固定化微生物组合床型对低碳氮比污水的脱氮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮污染问题越来越被重视,具有低碳氮比水质特性的污水的脱氮问题更是目前众多学者关注的热点。针对低碳氮比污水的生物处理工艺存在许多局限性。研发结构简单、操作方便、处理效率高,无二次污染的脱氮工艺,以满足低碳氮比废水的脱氮要求,是环境工作者所面临的重要课题。
     本学位论文以固定化微生物技术为核心,从载体的选择和反应器结构的优化两个方面着手,对比了陶粒固定化微生物固定床(CIFB)和聚氨酯泡沫固定化微生物流化床(PIFB)的净化性能,构建了O/A单级生物流化床脱氮反应器(O/A-BFB),陶粒-聚氨酯泡沫层叠式组合床脱氮反应器(CL-BMB)及沸石-聚氨酯泡沫层叠式组合床脱氮反应器(ZL-BMB)三种新型固定化微生物低碳氮比污水处理工艺。从载体的材质、运行条件、净化机理、动力学模型几个方面对各工艺的净化性能进行研究,从而开发出固定化微生物组合床型处理低碳氮比污水新工艺。主要研究结果如下:
     1、对比了陶粒固定化微生物固定床(CIFB)和聚氨酯泡沫固定化微生物流化床(PIFB)的净化性能。研究结果表明:在相同操作条件下,PIFB对COD和NH3-N的去除率比CIFB的高,CIFB的TN去除率比PIFB的高。
     2、为提高PIFB的总氮去除效率,通过改变曝气方式,增加缺氧处理区,将其改造为O/A单级生物流化床脱氮反应器(O/A-BFB),研究了气水比、水力负荷、缺氧层高度、碳氮比、NH3-N负荷对COD, NH3-N和TN去除率的影响,并建立了O/A-BFB动力学模型。结果表明:在气水比为1、水力负荷为0.47m3/(m2·h)、缺氧层高度300mm的最佳工艺条件下,对于C/N为3、NH3-N初始浓度10m/L污水,O/A-BFB对COD、NH3-N和TN的去除率分别为70.24%、97.89%和72.52%;反应器的动力学模型可表示为:Se=S0e-0.0936/(1+0.6593t)。
     3、结合陶粒和聚氨酯泡沫两种固定化微生物载体的优点,将生物流化床与固定床有效组合,构建陶粒-聚氨酯泡沫层叠式组合床脱氮反应器(CL-BMB),研究了反应器对COD、NH3-N和TN去除效果,以及在不同填料层去除效率的变化情况,建立了CL-BMB动力学模型。结果表明:在气水比为1,水力负荷0.47m3/(m2·h), C/N为3, NH3-N初始浓度10mg/L的运行条件下,CL-BMB对COD、NH3-N和TN的去除效率分别为90.3%、99.9%和58.6%;在距离滤料底部250mmm处COD和NH3-N去除效率的增量最大,在距离滤料底部500m处TN去除效率的增量最大;COD和NH3-N的出水浓度与进水浓度和滤料高度之间的关系可以表示为:1n(Co/C)=(0.0023/Q0C0.09398)H和1n(Co/C)=(0.015/Q0C00.5641)H。
     4、为进一步改进CL-BMB的性能,对天然沸石改性,研究了改性沸石对氨氮的动态吸附效果,在此基础上,利用改性沸石对NH4+的吸附交换特性,构建沸石-聚氨酯泡沫层叠式组合床脱氮反应器(ZL-BMB),研究其对COD、NH3-N及TN的去除效果。结果表明:在气水比为1,水力负荷0.47m3/(m2·h), C/N为3, NH3-N初始浓度10mg/L的运行条件下,ZL-BMB对COD、NH3-N和TN的去除率分别为90.6%、99.6%和73.7%。
Nitrogen pollution has been more and more attentions. The research about low carbon to nitrogen ratio sewage denitrification has become the focus of attention at home and abroad. Biological treatment processes for low carbon to nitrogen ratio sewage have a number of limitations. The important topic for environmental workers is to research and development advanced denitrification process, which is simple structure, convenient operation, high treatment efficiency and no secondary pollution, in order to increase the denitrification efficiency of low carbon to nitrogen ratio sewage.
     This paper compared the purification performance of ceramsite immobilized microorganism fixed bed (CIFB) with polyurethane foam immobilized microorganism fluidized bed (PIFB), Built O/A single-stage biological fluidized bed (O/A-BFB), ceramsite-polyurethane foam layered combination bed (CL-BMB) and zeolite-polyurethane foam layered combination bed (ZL-BMB) based on immobilized microorganisms technology. The performance of biological reactor was researched containing the medium selection, process design, operation conditions, kineties and mechanism to improve the total nitrogen removal efficiency. The main results are as following:
     1. Two kinds of carrier material, polyurethane foam and ceramsite, were loaded into biological filter to compare the efficiency of their microbial treatment of sawage. It was shown that under the same operating conditions, the reductions in the overall NH3-N and COD by the CIFB supported by macroporous polyurethane were higher than those of the PIFB supported by ceramsite. However, the efficiency of the CIFB with macroporous polyurethane in removing TN was lower than that of the PIFB with ceramsite.
     2. In order to improve the total nitrogen removal efficiency, it was reconstructed to Aerobic/anoxic immobilized microorganism aerated floating filter by adding anoxic treatment zone, and its treatment efficiency and kinetics was investigated. The results showed that the pollutants can be most effectively removed at air/water ratio of1, hydraulic load of0.47m3/(m2. h), anoxia layer high of300mm. When C/N ratio was maintained at3, the NH3-N initial concentration was about10mg/L, the removal efficiency of COD、NH3-N and TN was70.24%、97.89%and72.52%respectively. The general kinetic equation at experimental conditions was as follow:Se=SO e-0.0936t/(1+0.6593t).
     3. Taking advantages of the two mediums, ceramsite and macroporous polyurethane foam, a layered biological aerated filter (CL-BMB) was built to treat the low carbon-to-nitrogen micro-polluted water. The CL-BMB was operated at air/water ratio of1, hydraulic load of0.47m3/(m2·h), C/N ratio of3and the NH3-N initial concentration about10mg/L, the removal efficiency for COD, NH3-N and TN was90.3%,99.9%and58.6%respectively. The greatest increment of COD and NH3-N removal efficiency happened on the bottom250mm of medium height. The greatest increment of TN removal efficiency happened on the bottom500mm of medium height. The kinetic performance of the CL-BMB indicated that the relationship of COD and NH3-N removal efficiency with the influent COD and NH3-N concentration could be described by ln(Co/C)=(0.0023/Q0C00.9398)H and ln(C0/C)=(0.015/Q0C00.5641)H.
     4. In order to improve the performance of the CL-BMB, ceramsite was replaced by zeolite, zeolite and polyurethane foam layered biological aerated filter (ZL-BMB) was built. The ZL-BMB was operated at air/water ratio of1, hydraulic load of0.47m3/(m2·h), C/N ratio of3and the NH3-N initial concentration about10mg/L, the removal efficiency for COD, NH3-N and TN was90.6%、99.6%and73.7%respectively.
引文
[l]陈银萍,罗永清,陶玲.兰州市农村饮用水中硝态氮分布特征及评价[J].农业环境科学学报,2011,30(1):183-189.
    [2]李增新,李相仁.天然沸石在环境污染治理中的应用进展[J].环境污染治理技术与设备,2004,5(3):18-22.
    [3]Won-Seok Chang, Seok-Won Hong, Joonkyu Park. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Processes Biochemistry,2000,37:693-698.
    [4]岳舜林,给水中的氨氮问题[J].净水技术,2001,20(2):12-15.
    [5]Csanady M. Nitrite formation and bacteriological deterioration of water quality in Distribution network [J].Water Supply,1992.10(3):39-43.
    [6]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821-1827.
    [7]瞿艳芝,刘操,廖日红,等.固定化微生物技术处理城市微污染河水研究[J].环境科学,2009,30(1]):3306-3310.
    [8]韩超,叶杰旭,孙德智O3-MBR法深度处理煤气污水[J].环境科学研究,2010,23(7):970-974.
    [9]韦朝海,朱家亮,吴超飞,等.焦化行业污水水质变化影响因素及污染控制[J].化工进展,2011,30(1):309-314.
    [10]王杰,马溪平,唐凤德,等.微波催化氧化法预处理垃圾渗滤液的研究[J].中国环境科学,2011,31(7):1166-1170.
    [11]储华新.化肥生产中氨氮污水的生化处理[J].化肥设计,2006,44(4):57-59.
    [12]盛贻林,王方园.味精污水的预处理试验研究[J].环境保护科学,2007,33(1):28-29.
    [13]王欢,裴伟征,李旭东,等.低碳氮比猪场污水短程硝化反硝化-厌氧氨氧化脱氮环[J].环境科学,2009,30(3):815-821.
    [14]孙锦宜.含氮污水处理技术与应用[M].北京:化学工业出版社,2003:164-169.
    [15]赵丹,任南琪.生物脱氮微生物学及研究进展[J].哈尔滨建筑大学学报:2002,35(5):60-65.
    [16]郝华来.传统污水生物脱氮工艺概述[J].微量元素与健康研究,2010,27(6):65-67.
    [17]王如一,孙胜东.生物脱氮工艺的发展综述[J].广西轻工业,2010,8:112-113.
    [18]胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报,2003,9(4):444-447.
    [19]Li Y Z, He Y L, Ohandja D J, Ji J, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR:Comparative Study [J]. Bioresource Technology, 2008,99(13):5867-5872.
    [20]Rittmann B E, Langeland W E. Simultaneous denitrification with nitrification in single-channel oxidation ditches. WPCF,1985,57(4):300-308.
    [21]杨麒,李小明,曾光明,等.同步硝化反硝化的形成机理影响因素[J].环境科学与技术,2004,27(3):102-104.
    [22]Wanner O, Eberl H, Morgenroth E, et al. Mathematical modeling of biofilms:scientific and technical report No.18[R].London (UK):IWA Publishing,2006.
    [23]Mike S.M. Jetten, Susanne logemann, Gerard Muyzerm. Novel principle in the microbial conversion of nitrogen compounds [J]. Antonie Van Leeuwehoek,1997,71(1-2):75-93.
    [24]Elisabeth V Munch, Paul Lant, Jurg Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Research,1996,30(2):277-284.
    [25]Aslan S, Turkman A. Biological denitrification of drinking water using variousnatural organic solid substrates[J]. Water Sci Technol,2003,48(11-12):489-495.
    [26]Xu Z X, Shao L, Yin H L, et al, Biological denitrification using corncobs as a carbon source and biofilm carrier[J]. Water Environ Res,2009,81(3):242-247.
    [27]王旭明,从二丁,罗文龙,等.固体碳源用于异养反硝化去除地下水中的硝酸盐[J].中国科学B辑:化学,2008,38(9):824-828.
    [28]Takait T, Hirataa A. Effect of temperature and volatile fatty acid on nitrification-denitrification activity in small—scale aerobic recirculation biofilm process [J]. Water Sci. Tech.,1997,35(6):101-108.
    [29]Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts [J]. Environ. Pollut.,1998,102,717-726.
    [30]周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):12-18.
    [31]周少奇,方汉平.低C/N比污水的同时硝化反硝化生物处理策略[J].环境污染与防治,2000,22(1):18-21.
    [32]Van Benthum. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm air-lift suspension reactor coupled with a chemostat [J]. Water Res,1998, 32(7):2009-2018.
    [33]Mulder J W, van Loosdrecht, M C M, Hellinga C, van Kempen R. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Sci. Technol,2001,43 (11),127-134.
    [34]G. Ciudad. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process [J]. Process Biochemistry,2005,40(5): 1715-1719.
    [35]Wang S Y, Gao D W, Peng Y Z, Wang P, Yang Q. Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control [J]. Water Sci. Technol.2004,49 (5-6),121-127.
    [36]Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without loading in a suspended growth reactor [J]. Water Res.1990,24,297-302.
    [37]Villaverde S, Garcia-Encina P A, Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in submerged biofilters [J]. Water Res.1997,31,1180-1186.
    [38]Hellinga C, Schellen A A J C, Mulder J W, Van Loosdrecht M C M, Heijnen J J. The SHARON process:An innovative method for nitrogen removal from ammonium-rich wastewater [J]. Water Sci. Technol.1998,37 (9),135-142.
    [39]Spagni A, Buday J, Ratini P, Bortone G. Experimental consideration on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal process [J]. Water Sci. Technol.2001,43 (11),197-204.
    [40]Li B K, Bishop P L. Oxidation-reduction potential changes in aeration tanks and microprofiles of activated sludge floc in medium-and low-strength wastewaters [J]. Water Environ. Res.2004,76,394-403.
    [41]Kishida N, Kim J H, Chen M X, Sasaki H, Sudo R. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors [J]. J. Biosci. Bioeng.,2003,96,285-290.
    [42]李冬,邱文新,张男,等.常温ANAMMOX工艺运行性能及功能菌研究[J].中国环境科学,2013,33(1):56-62.
    [43]翁皓琳,张玉荣,李强,等.厌氧氨氧化脱氮技术的研究进展[J].净水技术,2012,31(3):5-9.
    [44]Broda E. Two kinds of lithotrphs missing in nature [J]. Z Allg Mikrobiol,1977,17(6):491-493.
    [45]Mulder A, Van de Graaf A A, Robertson LA, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMSMicrobiology Ecology,1995, 16(3):177-183.
    [46]Van de Graaf A A, De Bruijin P, Robertron LA, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor [J]. Microbiology, 1997,143(7):2415-2421.
    [47]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [48]叶剑锋,薄国柱.低碳源条件下厌氧氨氧化影响因素的研究[J].水处理技术,2006,32(9):30-33.
    [49]梁伟刚.厌氧氨氧化(ANAMMOX)生物脱氮工艺在污泥水处理中的应用[J].净水技术,2011,30(3):44-46.
    [50]Jettern M S, Strous M, oan de Pas-Schoonen K T. The anaerobic oxidation of ammonium [J]. FEMS Microbiological Reviews,1998,22(5):421-437.
    [51]Dosta J, Fernandez I, Vazquez-Padin JR, et al. Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials,2008,154(1/3):688-693.
    [52]赵志宏,李小明,廖德祥,等.厌氧氨氧化研究进展及其应用[J].净水技术,2006,25(5):47-52.
    [53]鲍林林,赵建国,李晓凯,等.常温低基质下pH值和有机物对厌氧氨氧化的影响[J].中国给水排水,2012,28(13):38-42.
    [54]李亚峰,张文静,马晨曦.pH值和DO对厌氧氨氧化脱氮性能的影响[J].沈阳建筑大学学报(自然科学版),2013,29(4):715-720.
    [55]Tang C J, Zheng P, Wang C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor[J]. Bioresour Technol,2010,101 (6): 1762-1768.
    [56]Kang J, Wang JL. Influence of chemical oxygen demand concentrations on anaerobic ammonium oxidation by granular sludge from EGSB reactor[J]. Biomedical and Environmental Sciences,2006,19(3):192-196.
    [57]张树德,李捷,杨宏,等.亚硝态氮对厌氧氨氧化的影响研究[J].环境污染与防治,2005,27(5):324-326.
    [58]金仁村,郑平,胡安辉.盐度对厌氧氨氧化反应器运行性能的影响[J].环境科学学报,2009,29(1):81-87.
    [59]郝晓地,Mark van Loosdrecht荷兰鹿特丹DOKHAVEN污水处理厂介绍[J].给水排水,2003,29(10):19-25.
    [60]Jen AC, Wake MC, Mikos AG. Review:Hydrogels for cell immobilization [J]. Biotechnol Bioeng 1996,50:357-364.
    [61]Mitsuyoshi I, Shohei Y, Ryuzoh I, et al. Development of a compact stacked flatbed reactor with immobilized high-density bacteria for hydrogen production [J]. Int J Hydrogen Energy, 2008,33(5):1593-1598.
    [62]李伟,孙建中等.适用于酶包埋的高分子载体材料研究进展.功能高分子学报,2001,14(3):365-369.
    [63]赫俊国,姜涛,吕炳南,等.聚丙烯与沸石填料生物床层处理生活污水的研究[J].给水排水,2009,35(5):158-161.
    [64]毕源,季民,尉家鑫,等.共价接枝蛋白分子改善聚苯乙烯生物填料表面性能[J].化工学报,2006,57(12):2914-2919.
    [65]包木太,田艳敏,陈庆国.海藻酸钠包埋固定化微生物处理含油废水研究[J].环境科学与技术,2012,35(2):167-172.
    [66]Wang Z Y, Xu Y, Wang H Y, et al. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms [J]. Pedosphere,2012,22(5):717-725.
    [67]王建龙等.固定化生物催化剂新进展一联合固定化技术及其应用.生物工程进展,1994,15:35-37.
    [68]侯红萍,闫跃文.吸附-包埋结合法共固定化糖化酶和酵母菌的研究[J].食品科学,2009,30(5):201-204.
    [69]张秀霞,秦丽姣,吴伟林,等.固定化原油降解菌的制备及其性能研究[J].环境工程学报,2010,4(3):659-664.
    [70]Lee Y C, Woob S G, Choi E S, et al. Bench-scale ex situ diesel removal process using a biobarrier and surfactant flushing [J]. Journal of Industrial and Engineering Chemistry,2012, 18:882-887.
    [71]闵航,邓耀通,钱泽澎,等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件.环境科学,1994,15(5):10-12.
    [72]Manohar S, Kim CK, Karegoudar TB. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotech 2001,55:311-316.
    [73]刘雨,赵庆良,郑兴灿编著.生物膜法污水处理技术.北京,中国建筑工业出版社,2000,36.-44.
    [74]Rebecca M, Joanne Q, Tom S. The effects of media size on the performance of biological aerated filters [J]. Wat Sci Tech,2001,35(10):2514-2522.
    [75]何延青,刘俊良,杨平,等.微生物固定化技术与载体结构的研究.环境科学,2005,25(增刊):101-104.
    [76]Chen J G, Kong H N, Wu D Y. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition[J]. J Hazard Mater,2007,139(8):293-300.
    [77]Gabelieh J C. Control of residual aluminum from conventional treatment to reverse osmosis performance. Desalination,2006,190(13):147-160.
    [78]李彦锋,周林成,叶正芳,李柏年,王凯庆.功能化陶粒载体及其固定化微生物处理废水技术.CN 1478734.2004.3.3.
    [79]上海市环保局.废水生化处理[M].上海:同济大学出版社,1999.
    [80]Metcalf, Eddy. Wastewater engineering-Treatment and reuse,4th Ed., G. Tchobanoglous, F. L. Burton, and H. D. Stensel eds., Mc Graw-Hill, New York 2003,888-893.
    [81]刘载文,苏震,王小艺,等.生物流化床污水处理技术进展与展望[J].化工自动化及仪表,2010,37(2):l-6.
    [82]Fahid K J Rabah, Mohamed F Dahab. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors [J].Water Research,2004,38:3719-3728.
    [83]Ajay Patel, Jesse Zhu, George Nakhla. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor [J]. Chemosphere, 2006,65:1103-1112.
    [84]张志永.生物磁性载体的研制及其在废水处理中的试验研究.广州:暨南大学硕士学位论文,2007.
    [85]师朋飞,曹斌,韩巧玲.悬浮填料生物流化床在城镇污水厂的应用[J].环境科学与技术,2012,35(61):258-260.
    [86]程江,张凡,海景,等.聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜性能的影响[J].化工学报,2004,55(9):1564-1567.
    [87]Verma M, Brar SK, Blais JF, et al. Aerobic Biofiltration Processes-Advances in Wastewater Treatment [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2006,10:264-276.
    [88]Stephanopoulo S G. The effect of intraparticle convection on nutrient transport in porous bio logical pellets [J]. Chem Eng Sci,1989,44:2031-2039.
    [89]Bihan Y L, Lessard P. Monitoring biofilter clogging:Biochemical characteristics of the biomass. Water Res,2000,34:4284-4294.
    [90]朱峰,潘涌璋,洪利明,等.多孔矿物载体厌氧固定床处理有机废水研究[J].环境工程学报,2011,5(1):108-112.
    [91]Byers, D L, Meyer, C L, Sun, P T, et al. Method and apparatus for biodegradation of oxygenates. US 6773598.2004.8.10.
    [92]李志荣,陈庆选,王欣泽,等.包埋硝化菌流化床与接触氧化固定床除氨氮效果对比[J].中国给水排水,2007,23(19):52-55.
    [93]高彦宁,刘志军,古川宪治.循环流化床厌氧氨氧化反应器脱氮性能研究[J].现代化工,2011,31(7):75-80.
    [94]李春华,张洪林,邱峰,等.生物流化床的类型及特点[J].工业用水与废水,2002,33(6):7-11.
    [95]李彦锋,赵光辉,马鹏程.改性载体固定化微生物处理高氨氮废水的研究[J].安徽农业科学,2008,36(7):2877-2879.
    [96]李彦锋,周林成,马鹏程,等.活性炭复合亲水性聚氨酯泡沫微生物固定化载体.CN1478891.2004.3.3.
    [97]孙德文.聚氨酯纳米复合泡沫材料的制备及表征研究.兰州大学博士论文.2011.
    [98]李彦锋,周林成,张树江,等.碳纤维复合聚氨酯生物活性载体的制备及其应用.中国发明专利,CN 1837361.2006.9.27.
    [99]岳艳利.大孔聚氨酯载体固定化微生物及其污水处理研究.兰州大学硕士论文.2013.
    [100]张文华,王刚.高效生物滤料及其制备方法.中国发明专利,CN 1876580A.2006.12.13.
    [l]郑俊,吴浩汀.生物床层工艺的理论与工程应用[M].北京:化学工业出版社,2004.
    [2]张遠新.生物床层在污水回用中的应用研究[D].北京工业大学,2003.
    [3]Jiang Chundong, Xu Zhi, Fei Qingzhi, et al. Treatment of Synthetic Wastewater in a Pre-Denitrification Biofilm Reactor Packed with Polyurethane Media [J]. Energy Procedia, 2012,16:1642-1649.
    [4]Ryu H D, Kim D, Lim H E, et al. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system [J]. Process Biochem,2008,43(7):729-735.
    [5]Zhao X, Wang Y M, Ye Z F, et al. Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms [J].Process Biochem,2006,41(7):1475-1483.
    [6]Rafael B. Moura, Marcia H.R.Z. Damianovic, Eugenio Foresti. Nitrogen and carbon removal from synthetic wastewater in a vertical structured-bed reactor under intermittent aeration [J]. Journal of Environmental Management,2012,98:163-167.
    [7]Wang S T, Ma J, Liu B C, et al. Degradation characteristics of secondary effluent of domestic wastewater by combined process of ozonationand biofiltration [J]. J Hazard Mater,2008, 150(1):109-114.
    [8]Libing Chu, Jianlong Wang. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio [J]. Chemosphere,2011,83:63-68.
    [9]李彦锋,周林成,马鹏程,叶正芳,王凯庆.活性炭复合亲水性聚氨酯泡沫微生物固定化载体.CN 1478891.2004.3.3.
    [10]李彦锋,马鹏程,周林成.改性纳米SiOx复合聚氨酯泡沫及其制备方法和应用.中国发明专利,CN 1631976.2005.6.29.
    [11]李彦锋,周林成,张树江,拜永孝.碳纤维复合聚氨酯生物活性载体的制备及其应用.中国发明专利,CN 1837361.2006.9.27.
    [12]周林成.复合型聚氨酯载体制备及其固定化微生物处理废水研究.兰州大学博士论文.2006.
    [13]叶正芳,倪晋仁.污水处理的固定化微生物与游离微生物性能的比较[J].应用基础与工程科学学报,2002,10(4):325-331.
    [14]吴建锋,杨学华,徐晓虹等.体积密度可控的多孔陶瓷滤料的研制.佛山陶瓷,2006,7(11):1-4.
    [15]Young J P, Soon O M,Jong H. Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. CeramInt,2003,29(2):223-227.
    [16]Chen Jiangang, Kong Hainan, Wu Deyi. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J Hazard Mater,2007,139(8):293-300.
    [17]薛金凤,吕波,余兴林等.高强大比表面积粉煤灰滤料的研制.粉煤灰综合利用,2006,12(2):47-48.
    [18]张文华,王刚.高效生物滤料及其制备方法.中国发明专利,CN 1876580A.2006.12.13.
    [19]Trinet F, Heim R, et al. Study of biofilm and fluidization of bioparticles in a three-phase liquidfluidized-bed reactor. Water Sci. Technol,1991,23:1347-1361.
    [20]Ye Z F, Li Y F, et al. Study on gasification wastewater treatment with aerated biological fluidized bed (ABFB). China Environ. Sci,2002,22:32-44.
    [21]Sumino T, Nakamura H, et al. Immobilization of nitrifying bacteria in porous pellets of urethane gel for removal of ammonium nitrogen from wastewater. Appl. Microbiol. Biotechnol, 1992,36:556-562.
    [22]Liu F, Zhao C C, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMCIFB) at different hydraulic loadings and dissolved oxygen concentrations. J. Hazard. Mater,2008,160:161-168.
    [23]Ovez B, Ozgen S, and Yuksel M. Biological denitrification in drinking water using glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochem,2006,41: 1539-1547.
    [24]Modin O, Fukushi K, and Yamamoto K. Denitrification with methane as external carbon source. Water Res,2007,41:2726-2738.
    [25]Sarioglu M. Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Sep. Purif. Technol,2005,41:1-9.
    [1]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [2]李怀正,傅威,白月华等.生物接触氧化预处理源水的设计参数[J].中国给水排水,2001,17:43-50.
    [3]Lazarova V, Nogueira R, Manem J and Melo L. Control of nitrification efficiency in a new biofilm [J]. Water Science and Technology,1995,36(1):31-44.
    [4]谢曙光,张晓健,王占生.生物床层最新发展和运用[J].水处理技术,2004,30(1):4-7.
    [5]雷灵玫,张雁秋,赵耀民.生物脱氮技术研究的新进展[J].江苏环境科技,2003,16(3):43-46.
    [6]郑俊,吴浩汀,程寒飞.生物床层污水处理新技术及工厂实例[M].北京:化学工业出版社,2002.
    [7]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M]北京:中国建筑工业出版社,2003.
    [8]刘文君等.生产性生物陶粒滤池对微污染源水中氨氮的去除效果研究[J].给水排水,1995,10:8-10.
    [9]王春荣,王宝贞,王琳.生物床层内的自养反硝化作用[J].中国环境科学,2004,24(6):746-749.
    [10]Rittrnan B E, MeCariy P L. Modle of steady-state-biofilm kinetics [J]. Biotechnology and Bioengineering,1990,22:2243-2357.
    [11]Takasaki M, Harada M, sato A. Evaluation of the NH4+-N and DOC removal efficiency by submerged biofilm process in Tap [J]. Water Science and Technology,1998,38(5):207-211.
    [12]Kiso y, Jung Y J, Ichinari T, etal. Wastewater treatment performance of a filtration Bio-reactor equipped with a mesh as a filter material [J]. Water Research,2000,34(17):4143-4150.
    [13]刘雨,赵庆良.生物膜反应器进出水底物浓度相关性研究[J].环境科学,1996,17(4):28-30.
    [14]Gilmore K R, etal. Infiuence of organic and ammonia loading on nitrified activity and nitrification performance for a two-stage biological aerated filter system [J]. Water Science and Technology.1999,39(7):227-234.
    [15]Rochard I S. Phosphorus and nitrogen removal from municipal wastewater:Principles and practiee.2nd ed, New York:Lewis Publishs,1999,13-17.
    [16]陈月芳,张万有,宋存义,汪翠萍.城市污水深度处理回用过程中氨氮脱除问题的分析研究[J].工业水处理,2005,25(9):13-15.
    [17]肖羽堂,许建华.水源中NH4+-N对生物预处理污染原水除NH4+-N效果影响研究[J].环境污染治理技术与设备,2002,3(8):1-3.
    [18]Mann A, Fitzpatrik C S B, Stephenson T. Comparison of floating and sunken media biological aerated filters using tracer study techniques[J]. Process Safety and Environmental Protection,1995,73(2):137-143.
    [19]Chudoba J, Cech J S, Chudoba P. The effect of tank configuration on nitrification kinetics [J].Journal Water Pollution Control Federation,1985,57(11):1078-1083.
    [20]Azimi A, Hora N J. The influence of reactor mixing characteristics on the rate of nitrification in activated sludge process [J].Water Res.,1991,25(12):419-423.
    [21]MANN A T, STEPHENSON T. Modeling biological aerated filters for wastewater treatment [J]. Water Res.,1997,31(10):2443-2448.
    [22]张自杰.排水工程[M].北京:中国建筑工业出版社,1997.
    [1]Falkentoft C M, Harremoes P, Mosbaek H, Wilderer P. Combined denitrification and phosphorus removal in a biofilter [J]. Water Sci Technol,2000,41(4/5):493-501.
    [2]Satoshi T, Joseph A, Takayuki M, Akira H. Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewater treatment [J]. Process Biochem,2002,38:599-604.
    [3]Yu L, Yue-Mei L, Shu-Fang Y, Joo-Hwa T. A balanced model for biofilms developed at different growth and detachment forces [J]. Process Biochem,2003,38:1761-1765.
    [4]Hidaka T, Tsuno H. Development of a biological filtration model applied for advanced treatment of sewage [J]. Water Res 2004,38:335-346.
    [5]Hiroshi T, Taira H, Fumitake N. A simple biofilm model of bacterial competition for attached surface [J]. Water Res 2002,36:996-1006.
    [6]Rittmann B E, McCarty p L. Model of steady state biofilm kinetics [J]. Biotechnology and Bioengineering,1980,22(11):2343-2357.
    [7]Rittmann B E. The effect of shear stress on biofihn loss rate [J]. Biotechnology and Bioengineering,1982,24(11):501-506.
    [8]Colasanti R. Cellular automata models of microbial colonies [J]. Binary,1992,4:19-193.
    [9]Wimpenny J W T, Colasanti R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models [J]. FEMS Microbiology Ecology,1997,22(1):1-16.
    [10]Picioreanu C, Van Loosdreeht M C M, Heijnen J J. Discrete differential modeling of biofilm structure [J].Water science and technology,1999,39(7):115-122.
    [11]Rittmann B E, pettis M, Reeves H.W, et al. How biofilm clusters affect substrate flux and ecological selection [J].Water science and technology,1999,39(7):99-105.
    [12]Laspidou C S, Rittmanr B E. Evaluating trends in biofilm density using the UMCCA model [J].Water research,2004,38(14-15):3362-3372.
    [13]Noguera D R, Pizarro G, Stahl D A, et al. Simulation of multi—species biofilm development in three dimensions [J].Water science and technology,1999,39(7):123-130.
    [14]Laspidou C S, Rittmann B E. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular Polymeric substances [J] Water research,2004, 38(14-15):3349-3361.
    [15]Mann A T, Stephenson T. Modelling biological aerated filters for wastewater treatment [J]. Water Research,1997,31(10):2443-2448.
    [16]Wang C R, Li J, Wang B Z, Zhang, G Z. Development of an empirical model for domestic wastewater treatment by biological aerated filter. Process Biochem. [J].2006,41(4):778-782.
    [1]葛学贵,太玉明.沸石在环境治理工程中的应用[J].环境科学与技术,2001,98(6):21-24.
    [2]Wang Y F, Lin F, Pang W Q. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite[J]. J. Hazard. Mater.,2007,142(12):160-164.
    [3]Zheng H, Han L, Ma H, et al. Adsorption characteristics of ammonium ion by zeolite 13X[J]. J. Hazard. Mater.,2008,158(2-3):577-584.
    [4]肖文浚.改性微孔沸石的制备及其去除微污染水源中氨氮的研究[D],武汉理工大学,2003.
    [5]赵亮.微污染原水净化组合工艺最新研究进展[J].净水技术,1997,16(1):15-18.
    [6]Dvaid W F. Applying ozone for organics control and disinfection:A utility and perspective[J]. J AWWA,1991,83(5):32-39.
    [7]R M Hozalske. TOC removal in biological filter[J]. J AWWA,1995,87(12):40-54.
    [8]罗岳平.高锰酸钾在给水处理中的应用分析[J].中国给水排水,2001,17(11):58-59.
    [9]许国仁,李圭白,王向东等.高锰酸钾复合药剂对水中藻类和臭味去除效果生产性试验研究[J].给水排水,1998,24(12):13-15.
    [10]Karapinar N. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions[J]. J. Hazard. Mater.,2009,170(23):1186-1191.
    [11]马军,陈忠林,李圭白.高锰酸盐复合药剂助凝处理高稳定性地表水[J].中国给水排水,1999,19(1):1-3.
    [12]于慧芳,马峥,张振良.饮用水处理技术进展[J].环境保护,1999,22(5):13-17.
    [13]Mumford K A, Shallcross D C, Snape I, et al. Application of temperature dependent semiempirical thermodynaminc ion-exchange model to a multicomponent natural zeolite system[J]. Ind. Eng. Chem. Res.,2008,47(21):8347-8354.
    [14]Thornton A, Pearce P, Parsons S A. Ammonium removal from solution using ion exchange on to mesolite:An equilibrium equilibrium study[J]. J. Hazard. Mater.,2007,147(2-3):883-889
    [15]王栋,包俊.二氧化氯在水处理中的应用[J].西南给水排水,2001,23(4):12-14.
    [16]彭明涛.二氧化氯在水处理中对有机物的去除研究[J].广东化工,2002,16(2):37-39.
    [17]李德州,黄晓东.生物沸石反应器在微污染水源水处理中的应用[J].环境科学,2000, 21(5):71-73.
    [18]D. Pka, W. Chang, S Hong. Use of natural zeolite to enhance nitrification in biofilter[J]. Environmental Engineering,2002,32(23):791-798.
    [19]Chung Y C, Son D H, Ahn D H. Nitrogen and organics removal from industrial wastewater using natural zeolite media[J]. Water Sci. Tech.,2000,42(5):127-134.
    [20]B Gisvold, H Odegaard. Enhancing the removal of ammonia in nitrifying biofilters by the use of a zeolite containing expanded clay aggregate filter media[J]. Water Sci. Tech.,2000,41(9): 107-114.
    [21]G Dirmova, G Mihailov, et al. Combined filter for ammonia removal—part 1:minimal zeolite contact time and requirements for desorption[J]. Water Sci. Tech.,2000,39(8): 123-129.
    [22]田文华,文湘华等.沸石滤料生物床层去除COD和氨氮[J].中国给水排水,2002,18(12):13-15.
    [23]田文华,文湘华等.沸石滤料生物床层启动性能研究[J].环境污染治理技术与设备,2002,3(12):38-42.
    [24]余兰兰.污泥吸附剂的制备及应用研究田].南京理工大学,2006.
    [25]奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,2004.
    [26]温东辉.天然沸石吸附:生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[M].北京:中国环境科学出版社,2003.
    [27]Tsitsis H. G. V, Ronikashvili T.G. Natural zeolites [M]. Chichester, England:Ellis Horwood Limited,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700