,229:2000.
    [32] Liu ML, X.; Han, C.; Li, P.. Faming Zhuanli Shenqing Gongkai ShuomingshuCN1,262,591:2000.
    [33] Holderich WF. New horizons in catalysis using modified and unmodifiedpentasil zeolites[J]. Pure Appl Chem,1986,58(10):1383-1388.
    [34] H lderich W, Hesse M, N umann F. Zeolites: Catalysts for OrganicSyntheses[J]. Angewandte Chemie International Edition in English,1988,27(2):226-246.
    [35] Corma A, Chica A, Guil JM, Llopis FJ, Mabilon G, Perdig n-Mel n JA,Valencia S. Determination of the pore topology of zeolite IM-5by means ofcatalytic test reactions and hydrocarbon adsorption measurements[J]. Journalof Catalysis,2000,189(2):382-394.
    [36] Liu H, Wu S, Guo Y, Shang F, Yu X, Ma Y, Xu C, Guan J, Kan Q. Synthesisof Mo/IM-5catalyst and its catalytic behavior in methane non-oxidativearomatization[J]. Fuel,2011,90(4):1515–1521.
    [37] Hong SB, Min HK, Shin CH, Cox PA, Warrender SJ, Wright PA. Synthesis,crystal structure, characterization, and catalytic properties of TNU-9[J].Journal of the American Chemical Society,2007,129(35):10870-10885.
    [38] Liu H, Yang S, Wu S, Shang F, Yu X, Xu C, Guan J, Kan Q. Synthesis ofMo/TNU-9(TNU-9Taejon National University No.9) catalyst and itscatalytic performance in methane non-oxidative aromatization[J]. Energy,2011,36(3):1582-1589.
    [39] Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al.A new family of mesoporous molecular sieves prepared with liquid crystaltemplates[J]. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [40] Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, et al.Sol Gel Synthesis of Organized Matter[J]. Chemistry of Materials,1997,9(11):2300-2310.
    [41] Yanagisawa TS, T.; Kuroda, K.; Kato, C. The Preparation ofAlkyltriinethylaininonium–Kaneinite Complexes and Their Conversion toMicroporous Materials[J]. Bull Chem Soc Jpn1990,63:988.
    [42] Di Renzo F, Cambon H, Dutartre R. A28-year-old synthesis of micelle-templatedmesoporous silica[J]. Microporous Materials,1997,10(4–6):283-286.
    [43] Chiola VR, J. E.; Vanderpool, C. D. U.S. Patent3356-3725[P].
    [44] Martin T, Galarneau A, Di Renzo F, Fajula F, Plee D. Morphological Controlof MCM-41by Pseudomorphic Synthesis[J]. Angewandte ChemieInternational Edition,2002,41(14):2590-2592.
    [45] Tanev PT, Chibwe M, Pinnavaia TJ. Titanium-containing mesoporousmolecular sieves for catalytic oxidation of aromatic compounds[J]. Nature,1994,368(6469):321-323.
    [46] Tanev PT, Pinnavaia TJ. A Neutral Templating Route to MesoporousMolecular Sieves[J]. Science,1995,267(5199):865-867.
    [47] Bagshaw SA, Prouzet E, Pinnavaia TJ. Templating of Mesoporous MolecularSieves by Nonionic Polyethylene Oxide Surfactants[J]. Science,1995,269(5228):1242-1244.
    [48] Bagshaw SA, Pinnavaia TJ. Mesoporous Alumina Molecular Sieves[J].Angewandte Chemie International Edition in English,1996,35(10):1102-1105.
    [49] Ulagappan N, Rao C. Evidence for supramolecular organization of alkane andsurfactant molecules in the process of forming mesoporous silica[J]. ChemCommun,1996,(24):2759-2760.
    [50] Khushalani D, Kuperman A, Ozin GA, Tanaka K, Coombs N, Olken MM, etal. Metamorphic materials: Restructuring siliceous mesoporous materials*[J].Advanced Materials,1995,7(10):842-846.
    [51] Goltner CG, Antonietti M. Mesoporous materials by templating of liquidcrystalline phases[J]. Advanced Materials,1997,9(5):431-436.
    [52] F rster S, Antonietti M. Amphiphilic block copolymers in structure-controllednanomaterial hybrids[J]. Advanced Materials,1998,10(3):195-217.
    [53] Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, et al.Organization of Organic Molecules with Inorganic Molecular Species intoNanocomposite Biphase Arrays[J]. Chemistry of Materials,1994,6(8):1176-1191.
    [54] Huo Q, Leon R, Petroff PM, Stucky GD. Mesostructure Design with GeminiSurfactants: Supercage Formation in a Three-Dimensional Hexagonal Array[J].Science,1995,268(5215):1324-1327.
    [55] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores[J]. Science,1998,279(5350):548-552.
    [56] Davis SA, Burkett SL, Mendelson NH, Mann S. Bacterial templating ofordered macrostructures in silica and silica-surfactant mesophases[J]. Nature,1997,385(6615):420-423.
    [57] Holland BT, Blanford CF, Stein A. Synthesis of Macroporous Minerals withHighly Ordered Three-Dimensional Arrays of Spheroidal Voids[J]. Science,1998,281(5376):538-540.
    [58] Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, et al. HierarchicallyOrdered Oxides[J]. Science,1998,282(5397):2244-2246.
    [59] Velev OD, Jede TA, Lobo RF, Lenhoff AM. Porous silica via colloidalcrystallization[J]. Nature,1997,389(6650):447-448.
    [60] Andreas S. Sphere templating methods for periodic porous solids[J].Microporous and Mesoporous Materials,2001,44–45(0):227-239.
    [61] Antonietti M, Berton B, G ltner C, Hentze H-P. Synthesis of MesoporousSilica with Large Pores and Bimodal Pore Size Distribution by Templating ofPolymer Latices[J]. Advanced Materials,1998,10(2):154-159.
    [62] Holland BT, Blanford CF, Do T, Stein A. Synthesis of Highly Ordered,Three-Dimensional, Macroporous Structures of Amorphous or CrystallineInorganic Oxides, Phosphates, and Hybrid Composites[J]. Chemistry ofMaterials,1999,11(3):795-805.
    [63] Holland BT, Abrams L, Stein A. Dual Templating of Macroporous Silicateswith Zeolitic Microporous Frameworks[J]. Journal of the American ChemicalSociety,1999,121(17):4308-4309.
    [64] Stein A, Melde BJ, Schroden RC. Hybrid Inorganic–Organic MesoporousSilicates—Nanoscopic Reactors Coming of Age[J]. Advanced Materials,2000,12(19):1403-1419.
    [65] Macquarrie DJ, Jackson DB, Tailland S, Utting KA. Organically modifiedhexagonal mesoporous silicas (HMS)-remarkable effect of preparation solventon physical and chemical properties[J]. Journal of Materials Chemistry,2001,11(7):1843-1849.
    [66] Maschmeyer T, Rey F, Sankar G, Thomas JM. Heterogeneous catalystsobtained by grafting metallocene complexes onto mesoporous silica[J]. Nature,1995,378(6553):159-162.
    [67] Brunel D, Cauvel A, Fajula F, DiRenzo F. MCM-41type silicas as supportsfor immobilized catalysts. In: Laurent B, Serge K, editors. Studies in SurfaceScience and Catalysis: Elsevier,1995. p.173-180.
    [68] Anwander R. SOMC@PMS. Surface Organometallic Chemistry at PeriodicMesoporous Silica [J]. Chemistry of Materials,2001,13(12):4419-4438.
    [69] Burkett SL, Sims SD, Mann S. Synthesis of hybrid inorganic–organicmesoporous silica by co-condensation of siloxane and organosiloxaneprecursors[J]. Chem Commun,1996,(11):1367-1368.
    [70] Lim MH, Stein A. Comparative Studies of Grafting and Direct Syntheses ofInorganic Organic Hybrid Mesoporous Materials[J]. Chemistry of Materials,1999,11(11):3285-3295.
    [71] Koyano KA, Tatsumi T, Tanaka Y, Nakata S. Stabilization of MesoporousMolecular Sieves by Trimethylsilylation[J]. The Journal of PhysicalChemistry B,1997,101(46):9436-9440.
    [72] Xia QH, Hidajat K, Kawi S. Improvement of the hydrothermal stability offluorinated MCM-41material[J]. Materials Letters,2000,42(1–2):102-107.
    [73] Zhang Z, Han Y, Xiao F-S, Qiu S, Zhu L, Wang R, et al. MesoporousAluminosilicates with Ordered Hexagonal Structure, Strong Acidity, andExtraordinary Hydrothermal Stability at High Temperatures[J]. Journal of theAmerican Chemical Society,2001,123(21):5014-5021.
    [74] Shin Y, Liu J, Wang L-Q, Nie Z, Samuels WD, Fryxell GE, et al. OrderedHierarchical Porous Materials: Towards Tunable Size-and Shape-SelectiveMicrocavities in Nanoporous Channels[J]. Angewandte Chemie InternationalEdition,2000,39(15):2702-2707.
    [75] Valtchev V, Smaihi M, Faust A-C, Vidal L. Biomineral-Silica-InducedZeolitization of Equisetum Arvense[J]. Angewandte Chemie InternationalEdition,2003,42(24):2782-2785.
    [76] Tao Y, Kanoh H, Kaneko K. ZSM-5Monolith of Uniform Mesoporous Channels[J].Journal of the American Chemical Society,2003,125(20):6044-6045.
    [77] Scheffler F, Schwieger W, Freude D, Liu H, Heyer W, Janowski F.Transformation of porous glass beads into MFI-type containing beads[J].Microporous and Mesoporous Materials,2002,55(2):181-191.
    [78] Dong A, Wang Y, Tang Y, Zhang Y, Ren N, Gao Z. Mechanically Stable ZeoliteMonoliths with Three-Dimensional Ordered Macropores by theTransformation of Mesoporous Silica Spheres[J]. Advanced Materials,2002,14(20):1506-1510.
    [79] Rhodes KH, Davis SA, Caruso F, Zhang B, Mann S. Hierarchical Assembly ofZeolite Nanoparticles into Ordered Macroporous Monoliths Using Core ShellBuilding Blocks[J]. Chemistry of Materials,2000,12(10):2832-2834.
    [80] Michael S. Gas phase catalysis by zeolites[J]. Microporous and MesoporousMaterials,2005,82(3):257-292.
    [81] Corma A, Diaz-Cabanas MJ, Jorda JL, Martinez C, Moliner M.High-throughput synthesis and catalytic properties of a molecular sieve with18-and10-member rings[J]. Nature,2006,443(7113):842-845.
    [82] Jiang J, Jorda JL, Diaz-Cabanas MJ, Yu J, Corma A. The Synthesis of anExtra-Large-Pore Zeolite with Double Three-Ring Building Units and a LowFramework Density[J]. Angewandte Chemie International Edition,2010,49(29):4986-4988.
    [83] Sun J, Bonneau C, Cantin A, Corma A, Diaz-Cabanas MJ, Moliner M, et al. TheITQ-37mesoporous chiral zeolite[J]. Nature,2009,458(7242):1154-1157.
    [84] Corma A, Diaz-Cabanas MJ, Jorda JL, Rey F, Sastre G, Strohmaier KG. AZeolitic Structure (ITQ-34) with Connected9-and10-Ring ChannelsObtained with Phosphonium Cations as Structure Directing Agents[J]. Journalof the American Chemical Society,2008,130(49):16482-16483.
    [85] Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC.Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysisby advances in materials design[J]. Chemical Society Reviews,2008,37(11):2530-2542.
    [86] Hartmann M. Hierarchical Zeolites: A Proven Strategy to Combine ShapeSelectivity with Efficient Mass Transport[J]. Angewandte ChemieInternational Edition,2004,43(44):5880-5882.
    [87] Egeblad K, Christensen CH, Kustova M, Christensen CH. TemplatingMesoporous Zeolites [J]. Chemistry of Materials,2007,20(3):946-960.
    [88] Wei X, Smirniotis PG. Synthesis and characterization of mesoporous ZSM-12by using carbon particles[J]. Microporous and Mesoporous Materials,2006,89(1–3):170-178.
    [89] Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP. Exploratorystudy of mesopore templating with carbon during zeolite synthesis[J].Microporous and Mesoporous Materials,2003,65(1):59-75.
    [90] Kim S-S, Shah J, Pinnavaia TJ. Colloid-Imprinted Carbons as Templates for theNanocasting Synthesis of Mesoporous ZSM-5Zeolite[J]. Chemistry ofMaterials,2003,15(8):1664-1668.
    [91] Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A. MesoporousZeolite Single Crystals[J]. Journal of the American Chemical Society,2000,122(29):7116-7117.
    [92] Jacobsen CJH, Madsen C, Janssens TVW, Jakobsen HJ, Skibsted J. Zeolites byconfined space synthesis–characterization of the acid sites in nanosizedZSM-5by ammonia desorption and27Al/29Si-MAS NMR spectroscopy[J].Microporous and Mesoporous Materials,2000,39(1–2):393-401.
    [93] Kustova MY, Kustov AL, Christensen CH. Aluminum-rich mesoporousMFI-type zeolite single crystals. In: J. ejka N, Nachtigall P, editors. Studiesin Surface Science and Catalysis: Elsevier,2005. p.255-262.
    [94] Pavla ková Z, Ko ová G, ilková N, Zukal A, ejka J. Formation of mesoporesin ZSM-5by carbon templating. In: E.M. Gaigneaux MDDEDVSHPAJJAM,Ruiz P, editors. Studies in Surface Science and Catalysis: Elsevier,2006. p.905-912.
    [95] Yang ZX, Xia YD, Mokaya R. Zeolite ZSM-5with Unique SupermicroporesSynthesized Using Mesoporous Carbon as a Template[J]. Advanced Materials,2004,16(8):727-732.
    [96] Sakthivel A, Huang S-J, Chen W-H, Lan Z-H, Chen K-H, Kim T-W, et al.Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) withZeolite Framework from Mesoporous Carbons (CMKs)[J]. Chemistry ofMaterials,2004,16(16):3168-3175.
    [97] Li H, Sakamoto Y, Liu Z, Ohsuna T, Terasaki O, Thommes M, et al.Mesoporous Silicalite-1zeolite crystals with unique pore shapes analogous tothe morphology[J]. Microporous and Mesoporous Materials,2007,106(1–3):174-179.
    [98] Tao Y, Kanoh H, Kaneko K. Uniform Mesopore-Donated Zeolite Y UsingCarbon Aerogel Templating[J]. The Journal of Physical Chemistry B,2003,107(40):10974-10976.
    [99] Fang Y, Hu H, Chen G. Zeolite with tunable intracrystal mesoporositysynthesized with carbon aerogel as a secondary template[J]. Microporous andMesoporous Materials,2008,113(1–3):481-489.
    [100] Tao Y, Kanoh H, Hanzawa Y, Kaneko K. Template synthesis andcharacterization of mesoporous zeolites[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1–3):75-80.
    [101] Tao Y, Kanoh H, Kaneko K. Synthesis of Mesoporous Zeolite A byResorcinol Formaldehyde Aerogel Templating[J]. Langmuir,2004,21(2):504-507.
    [102] Xiao F-S, Wang L, Yin C, Lin K, Di Y, Li J, et al. Catalytic Properties ofHierarchical Mesoporous Zeolites Templated with a Mixture of Small OrganicAmmonium Salts and Mesoscale Cationic Polymers[J]. Angewandte ChemieInternational Edition,2006,45(19):3090-3093.
    [103] Wang H, Pinnavaia TJ. MFI Zeolite with Small and Uniform IntracrystalMesopores[J]. Angewandte Chemie International Edition,2006,45(45):7603-7606.
    [104] Tosheva L, Valtchev V, Sterte J. Silicalite-1containing microspheres preparedusing shape-directing macro-templates[J]. Microporous and MesoporousMaterials,2000,35:621-629.
    [105] Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Nanosized CaCO3as HardTemplate for Creation of Intracrystal Pores within Silicalite-1Crystal [J].Chemistry of Materials,2007,20(3):1134-1139.
    [106] Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Yue Y, et al. Zeolitic TissueThrough Wood Cell Templating[J]. Advanced Materials,2002,14(12):926-929.
    [107] Zhang B, Davis SA, Mann S. Starch Gel Templating of SpongelikeMacroporous Silicalite Monoliths and Mesoporous Films[J]. Chemistry ofMaterials,2002,14(3):1369-1375.
    [108] Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunablemesoporosity[J]. Nat Mater,2006,5(9):718-723.
    [109] Lopez-Orozco S, Inayat A, Schwab A, Selvam T, Schwieger W. ZeoliticMaterials with Hierarchical Porous Structures[J]. Advanced Materials,2011,23(22-23):2602-2615.
    [110] Cho K, Cho HS, de Ménorval L-C, Ryoo R. Generation of Mesoporosity inLTA Zeolites by Organosilane Surfactant for Rapid Molecular Transport inCatalytic Application[J]. Chemistry of Materials,2009,21(23):5664-5673.
    [111] Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation ofMFI zeolite catalyst during the methanol-to-hydrocarbon conversionprocess[J]. Journal of Catalysis,2010,269(1):219-228.
    [112] Lin JC, Yates MZ. Altering the Crystal Morphology of Silicalite-1throughMicroemulsion-Based Synthesis[J]. Langmuir,2005,21(6):2117-2120.
    [113] Lee S, Shantz DF. Zeolite Growth in Nonionic Microemulsions: Synthesis ofHierarchically Structured Zeolite Particles[J]. Chemistry of Materials,2005,17(2):409-417.
    [114] Proke ová P, Mintova S, ejka J, Bein T. Preparation of nanosizedmicro/mesoporous composites[J]. Materials Science and Engineering: C,2003,23(6–8):1001-1005.
    [115] Liu Y, Pinnavaia TJ. Assembly of wormhole aluminosilicate mesostructuresfrom zeolite seeds[J]. Journal of Materials Chemistry,2004,14(7):1099-1103.
    [116] Kloetstra KR, Zandbergen HW, Jansen JC, van Bekkum H. Overgrowth ofmesoporous MCM-41on faujasite[J]. Microporous Materials,1996,6(5–6):287-293.
    [117] Ooi Y-S, Zakaria R, Mohamed AR, Bhatia S. Synthesis of composite materialMCM-41/Beta and its catalytic performance in waste used palm oilcracking[J]. Applied Catalysis A: General,2004,274(1–2):15-23.
    [118] Wang S, Dou T, Li Y, Zhang Y, Li X, Yan Z. A novel method for thepreparation of MOR/MCM-41composite molecular sieve[J]. CatalysisCommunications,2005,6(1):87-91.
    [119] Corma A, Fornes V, Rey F. Delaminated Zeolites: An Efficient Support forEnzymes[J]. Advanced Materials,2002,14(1):71-74.
    [120] Corma A, Fornés V, Guil JM, Pergher S, Maesen TLM, Buglass JG.Preparation, characterisation and catalytic activity of ITQ-2, a delaminatedzeolite[J]. Microporous and Mesoporous Materials,2000,38(2–3):301-309.
    [121] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cellnanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature,2009,461(7261):246-249.
    [122] Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI ZeoliteNanosheets of a Single-Unit-Cell Thickness[J]. Journal of the AmericanChemical Society,2010,132(12):4169-4177.
    [123] Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X. Fabrication andcharacterization of hierarchical ZSM-5zeolites by using organosilanes asadditives[J]. Chemical Engineering Journal,2011,166(1):391-400.
    [124] Serrano D, Sanz R, Pizarro P, Moreno I. Synthesis of Hierarchical TS-1Zeolitefrom Silanized Seeds[J]. Topics in Catalysis,2010,53(19):1319-1329.
    [125] Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesoporewall catalytic activities of MFI zeolite with mesoporous/microporoushierarchical structures[J]. Journal of Catalysis,2008,254(2):296-303.
    [126] Trong On D, Kaliaguine S. Zeolite-Coated Mesostructured Cellular SilicaFoams[J]. Journal of the American Chemical Society,2002,125(3):618-619.
    [127] Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-Modified Zeolites:Preparation, Characterization, and Applications[J]. Chemical Reviews,2006,106(3):896-910.
    [128] Chal R, Gérardin C, Bulut M, van Donk S. Overview and IndustrialAssessment of Synthesis Strategies towards Zeolites with Mesopores[J].ChemCatChem,2011,3(1):67-81.
    [129] MARCILLY C. Acido-basic catalysis: application to refining andpetrochemistry (2volumes-set).2005.
    [130] Ogura M, Shinomiya S-y, Tateno J, Nara Y, Nomura M, Kikuchi E, et al.Alkali-treatment technique—new method for modification of structural andacid-catalytic properties of ZSM-5zeolites[J]. Applied Catalysis A: General,2001,219(1–2):33-43.
    [131] Groen JC, Peffer LAA, Moulijn JA, Pérez R, amp, x, et al. On the introductionof intracrystalline mesoporosity in zeolites upon desilication in alkalinemedium[J]. Microporous and Mesoporous Materials,2004,69(1–2):29-34.
    [132] Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J. Mechanism ofHierarchical Porosity Development in MFI Zeolites by Desilication: The Roleof Aluminium as a Pore-Directing Agent[J]. Chemistry–A European Journal,2005,11(17):4983-4994.
    [133] Groen JC, Abelló S, Villaescusa LA, Pérez-Ramírez J. Mesoporous betazeolite obtained by desilication[J]. Microporous and Mesoporous Materials,2008,114(1–3):93-102.
    [134] Wei X, Smirniotis PG. Development and characterization of mesoporosity inZSM-12by desilication[J]. Microporous and Mesoporous Materials,2006,97(1–3):97-106.
    [135] Bonilla A, Baudouin D, Pérez-Ramírez J. Desilication of ferrierite zeolite forporosity generation and improved effectiveness in polyethylene pyrolysis[J].Journal of Catalysis,2009,265(2):170-180.
    [136] Miltenburg A, Pawlesa J, Bouzga A, ilková N, ejka J, St cker M. AlkalineModification of MCM-22to a3D Interconnected Pore System and itsApplication in Toluene Disproportionation and Alkylation[J]. Topics inCatalysis,2009,52(9):1190-1202.
    [137] Verboekend D, Villaescusa LA, Thomas K, Stan I, Pérez-Ramírez J. Acidityand accessibility studies on mesoporous ITQ-4zeolite[J]. Catalysis Today,2010,152(1–4):11-16.
    [138] Verboekend D, Pérez-Ramírez J. Desilication Mechanism Revisited: HighlyMesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents[J].Chemistry–A European Journal,2011,17(4):1137-1147.
    [139] Bokhoven JA, Tromp M, Koningsberger DC, Miller JT, Pieterse JAZ, LercherJA, et al. An Explanation for the Enhanced Activity for Light AlkaneConversion in Mildly Steam Dealuminated Mordenite: The Dominant Role ofAdsorption[J]. Journal of Catalysis,2001,202(1):129-140.
    [140] Kitaev L, Bukina Z, Yushchenko V, Nesterenko N, Alekseenko L. Acidic andcatalytic properties of dealuminated zeolite Y treated with zirconyl nitratesolution[J]. Petroleum Chemistry,2006,46(4):24.
    [141] Ashcroft AT, Cheetham AK, Foord JS. Selective oxidation of methane tosynthesis gas using transition metal catalysts[J]. Nature,1990,344:319-321.
    [142] Gesser HD, Hunter NR, Prakash CB. The direct conversion of methane tomethanol by controlled oxidation[J]. Chemical Reviews,1985,85(4):235-244.
    [143] Lunsford JH. The catalytic conversion of methane to higher hydrocarbons[J].Catalysis Today,1990,6(3):235-259.
    [144] Shepelev SS, Ione KG. Preparation of aromatic hydrocarbons from methane inthe presence of oxygen[J]. Reaction Kinetics and Catalysis Letters,1983,23(3-4):323-325.
    [145] Wang L, Li T, Xie M, Xu Y. Dehydrogenation and aromatization of methaneunder nonoxidizing conditions[J]. Catalysis Letters,1993,21(1-2):35-41.
    [146] Xu Y, Liu S, Wang L, Xie M. Methane activation without using oxidants overMo/ZSM-5zeolite catalysts[J]. Catalysis Letters,1994,30(1-4):135-149.
    [147] Weckhuysen BM, Wang DJ, Rosynek MP, Lunsford JH. Conversion ofmethane to benzene over transition metal ion ZSM-5zeolites[J]. Journal ofCatalysis,1998,175(2):338-346.
    [148] Zhang C, Li S, Yuan Y, Zhang W, Wu T, Lin L. Aromatization of methane inthe absence of oxygen over Mo-based catalysts supported on different types ofzeolites[J]. Catalysis Letters,1998,56(4):207-213.
    [149] Shu Y, Ma D, Xu L, Xu Y, Bao X. Methane dehydro-aromatization overMo/MCM-22catalysts: a highly selective catalysts for the formation ofbenzene[J]. Catalysis Letters,2000,70(1-2):67-73.
    [150] Wang L, Xu Y, Xie M. Activation and aromatization of methane and ethaneover Mo(VI)/HZSM-5and W(VI)/HZSM-5zeolites catalysts[J]. Studies inSurface Science and Catalysis,1995,94:495-500.
    [151] Chen L, Lin L, Xu Z, Zhang T, Li X. Promotional effect of Pt on non-oxidativemethane transformation over Mo/HZSM-5catalysts[J]. Catalysis Letters,1996,39(3-4):169-172.
    [152] Shu Y, Xu Y, Wong S. Promotional effect of Ru on the dehydrogenation andaromatization of methane in the absence of oxygen over Mo/HZSM-5catalysts[J]. Journal of Catalysis,1997,170(1):11-19.
    [153] Wong S, Xu Y, Wang L, Liu S, Li G, Xie M, Guo X. Methane and ethaneactivation without adding oxygen: promotional effect of W inMo-W/HZSM-5[J]. Catalysis Letters,1996,38(1-2):39-43.
    [154] Lu Y, Ma D, Xu Z, Tian Z, Bao X, Lin L. A high coking-resistance catalyst formethane aromatization[J]. Chemical Communications,2001,20:2048-2049.
    [155] Shu Y, Ohnishi R, Ichikawa M. Stable and selective dehydrocondensation ofmethane towards benzene on modified Mo/HMCM-22catalyst by thedealumination treatment[J]. Catalysis Letters,2002,81(1-2):9-17.
    [156] Wang D, Lunsford JH, Rosynek MP. Characterization of a Mo/ZSM-5catalystfor the conversion of methane to benzene[J]. Journal of Catalysis,1997,169(1):347-358.
    [157] Solymosi F, Cserényi J, Szóke A. Aromatization of methane over supportedand unsupported Mo-based catalysts[J]. Journal of Catalysis,1997,165(2):150-161.
    [158] Chu N, Wang J, Zhang Y, Yang J, Lu J, Yin D. Nestlike hollow hierarchicalMCM-22microspheres: synthesis and exceptional catalytic properties[J].Chemistry of Materials,2010,22(9):2757-2763.
    [159] Wichterlova B, Tvaruzkova Z, Sobalik Z. Determination and propertiesof acidsites in H-ferrierite a comparison of ferrierite and MFI structure[J].Microporous and Mesoporous Materials,1998,24(4-6):223-233.
    [160] Liu H, Shen W, Bao X, Xu Y. Identification of Mo active species for methanedehydro-aromatization over Mo/HZSM-5catalysts in the absence ofoxygen:1H MAS NMR and EPR investigations[J]. Journal of MolecularCatalysis A: Chemical,2006,244(2):229-236.
    [161] Liu H, Bao X, Xu Y. Methane dehydroaromatization under nonoxidativeconditions over Mo/HZSM-5catalysts: identification and preparation of theMo active species[J]. Journal of Catalysis,2006,239(2):441-450.
    [162] Chu N, Yang J, Wang J, Yu S, Lu J, Zhang Y, Yin D. A feasible way to enhanceeffectively the catalytic performance of methane dehydroaromatization[J].Catalysis Communications,2010,11(6):513-517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700