新型SO_4~(2-)促进氧化物型固体超强酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO_4~(2-)/M_xO_y型固体超强酸,尤其是SO_4~(2-)/ZrO_2,具有不腐蚀反应装置,环境友好,可在高温下重复使用等优点,近三十年来一直受到国内外催化研究者的广泛关注。与常用的固体酸催化剂相比,它们的最大优点是酸强度高,弥补丁前者在酸强度方面的不足,满足强酸催化反应的需要。而且容易使底物的C-H和C-C键活化,形成碳正离子,促使酸催化反应在相对较低的温度下进行,从而节省能耗,减少副反应,并且有利于生成高辛烷值的支链烃,是一类很有应用潜力的新型绿色催化材料。
     近年来,随着环境保护要求的提高,人们迫切希望替代石油和化学工业中一些重要反应所使用的环境不友好催化剂,如:HF、H_2SO_4、H_3PO_4和AlCl_3等。固体超强酸能在较低温度下活化共价的C-H和C-C键,且兼具多相催化剂的可再生性和液体超强酸的高活性和高选择性的优点,极有可能成为这些环境不友好催化剂的替代品,创立一批无环境污染的清洁工艺。该体系中又以SO_4~(2-)/ZrO_2的酸性最强,对其研究也最多。但是SO_4~(2-)/ZrO_2比表面积和孔容偏小,孔道分布不够单一,这也就限制了它的潜在应用。
     本论文合成了具有较高热稳定性的介孔SO_4~(2-)/Al_2O_3-ZrO_2催化剂,其在许多酸催化反应中的活性明显高于传统的SO_4~(2-)/ZrO_2。首先提出了以介孔γ-Al_2O_3为载体制备负载型介孔SO_4~(2-)/ZrO_2/γ-Al_2O_3固体超强酸体系,其催化活性明显高于文献中常用的以介孔SiO_2为载体制备的负载型SO_4~(2-)/ZrO_2和传统的SO_4~(2-)/ZrO_2催化剂,为介孔固体超强酸的制备提供了新的思路。提出了水热辅助合成非过渡金属氧化物Al_2O_3促进的SO_4~(2-)/ZrO_2及过渡金属氧化物Fe_2O_3促进的SO_4~(2-)/ZrO_2固体超强酸,其催化活性明显高于没有经过水热处理的催化剂,为SO_4~(2-)/ZrO_2型固体超强酸提供了有效的改性方法。同时我们还首先发现了Al_2O_3助剂对SO_4~(2-)/SnO_2固体超强酸体系的促进作用。
     论文的第三章采用模板法(以P84为模板剂),成功合成了经650℃高温焙烧后仍然保持介孔结构的SO_4~(2-)/Al_2O_3-ZrO_2催化剂(记为MSAZ),催化剂中Al_2O_3含量高于20wt%,ZrO_2为四方晶相。MSAZ催化剂的孔径分布较均匀,比表面为165-262m~2/g,孔容为0.156-0.340cm~3/g,表面SO_4~(2-)含量为7.0-8.4%,远远高于传统的SO_4~(2-)/ZrO_2(记为CSZ)。催化剂表面既有L酸位,也有B酸位,并且L酸的酸强度高于B酸。MSAZ催化剂比CSZ具有更多的强酸位和超强酸位。催化反应测试的结果显示,在低温正戊烷转化反应、甲苯与苯甲酰氯的苯甲酰化反应及1,3,5-三叔丁基苯的裂解反应中,MSAZ催化剂的催化活性明显高于CSZ催化剂。1,3,5-三叔丁基苯裂解反应的结果展示了介孔MSAZ催化剂相对于微孔沸石的优点和在大分子反应领域中(如:制药、精细化工等)潜在的应用前景。
     第四章以介孔γ-Al_2O_3为载体,用化学液相沉积法制备了新的负载型介孔SO_4~(2-)/ZrO_2/γ-Al_2O_3催化剂体系。该催化剂孔径分布较均匀,比表面为217-258m~2/g,孔容为0.296-0.352 cm~3/g,表面SO_4~(2-)含量为6.8-7.7%硫含量,明显高于传统的SO_4~(2)-/ZrO_2(记为CSZ)。催化剂中ZrO_2为四方晶相,其酸性和催化活性可以通过改变ZrO_2负载量来调节。催化剂表面具有L酸和B酸位。SO_4~(2-)/ZrO_2负载于介孔γ-Al_2O_3上,酸强度基本不变,但负载于MCM-41载体上,酸强度明显减弱,且前者酸量大于后者以及CSZ。介孔SO_4~(2-)/ZrO_2/γ-Al_2O_3催化剂比MCM-41负载的SO_4~(2-)/ZrO_2和CSZ具有更高的催化活性。固体超强酸催化剂的硫酸化试剂对反应活性的影响顺序如下:(NH_4)_2S_2O_8>H_2SO_4>(NH_4)_2SO_4。对于大分子反应,介孔固体超强酸的催化活性明显高于微孔沸石分子筛及传统的SO_4~(2-)/ZrO_2,在催化大分子反应中表现出良好的应用前景。
     第五章采用水热辅助方法合成了少量非过渡金属氧化物Al_2O_3促进的SO_4~(2-)/ZrO_2固体超强酸催化剂。实验结果表明,水热辅助合成有助于增大Al_2O_3促进SO_4~(2-)/ZrO_2固体超强酸的比表面积,稳定样品表面的硫物种,提高催化剂的酸量,但不会改变Al的配位情况。催化剂表面既具有B酸位又具有L酸位,水热处理后催化剂的B酸位减少,L酸位增加。水热辅助合成有助于提高催化剂的蒎烯异构化活性,其中水热处理一天的催化剂酸量最多,蒎烯异构化活性最高,达到80.8%,比没有经过水热处理的样品(52.3%)活性提高了54%。
     第六章采用了与第五章相同的水热辅助方法合成了过渡金属氧化物Fe_2O_3促进的SO_4~(2-)/ZrO_2固体超强酸催化剂。实验结果表明,水热辅助合成有助于增大Fe_2O_3促进SO_4~(2-)/ZrO_2固体超强酸的比表面积,稳定样品表面的硫物种,抑制氧化锆晶粒长大,有助于提高样品的蒎烯异构化活性。SO_4~(2-)/ZrO_2中掺杂少量Fe_2O_3可以增加比表面、硫含量,会使氧化锆晶粒变小,可以提高蒎烯异构化活性,其中经过水热处理的含Fe量为2wt%的样品活性最高,达到71.3%,比相同Fe含量但没有经过水热处理的样品(45.8%)活性提高了56%,是SO_4~(2-)/ZrO_2催化剂2.2倍。
     第七章我们用共沉淀法制备了掺杂少量Al_2O_3的SO_4~(2-)/SnO_2。SO_4~(2-)/SnO_2-Al_2O_3催化剂的比表面为139-150 m~2/g,明显大于SO_4~(2-)/SnO_2催化剂(118 m~2/g)。SO_4~(2-)/SnO_2-Al_2O_3催化剂表面SO_4~(2-)含量为5.8-8.7 wt%,明显高于SO_4~(2-)/SnO_2催化剂(5.0wt%),表明添加少量Al_2O_3能使SO_4~(2-)/SnO_2催化剂稳定更多的表面硫物种。经500℃高温焙烧后,催化剂中的SnO_2为四方相,随着Al_2O_3含量的增加,SnO_2的衍射峰强度有所减弱,说明Al_2O_3的存在抑制了SnO_2晶粒的长大。SO_4~(2-)/SnO_2-Al_2O_3催化剂中的Al以六配位形式存在,催化剂表面只有L酸位,且酸性位明显多于SO_4~(2-)/SnO_2催化剂。考察了催化剂在2-甲氧基萘与乙酸酐的酰化反应中的催化活性。结果发现,SO_4~(2-)/SnO_2中掺入少量的Al_2O_3可以明显提高2-甲氧基萘酰化反应的活性,掺杂0.2-0.5 mol%的Al_2O_3后,催化剂的活性提高最多,由原来的36.1%提高至58%左右,提高了约60%。活性增加的原因是Al_2O_3助剂可提高催化剂表面SO_4~(2-)的含量和酸性位数目。
SO_4~(2-)/M_xO_y type solid superacids,especially SO_4~(2-)/ZrO_2,have attracted much attention in the last 30 years,because they are noncorrosive,environmentally friendly and reusable at high temperatures.Compared with traditional solid acid catalysts,the typical feature of these solid superacids is that they are highly acidic.Thus,they make up the deficiency in acid strength for the former acid catalysts,and meet the requirement for the strong acid-catalyzed reactions.Mover,they are easy to activate C-H and C-C bonds of the substrates,and catalyze the reaction at relatively low temperatures.As a result,energy can be saved and side reactions are decreased.Also branched hydrocarbons with high octane number are favored to produce.Therefore, they are recognized as a class of novel catalytic materials which are green and have potential application.
     Recently,with the increasing of environmental constrains,the environmental unfriendly catalysts used in petrochemical industry,such as HF,H_2SO_4,H_3PO_4 and AlCl_3,are urgent to be substituted by new clean catalysts.Solid superacids are capable of activating the covalent C-H and C-C bonds at lower temperatures,and reveal all the advantages of heterogeneous catalysts such as regenerability coupled with the benefits of liquid superacids such as high activity and selectivity.They are possible to become the substitute of those environmentally unfriendly catalysts,and thus a number of environmental friendly processes may be established.In these solid superacids,the acidity of SO_4~(2-)/ZrO_2 is strongest,and the research of this kind of solid superacid catalysts is also most broad.However,for the SO_4~(2-)/ZrO_2 type solid superacid catalysts,the relatively small surface area and pore volume and non-uniform pore size limits their potential applications.
     In the present dissertation,we prepared mesoporous sulfated Al_2O_3-ZrO_2 catalysts with higher hydrothermal stability,and the catalysts are more active than the conventional SO_4~(2-)/ZrO_2 for various acid-catalyzed reactions.We put forward for the first time to prepare a novel mesoporous solid superacid system by loading sulfated zirconia into mesostructuredγ-Al_2O_3.The novel mesoporous solid superacids exhibit superior catalytic performances to mesostructured SiO_2 supported sulfated zirconia that were often studied in the literature as well as traditional sulfated zirconia catalysts, affording a new pathway for the preparation of mesoporous solid superacids.We advanced a method of hydrothermal assistant synthesis for preparing non-transition metal oxide Al_2O_3 and transition metal oxide Fe_2O_3 promoted SO_4~(2-)/ZrO_2 solid superacid catalysts.Their catalytic activities are distinctly higher than the corresponding catalysts without hydrothermal assistant treatment,supplying an effective modification method for SO_4~(2-)/ZrO_2 solid superacid catalysts.At the same time,we discover for the first time the promoting effect of Al_2O_3 on SO_4~(2-)/SnO_2 solid superacid.
     In the third chapter of this thesis,mesoporous sulfated Al_2O_3-ZrO_2(MSAZ) catalysts with large surface areas and pore volumes after calcination at high temperature(650℃) and with higher Al_2O_3 content than 20wt%were successfully prepared from a template of block copolymer(P84).Zirconia in MSAZ catalysts is tetragonal crystalline.The pore diameters are narrow in distribution.The surface area of MSAZ catalysts is 165-262m~2/g,the pore volume is 0.156-0.340cm~3/g and surface SO_4~(2-) content is 7.0-8.4%,which are much higher than those of conventional sulfated zirconia(labeled as CSZ).The nature of acid sites present on the MSAZ catalysts is Lewis and Brφnsted type,and the strength of Lewis acid sites is stronger than that of Brφnsted ones.MSAZ catalysts have greater number of strong and very strong acid sites than CSZ.Catalytic tests show that mesoporous sulfated Al_2O_3-ZrO_2 catalysts exhibit higher activities than conventional sulfated zirconia for conversion of n-pentane at low temperature,Friedel-Crafts benzoylation of toluene with benzoyl chloride and dealkylation of 1,3,5-tri-tert-butyl-benzene.Catalytic evaluation for the dealkylation of 1,3,5-tri-tert-butyl-benzene shows that mesostructured MSAZ catalysts elucidate the advantages evidently over microporous zeolites and provide potential application for catalyzing bulky molecules such as those encountered in the production of pharmaceuticals and fine chemicals.
     In the fourth chapter,we have shown that novel mesoporous SO_4~(2-)/ZrO_2/γ-Al_2O_3 catalysts were successfully synthesized via chemical liquid deposition method using the carrier of mesostructuredγ-Al_2O_3.The pore diameters of the catalysts are narrow in distribution,the surface area is 217-258m~2/g,the pore volume is 0.296-0.352 cm~3/g,and the surface sulfate content is 6.8-7.7%,which are evidently higher than those of conventional sulfated zirconia(labeled as CSZ).Zirconia in the catalysts exhibits only the tetragonal phase.The acidity and catalytic activity can be adjusted via changing the loading of ZrO_2.Both Lewis and Brφnsted acid sites are present on the catalysts.Mesostructuredγ-Al_2O_3 supported sulfated zirconia catalysts have the equivalent acid strength to sulfated zirconia,but have stronger acid strength than MCM-41 supported sulfated zirconia.Moreover,the number of acid sites is higher on the former catalysts than on the latter one and CSZ.Hence,the novel mesoporous solid superacids are more active than MCM-41 supported sulfated zirconia and sulfated zirconia for various acid-catalyzed reactions.The different sulfating agents lead to different sulfate contents,which explains the differences in acidity and catalytic reactivity,the order is(NH_4)_2S_2O_8>H_2SO_4>(NH_4)_2SO_4.The catalytic activity of mesoporous solid superacids is evidently higher than microporous zeolites and conventional sulfated zirconia in catalyzing bulky molecules.
     In the fifth chapter,non-transition metal oxide Al_2O_3 promoted SO_4~(2-)/ZrO_2 solid superacid catalysts were synthesized through hydrothermal assistant treatment method. The results indicate that hydrothermal assistant synthesis is helpful for increasing the surface areas of Al_2O_3 promoted SO_4~(2-)/ZrO_2 solid superacid catalysts,stabilizing the sulfate species on surface of the catalysts,and enhancing the acid amount of catalysts, but the coordinate circumstance of Al remains unchanged.The nature of acid sites present on the catalysts is Lewis and Brφnsted type,and after hydrothermal treatment, the number of Lewis acid sites increases and that of Brφnsted ones decreases. Hydrothermal assistant synthesis can enhance the catalytic activity ofα-pinene isomerization reaction.The acid amount and catalytic acidity forα-pinene isomerization is highest after 1 day hydrothermal treatment.The conversion is 80.8%, increased by 54%in comparison with the corresponding untreated sample(52.3%).
     In the sixth chapter,transition metal oxide Fe_2O_3 promoted SO_4~(2-)/ZrO_2 solid superacid catalysts were synthesized through hydrothermal assistant treatment method. The results clearly indicate that hydrothermal assistant synthesis is also helpful for increasing the surface area of Fe_2O_3 promoted SO_4~(2-)/ZrO_2 solid superacid catalysts, stabilizing the surface sulfate species,restraining the growth of ZrO_2 crystallites, enhancing the catalytic activity ofα-pinene isomerization reaction.Incorporation of small amounts of Fe_2O_3 into SO_4~(2-)/ZrO_2 results in higher surface areas,more surface SO_4~(2-) content and smaller crystallite size of ZrO_2.Hence,the catalytic activity ofα-pinene isomerization reaction is improved.The activity of the catalyst containing 2wt%Fe is highest.The conversion reaches 71.3%,increased by 56%compared with the corresponding sample without hydrothermal assistant treatment(45.8%),and is 2.2 times as high as SO_4~(2-)/ZrO_2.
     In the seventh chapter,we prepared small amounts of Al_2O_3 doped SO_4~(2-)/SnO_2 through co-precipitation method.SO_4~(2-)/SnO_2-Al_2O_3 catalysts have distinctively larger surface area(ranging from 139 to 150m~2/g) than SO_4~(2-)/SnO_2(118m~2/g).The content of SO_4~(2-) on the surface of SO_4~(2-)/SnO_2-Al_2O_3 catalysts is 5.8-8.7wt%),obviously higher than SO_4~(2-)/SnO_2(5.0wt%),showing that incorporation of small amounts of Al_2O_3 can stabilize more sulfur species on the surface of SO_4~(2-)/SnO_2.SnO_2 in the catalysts is tetragonal crystalline after calcination at 500℃.As the Al_2O_3 content is increased,the intensity of characteristic diffractive peaks of SnO_2 decreases progressively.This result demonstrates that the growth of SnO_2 crystallites is inhibited in the presence of Al_2O_3.There is only six-coordinate aluminum species in the SO_4~(2-)/SnO_2-Al_2O_3 catalysts.Only Lewis acid sites are present on the catalysts,and the number of acid sites is increased after incorporation of Al_2O_3 into SO_4~(2-)/SnO_2.Benzoylation of 2-Methoxynaphthalene with acetic anhydride was used as a test reaction to investigate the activities of the catalysts.The results indicate that incorporation of Al_2O_3 into SO_4~(2-)/SnO_2 can enhance the catalytic activity.The activity of SO_4~(2-)/SnO_2 increases most after doping 0.2-0.5 mol%Al_2O_3,increased by about 60%(from 36.1%to 58%). The reason for activity enhancement is that the surface SO_4~(2-) content and number of acid sites of SO_4~(2-)/SnO_2 catalysts are increased after incorporation of small amounts of Al_2O_3.
引文
[1]A.Corma,Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J],Chem.Rev.,1995,95:559-613.
    [2]W.D.Bossaert,D.E.D.Vos,W.M.V.Rhijn,et al.,Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides[J],J.Catal.,1999,182:156-164.
    [3]M.H.Lin,C.F.Blanford,A.Stein,Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts[J],Chem.Mater.,1998,10:467-470.
    [4]D.Margolese,J.A.Melero,S.C.Christiansen,et al.,Direct syntheses of ordered SBA-15 mesoporous silica containing sulphonic acid groups[J],Chem.Mater.,2000,12:2448-2459.
    [5]I.Dfaz,F.Mohino,J.P.Pariente,et al.,Synthesis,characterization and catalytic activity of MCM-41-type mesoporous silica functionalized with sufonic acid[J],Appl.Catal.A:General,2001,205:19-30.
    [6]W.M.V.Rhijn,D.E.D.Vos,B.F.Sels,et al.,Sufonic acid functionalized ordered mesoporous materials as catalysts for condensation and esterification reactions[J],Chem.Commun.,1998:317-318.
    [7]巩雁军,李英,王树国等,苯及苯磺酸基官能化的中孔分子筛的合成及催化应用[J],高等学校化学学报,2000,21:1916-1918.
    [8]袁兴东,沈建,李国辉等,SBA-15介孔分子筛表面的磺酸基改性及其催化性能[J],催化学报,2002,23:435-438.
    [9]袁兴东,沈建,李国辉等,表面含磺酸基的介孔分子筛催化剂SBA-15-SO_3H的制备及其催化性能[J],高等化学学报,2002,23:2332-2335.
    [10]袁兴东,沈建,李国辉等,表面含磺酸基的介孔分子筛催化剂SBA-15-SO_3H 的直接合成[J],催化学报,2003,23:83-86.
    [11]吴越,取代硫酸、氢氟酸等液体酸催化剂的途径[J],催化进展,1998,10:158-171.
    [12]M.Hino,S.kobayashi,K.Arata,Reactions of butane and isobutene catalyzed by zirconium oxide treated with sulfate ion.Solid superacid catalyst[J],J.Am.Chem.Soc.,1979,101:6439-6441.
    [13]M.Hino,K.Arata,Synthesis of solid superacid catalyst with acid strength of H0<-16.04[J],J.Chem.Soc.Chem.Commun.,1980,121:851-852.
    [14]G.D.Yadav,J.J.Nair,Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J],Micropor.Mesopor.Mater.,1999,33:1-48.
    [15]Y.D.Xia,W.M.Hua,Z.Gao,Benzoylation of toluene with benzoyl chloride on Al-promoted sulfated solid superacids[J],Catal.Lett.,1998,55:101-104.
    [16]C.Venkatesan,A.P.Singh,Condensation of acetophenone to α,β-unsaturated ketone(dypnone) over solid acid catalysts[J],J.Mol.Catal.A:Chemical,2002,181:179-187.
    [17]华为琦,周力,吴肖群等,SO_4~(2-)/M_nO_m型固体超强酸及其制备技术[J],石油化工,1997,26:553-560.
    [18]刘小军,于广锁,王亦飞等,SO_4~(2-)/M_xO_y型无机固体超强酸研究进展[J],工业催化,2001,9(6):35-40.
    [19]曾健青,罗庆云,王琴等,SO_4~(2-)/M_nO_m型固体超强酸催化剂的研究进展[J],石油化工,1994,23:191-197.
    [20]缪长喜,陈建民,高滋,SO_4~(2-)/ZrO_2超强酸制备方法的改进[J],高等学校化学学报,1995,16:591-594.
    [21]高滋,陈建民,唐颐,SO_4~(2-)/ZrO_2超强酸体系形成过程的研究[J],高等学校化学学报,1992,13:1498-1502.
    [22]C.Morterra,G.Cerrato,F.Pinna et al.,Crystal phase,spectral features,and catalytic activity of sulfate-doped zirconia systems[J],J.Catal.,1995,157:109-123.
    [23]D.A.Ward,E.I.Ko,Sol-Gel synthesis of zirconia supports:Important properties for generating n-butane isomerization activity upon sulfate promotion[J],J.Catal.,1995,157:321-333.
    [24]W.Stichert,F.Schuth,Synthesis of catalytically active high surface area monoclinic sulfated zirconia[J],J.Catal.,1998,174:242-245.
    [25]W.Stichert,F.Schuth,S.Kuba,et al.,Monoclinic and tetragonal high surface area sulfated zirconias in butane isomerization:CO adsorption and catalytic results[J],J.Catal.,2001,198:277-285.
    [26]赵玉宝,曾燕伟,陶克毅,SO_4~(2-)/ZrO_2的相结构和超强酸性及其对丁烷异构化反应的催化活性[J],催化学报,2002,23:168-172.
    [27]C.Morterra,G.Cerrato,C.Emanuel,et al.,On the surface acidity of some sulfated-doped ZrO_2 catalysts[J],J.Catal.,1993,142:349-367.
    [28]N.Katada,J.Endo,K.Notsu et al.,Superacidity and catalytic activity of sulfated zirconia[J],J.Phys.Chem.B.,2000,104:10321-10328.
    [29]佘励勤,李宣文,固体催化剂的研究方法 第四章 化学吸附与表面酸性测定 (下)[J].,石油化工,2000,29:321-635.
    [30]杨锡姚,固体催化剂的研究方法 第十三章 程序升温分析技术(下)[J],石油化工,2002,31:63-73.
    [31]T.Jin,T.Yamaguchi,K.Tanabe,Mechanism of acidity generation on sulfur-promoted metal oxides[J],J.Phys.Chem.,1986,90:4794-4796.
    [32]高滋,陈建民,唐颐等,用常温正丁烷异构化反应表征固体超强酸性[J],物理化学学报,1994,10:698-703.
    [33]高滋,华伟明,陈建民 等,正戊烷异构化反应表征固体超强酸性[J],物理化学学报,1994,10:897-902.
    [34]高滋,陈建民,SO_4~(2-)/TiO_2和SO_4~(2-)/Fe_2O_3固体超强酸研究[J],高等学校化学学报,1994,15:873-877.
    [35]T.Yang,T.chang,C.Yeh,Acidities of sulfate species formed on a superacid of sulfated alumina[J],J.Mol.Catal.A:Chemical,1997,115:339-346.
    [36]T.Yamaguchi,T.Jin,K.Tanabe,Structure of acid sites on sulfur-promoted iron oxide[J],J.Phys.Chem.,1986,90:3148-3152.
    [37]D.A.Ward,E.I.Ko,One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacid[J],J.Catal.,1994,150:18-33.
    [38]T.Yamaguchi,Recent progress in solid superacid,Appl.Catal.,1990,61:1-25.
    [39]M.Bensitel,O.Saur,J.C.Lavalley,An infrared study of sulfated zirconia[J],Mater.Chem.Phys.,1988,19:147-156.
    [40]K.Arata,M.Hino,Preparation of superacids by metal oxides and their catalytic action[J],Mater.Chem.Phys.,1990,26:213-237.
    [41]A.Clearfield,G.P.D.Serrette,A.H.Khazi-Syed,Nature of hydrous zirconia and sulfated hydrous zirconia[J],Catal.Today,1994,20:295-312.
    [42]L.M.Kustov,V.B.Kazansky,F.Figueras,et al.,Investigation of the acidic properties of ZrO_2 modified by SO_4~(2-) anions[J],J.Catal.,1994,150:143-149.
    [43]F.Babou,G.Coudurier,J.C.Vedrine,Acidic properties of sulfated zirconia:An infrared spectroscopic study[J],J.Catal.,1995,151:341-349.
    [44]V.Adeeva,J.W.Dehaan,J.Janchen,et al.,Acid sites in sulfated and metal-promoted zirconium dioxide catalysts[J],J.Catal.,1995,151:364-372.
    [45]R.L.White,E.C.Sikabwe,M.A.Coelho,Potential role of penta-coordinated sulfur in the acid site structure of sulfated zirconia[J],J.Catal.,1995,157:755-758.
    [46]夏勇德,华伟明,高滋,S_2O_8~(2-)处理的ZrO_2固体超强酸上的正丁烷异构化反应[J],化学学报,1999,57:1325-1331.
    [47]李忠海,戴益民,文松年 等,原子价壳层电子量子拓扑指数与元素电负性的关系[J],化学学报,2005,63:1348-1356.
    [48]Takao Kimura,Development of Pt/SO_4~(2-)/ZrO_2 catalyst for isomerization of light naphtha[J],Catalysis Today,2003,81:57-63.
    [49]蒋平平,卢冠忠,固体超强酸催化剂改性研究进展[J],现代化工,2002,22(7):13-17.
    [50]缪长喜,谢在库,陈庆龄,固体超强酸催化剂研究的新进展[J],石油炼制与化工,1998,29(2):29-32.
    [51]C.X.Miao,Z.Gao,Preparation and properties of ultrafine SO_4~(2-)/ZrO_2 superacid catalyst[J],Mater.Chem.Phy.,1997,50:15-19.
    [52]G.K.Chuah,S.H.Liu,S.Jaenicke and L.J.Harrison,Cyclisation of Citronellal to Isopulegol Catalysed by Hydrous Zirconia and Other Solid Acids[J],J.Catal.,2001,200:352-359.
    [53]Y.Y.Huang,B.Y.Zhao,Y.C.Xie,A noval way to prepare silica supported sulfated titania[J],Appl.Catal.A:General,1998,171:65-73.
    [54]Y.Y.Huang,B.Y.Zhao,Y.C.Xie,A new method to prepare silica- or alumina-supported sulfated zirconia[J],Appl.Catal.A:General,1998,173:27-35.
    [55]T.Lei,J.S.Xu,Y.Tang,et al.,New solid superacid catalysts for n-butane isomerization:γ-Al_2O_3 or SiO_2 supported sulfated zirconia[J],Appl.Catal.A:General,2000,192:181-188.
    [56]Y.X.Jiang,X.M.Cen,Y.F.Mo,et al.,Preparation and properties of Al-PILC supported SO_4~(2-)/TiO_2 superacid catalyst[J],J.Mol.Catal.A:Chemical,2004,213:231-234.
    [57]江国东,余灯华,缪世军,分子筛型超强酸催化剂的研究新进展[J],化学反应工程与工艺,2003,19:78-82.
    [58]E.E.Platero,M.P.Mentruit,C.O.Arean,et al.,FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate[J],J.Catal.,1996,162:268-276.
    [59]Y.Y.Huang,T.J.McCarthy,W.M.H.Sachtler,Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure[J],Appl.Catal.A:General,1996,148:135-154.
    [60]Y.Sun,L.Yuan,W.Wang,et al.,Mesostructured sulfated zirconia with high catalytic activity in n-butane isomerization[J],Catal.Lett.,2003,87:57-61.
    [61]C.T.Kresge,M.E.Leonowicz,W.J.Roth,et al.,Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J],Nature,1992,359:710-712.
    [62]J.S.Beck,J.C.Vartuli,W.J.Roth,et al.,A new family of mesoporous molecular sieves prepared with liquid crystal templates[J],J.Am.Chem.Sot.,1992,114:10834-10843.
    [63]A.Corma,From microporous to mesoporous molecular sieve materials and their use in catalysis[J],Chem.Rev.,1997,97:2373-2420.
    [64]A.Sayari,Catalysis by Crystalline Mesoporous Molecular Sieves[J],Chem.Mater.,1996,8:1840-1852.
    [65]雷霆,华伟明,唐颐等,MCM-41负载SO_4~(2-)/ZrO_2超强酸的性能研究[J],高等学校化学学报,2000,21:1240-1243.
    [66]Y.Sun,L.Zhu,H.Lu,et al.,Sulfated zirconia supported in mesoporous materials [J],Appl.Catal.A:General,2002,237:21-31.
    [67]Q.H.Xia,K.Hidajat,S.Kawi,Synthesis of SO_4~(2-)/ZrO_2/MCM-41 as a new superacid catalyst[J],Chem.Commun.,2000:2229-2230.
    [68]Q.H.Xia,K.Hidajat,S.Kawi,Effect of ZrO_2 loading on the structure,acidity,and catalytic activity of the SO_4~(2-)/ZrO_2/MCM-41 acid catalyst[J],J.Catal.,2002,205:318-331.
    [69]C.L.Chen,S.Cheng,H.P.Lin,et al.,Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve[J],Appl.Catal.A:General,2001,215:21-30.
    [70]C.L.Chen,T.Li,S.Cheng,et al.,Catalytic behavior of alumina-promoted sulfated zirconia supported on mesoporous silica in butane isomerization[J],Catal.Lett.,2002,78:223-229.
    [71]韩松,王伟,陈长林等,铝对固体超强酸/介孔分子筛催化性能的促进作用[J],高校化学工程学报,2003,17:294-297.
    [72]W.Wang,C.L.Chen,N.P.Xu,et al.,Well-dispersed gallium-promoted sulfated zirconia on mesoporous MCM-41 silica[J],Catal.Lett.,2002,83:281-285.
    [73]W.M.Hua,Y.H.Yue,Z.Gao,Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2[J],J.Mol.Catal.A:Chemical,2001,170:195-202.
    [74]C.Y.Hsu,C.R.Heimbuch,C.T.Armes,et al.,A highly active solid superacid catalyst for n-butane isomerization:a sulfated oxide containing iron,manganese and zirconium[J],J.Chem.Soc.Chem.Commun.,1992:1645-1646.
    [75]A.Jatia,C.Chang,J.D.MacLeod,et al.,ZrO_2 promoted with sulfate,iron and manganese:A solid superacid catalyst capable of low-temperature n-butane isomeration[J],Catal.Lett.,1994,25:21-28.
    [76]M.A.Coelho,D.E.Resasco,E.C.Sikabwe,et al.,Modification of the catalytic properties of sulfated zirconia by addition of metal promoters[J],Catal.Lett.,1995,32:253-262.
    [77]C.X.Miao,W.M.Hua,J.M.Chen,et al.,Studies on SO_4~(2-) promoted mixed oxide superacids[J],Catal.Lett.,1996,36:187-191.
    [78]缪长喜,华伟明,陈建民等,SO_4~(2-)促进多元氧化物固体超强酸研究[J],中国科学(B),1996,26:275-281.
    [79]Y.D.Xia,W.M.Hua,Y.Tang,et al.,A highly active solid superacid catalyst for n-butane isomerization:persulfate modified Al_2O_3-ZrO_2[J],Chem.Commun.,1999:1899-1900.
    [80]W.M.Hua,Y.D.Xia,Y.H.Yue,et al.,Promoting effect of Al on SO_4~(2-)/M_xO_y (M=Zr,Ti,Fe) catalysts[J],J.Catal.,2000,196:104-114.
    [81]曹崇江,陈长林,徐南平,镓掺杂SO_4~(2-)/ZrO_2的制备及其对正戊烷异构化反应的催化性能[J],催化学报,2003,24:447-451.
    [82]J.A.Moreno and G.Poncelet,Isomerization of n-Butane over Sulfated Al- and Ga-Promoted Zirconium Oxide Catalysts.Influence of Promoter and Preparation Method[J],J.Catal.,2001,203:453-465.
    [83]M.Signoretto,S.Melada,F.Pinna,Ga_2O_3-promoted sulfated zirconia systems:Morphological,structural and redox properties[J],Micropor.Mesopor.Mater.,2005,81:19-29.
    [1]K.Tanabe,M.Misono,Y.Ono,et al.,New Solid Acids and Bases[M],Tokyo:Kodansha,1989.
    [2]A.Corma,Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions[J],Chem.Rev.,1995,95:559-614.
    [3]X.Song,A.Sayari,Sulfated zirconia-based strong solid-acid catalysts:Recent progress[J],Catal.Rev.Sci.Eng.,1996,38:329-412.
    [4]G.D.Yadav,J.J.Nair,Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J],Micropor.Mesopor.Mater.,1999,33:1-48.
    [5]M.Hino,K.Arata,Solid catalysis treated with anions-sythesis of solid superacid catalyst with acid strength of H_0 Less-Than-or-Equal-to-16.04[J],J.Chem.Soc.Chem.Commun.,1980:851-852.
    [6]高滋,陈建民,唐颐,ZrO_2/SO_4~(2-)超强酸体系形成过程的研究,高等学校化学学报,1992,12:1498-1502.
    [7]F.R.Chen,G.Coudurier,J.F.Joly,et al.,Superacid and catalytic properties of sulfated zirconia[J],J.Catal.,1993,143:616-626.
    [8]C.X.Guo,S.Yao,J.H.Cao,et al.,Alkylation of isobutane with butenes over solid superacids,SO_4~(2-)/ZrO_2 and SO_4~(2-)/TiO_2[J],Appl.Catal.A:General,1994,107:229-238.
    [9]D.A.Ward,E.I.Ko,One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids[J],J.Catal.,1994,150:18-33.
    [10]T.Lei,W.M.Hua,Y.Tang,Y.H.Yue,et al.,Studies on MCM-41 supported SO_4~(2-)/ZrO_2 solid superacid catalysts[J],Chem.J.Chin.Univ.,2000,21:1240-1243.
    [11]W.M.Hua,Y.H.Yue,Z.Gao,Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2[J],J.Mol.Catal.A:Chemical,2001,170:195-202.
    [12]C.L.Chen,S.Cheng,H.P.Lin,et al.,Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve[J],Appl.Catal.A:General,2001,215:21-30.
    [13]Q.H.Xia,K.Hidajat,S.Kawi,Effect of ZrO_2 Loading on the Structure,Acidity,and Catalytic Activity of the SO_4~(2-)/ZrO_2/MCM-41 Acid Catalyst[J],J.Catal.,2002,205:318-331.
    [14]Y.Y.Sun,L.Zhu,H.J.Lu,et al.,Sulfated zirconia supported in mesoporous materials[J],Appl.Catal.A:General,2002,237:21-31.
    [15]M.V.Landau,L.Titelman,L.Vradman,et al.,Thermostable sulfated 2-4 nm tetragonal ZrO_2 with high loading in nanotubes of SBA-15:a superior acidic catalytic material[J],Chem.Commun.,2003:594-595.
    [16]M.A.Ecormier,A.F.Lee,K.Wilson,High activity,templated mesoporous SO_4~(2-)/ZrO_2/HMS catalysts with controlled acid site density for α-pinene isomerisation [J],Micropor.Mesopor.Mater.,2005,80:301-310.
    [17]Y.Y.Huang,T.J.Mccarthy,W.M.H.Sachtler,Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure[J],Appl.Catal.A:General,1996,148:135-154.
    [18]U.Ciesla,S.Schacht,G.D.Stucky,et al.,Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis[J],Angew.Chem.Int.Ed.Engl.,1996,35:541-543.
    [19]X.Yang,F.C.Jentoft,R.E.Jentoft,et al.,Sulfated Zirconia with Ordered Mesopores as an Active Catalyst for n-Butane Isomerization[J],Catal.Lett.,2002,81:25-31.
    [20]Y.Y.Sun,L.N.Yuan,W.Wang,et al.,Meso-structured sulfated zirconia with high catalytic activity in n-butane isomerization[J],Catal.Lett.,2003,87:57-61.
    [21]Z.Gao,Y.D.Xia,W.M.Hua,et al.,New catalyst of SO_4~(2-)/Al_2O_3-ZrO_2 for n-butane isomerization[J],Top.Catal.,1998,6:101-106.
    [22]Y.D.Xia,W.M.Hua,Y.Tang,et al.,A highly active solid superacid catalyst for n-butane isomerization:persulfate modified Al_2O_3-ZrO_2[J],Chem.Commun.,1999:1899-1900.
    [23]W.M.Hua,Y.D.Xia,Y.H.Yue,et al.,Promoting effect of Al on SO_4~(2-)/M_xO_y (M=Zr,Ti,Fe) isomerization catalysts[J],J.Catal.,2000,196:104-114.
    [24]J.A.Moreno,G.Poncelet,Isomerization of n-Butane over Sulfated Al- and Ga-Promoted Zirconium Oxide Catalysts.Influence of Promoter and Preparation Method [J],J.Catal.,2001,203:453-465.
    [25]P.Canton,R.Olindo,F.Pinna,et al.,Alumina-Promoted Sulfated Zirconia System:Structure and Microstructure Characterization[J],Chem.Mater.,2001,13:1634-1641.
    [26]W.M.Hua,J.Sommer,Hydroisomerization of n-butane over sulfated zirconia catalysts promoted by alumina and platinum[J],Appl.Catal.A:General,2002,227:279-286.
    [27]Y.Y.Sun,L.N.Yuan,S.Q.Ma,et al.,Improved catalytic activity and stability of mesostructured sulfated zirconia by Al promoter[J],Appl.Catal.A:General,2004,268:17-24.
    [28]J.H.Wang,C.Y.Mou,Alumina-promoted mesoporous sulfated zirconia:A catalyst for n-butane isomerization[J],Appl.Catal.A:General,2005,286:128-136.
    [29]Y.Y.Sun,S.Walspurger,B.Louis,et al.,Investigation of factors influencing catalytic activity for n-butane isomerization in the presence of hydrogen on Al-promoted sulfated zirconia[J],Appl.Catal.A:Ge+eral,2005,292:200-207.
    [30]Z.R.Zhang,T.J.Pinnavaia,Mesostructured γ-Al_2O_3 with a Lathlike Framework Morphology[J],J.Am.Chem.Soc.,2002,124:12294-12301.
    [31]B.H.Davis,R.A.Keogh,R.Sarinivasan,Sulfated zirconia as a hydrocarbon conversion catalyst[J],Catal.Today,1994,20:219-256.
    [32]R.A.Comelli,C.R.Vera,J.M.Parera,Influence of ZrO_2 crystalline structure and sulfate ion concentration on the catalytic activity of SO_4~(2-)-ZrO_2[J],J.Catal.,1995,151:96-101.
    [33]C.X.Miao,W.M.Hua,J.M.Chen,et al.,Sulfated binary and ternary oxide solid superacids[J],Catal.Lett.,1996,39:406-415.
    [34]D.Farcasiu,J.Q.Li,S.Cameron,Preparation of sulfated zirconia catalysts with improved control of sulfur content.2.Effect of sulfur content on physical properties and catalytic activity[J],Appl.Catal.A:G.,1997,151:173-184.
    [35]D.A.Ward,E.I.Ko,Sol-gel synthesis of zirconia supports:important properties for generating n-butane isomerization activity upon sulfate promotion[J],J.Catal.,1995,157:321-333.
    [36]C.Morterra,G.Cerrato,F.Pinna,M.Signoretto,Crystal phase,spectral features,and catalytic activity of sulfate-doped zirconia systems[J],J.Catal.,1995,157:109-123.
    [37]W.Stichert,F.Schtith,S.Kuba and H.Knozinger,Monoclinic and Tetragonal High Surface Area Sulfated Zirconias in Butane Isomerization:CO Adsorption and Catalytic Results[J],J.Catal.,2001,198:277-285.
    [38]C.S.John,N.C.M.Alma,G.R.Hays,Characterization of transitional alumina by solid-state magic angle spinning aluminum NMR[J],Appl.Catal.,1983,6:341-346.
    [39]G.D.Yadav,A.D.Murkute,Preparation of the novel mesoporous solid acid catalyst UDCaT-4 via synergism of persulfated alumina and zirconia into hexagonal mesoporous silica for alkylation reactions[J],Adv.Synth.Catal.,2004,346:389-394.
    [40]V.M.Benitez,J.C.Yori,C.R.Vera,et al.,Characterization of Transition-Metal Oxides Promoted with Oxoanions by Means of Test Reactions[J],Ind.Eng.Chem.Res.,2005,44:1716-1721.
    [41]Z.Gao,J.M.Chen,W.M.Hua,et al.,Characterization of solid superacidity by n-alkane isomerization reactions at low temperature[J],Stud.Surf.Sci.Catal.,1994,90:507-518.
    [42]H.Matsuhashi,M.Tanaka,H.Nakamura,et al.,Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia[J],Appl.Catal.A:General,2001,208:1-5.
    [43]B.J.Xu,W.M.Hua,Y.H.Yue,et al.,Alkylation of hydroquinone with tert-butanol over Al-SBA-15 mesoporous molecular sieves[J],Catal.Lett.,2005,100:95-100.
    [1]K.Arata,M.Hino,Preparation of superacids by metal oxides and their catalytic action[J],Mate.Chem.Phy.,1990,26:216-237.
    [2]T.Yamaguchi,Recent progress in solid superacid[J],Appl.Catal.,1990,61:1-25.
    [3]B.H.Davis,R.A.Keogh,R.Srinivasan,Sulfated zirconia as a hydrocarbon conversion catalyst[J],Catal.Today,1994,20:219-256.
    [4]A.Corma,Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J],Chem.Rev.,1995,95:559-614.
    [5]X.Song,A.Sayari,Sulfated zirconia-based strong solid-acid catalysts:Recent progress[J],Catal.Rev.Sci.Eng.,1996,38:329-412.
    [6]G.D.Yadav,J.J.Nair,Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J],Micropor.Mesopor.Mater.,1999,33:1-48.
    [7]M.Hino,K.Arata,Solid catalysis treated with anions-sythesis of solid superacid catalyst with acid strength of H_0 Less-Than-or-Equal-to-16.04[J],J.Chem.Soc.Chem.Commun.,1980:851-852.
    [8]高滋,陈建民,唐颐,ZrO_2/SO_4~(2-)超强酸体系形成过程的研究,高等学校化学学报,1992,12:1498-1502.
    [9]F.R.Chen,G.Coudurier,J.F.Joly,et al.,Superacid and catalytic properties of sulfated zirconia[J],J.Catal.,1993,143:616-626.
    [10]C.X.Guo,S.Yao,J.H.Cao,et al.,Alkylation of isobutane with butene over solid superacids,SO_4~(2-)/ZrO_2 and SO_4~(2-)/TiO_2[J],Appl.Catal.A:General,1994,107:229-238.
    [11]D.A.Ward,E.I.Ko,One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids[J],J.Catal.,1994,150:18-33.
    [12]C.L.Chen,S.Cheng,H.P.Lin,et al.,Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve[J],Appl.Catal.A:General,2001,215:21-30.
    [13]Q.H.Xia,K.Hidajat,S.Kawi,Effect of ZrO_2 Loading on the Structure,Acidity,and Catalytic Activity of the SO_4~(2-)/ZrO_2/MCM-41 Acid Catalyst[J],J.Catal.,2002,205:318-331.
    [14]Y.Y.Sun,L.Zhu,H.J.Lu,et al.,Sulfated zirconia supported in mesoporous materials[J],Appl.Catal.A:General,2002,237:21-31.
    [15]E.Ghedini,M.Signoretto,F.Pinna,et al.,Gas and liquid phase reactions on MCM-41/SZ catalysts[J],Appl.Catal.B,2006,67:24-33.
    [16] W.M. Hua, Y.H. Yue, Z. Gao, Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2 [J], J. Mol. Catal. A: Chemical, 2001, 170: 195-202.
    
    [17] M.V. Landau, L. Titelman, L. Vradman, et al., Thermostable sulfated 2-4 nm tetragonal ZrO2 with high loading in nanotubes of SBA-15: A superior acidic catalytic material [J], Chem. Commun., 2003: 594-595.
    
    [18] M.A. Ecormier, A.F. Lee, K. Wilson, High activity, templated mesoporous SO_4~(2-)/ZrO_2/HMS catalysts with controlled acid site density for a-pinene isomerisation [J], Micropor. Mesopor. Mater., 2005, 80: 301-310.
    
    [19] Y.Y. Huang, T.J. McCarthy, W.M.H. Sachtler, Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure [J], Appl. Catal. A: General, 1996,148: 135-154.
    
    [20] D.J. McIntosh, R.A. Kydd, Tailoring the pore size of mesoporous sulfated zirconia [J], Micropor. Mesopor. Mater., 2000, 37: 281-289.
    
    [21] X. Yang, F.C. Jentoft, R.E. Jentoft, et al., Sulfated Zirconia with Ordered Mesopores as an Active Catalyst for n-Butane Isomerization [J], Catal. Lett., 2002, 81: 25-31.
    
    [22] Y.Y. Sun, L.N. Yuan, W. Wang, et al., Mesostructured sulfated zirconia with high catalytic activity in n-butane isomerization [J], Catal. Lett., 2003, 87: 57-61.
    
    [23] M. Signoretto, A. Breda, F. Somma, et al., Mesoporous sulphated zirconia by liquid-crystal templating method [J], Micropor. Mesopor. Mater., 2006, 91: 23-32.
    
    [24] H. Althues, S. Kasel, Sulfated zirconia nanoparticles synthesized in reverse microemulsions: Preparation and catalytic properties [J], Langmuir, 2002, 18: 7428-7435.
    
    [25] M.K. Mishra, B. Tyagi, R.V. Jasra, Effect of Synthetic Parameters on Structural, Textural, and Catalytic Properties of Nanocrystalline Sulfated Zirconia Prepared by Sol-Gel Technique [J], Ind. Eng. Chem. Res., 2003, 42: 5727-5736.
    
    [26] Y.Y. Sun, S.Q. Ma, Y.C. Du, et al., Solvent-free preparation of nanosized sulfated zirconia with br(?)nsted acidic sites from a simple calcinations [J], J. Phys. Chem. B, 2005,109:2567-2572.
    
    [27] M.A. Al-Daous, A. Stein, Preparation and catalytic evaluation of macroporous crystalline sulfated zirconium dioxide templated with colloidal crystals [J], Chem. Mater., 2003, 15:2638-2645.
    
    [28] Z.R. Zhang and T.J. Pinnavaia, Mesostructured γ-Al2O3 with a Lathlike Framework Morphology [J], J. Am. Chem. Soc, 2002,124: 12294-12301.
    
    [29] R.A. Comelli, C.R. Vera, J. M. Parera, Influence of ZrO_2 crystalline structure and sulfate ion concentration on the catalytic activity of SO_4~(2-)-ZrO_2 [J], J. Catal., 1995, 151:96-101.
    
    [30] C.X. Miao, W.M. Hua, J.M. Chen, et al., Sulfated binary and ternary oxide solid superacids [J], Catal. Lett., 1996, 39: 406-415.
    
    [31] D. Farcasiu, J.Q. Li, S. Cameron, Preparation of sulfated zirconia catalysts with improved control of sulfur content II. Effect of sulfur content on physical properties and catalytic activity [J], Appl. Catal. A:General, 1997, 151: 173-184.
    
    [32] A.R. Newmark, U. Stimming, Photoelectrochemical studies of passive films on zirconium and amorphous iron-zirconium alloys [J], Langmuir, 1987, 3: 905-910.
    
    [33] S. Jana, P.K. Biswas, Characterization of oxygen deficiency and trivalent zirconium in sol-gel derived zirconia films [J], Mater. Lett., 1997, 30: 53-58.
    
    [34] A.C. Faro Jr., K.R. Souza, V.L.D. L. Camorim, et al., Zirconia-alumina mixing in alumina-supported zirconia prepared by impregnation with solutions of zirconium acetylacetonate [J], Phys. Chem.Chem. Phys., 2003, 5: 1932-1940.
    
    [35] M.J. Li, Z.C. Feng, G. Xiong, et al., Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy [J], J. Phys. Chem. B, 2001, 105: 8107-8111.
    
    [36] K. Tanabe, M. Misono, Y. Ono, Stud. Surf. Sci. Catal., 1989, 51: 1909.
    
    [37] G.D. Yadav, A.D. Murkute, Preparation of the novel mesoporous solid acid catalyst UDCaT-4 via synergism of persulfated alumina and zirconia into hexagonal mesoporous silica for alkylation reactions [J], Adv. Synth. Catal., 2004, 346: 389-394.
    
    [38] V.M. Benitez, J.C.Yori, C.R. Vera, et al., Characterization of transition-metal oxides promoted with oxoanions by means of test reactions [J], Ind. Eng. Chem. Res., 2005,44:1716-1721.
    
    [39] W.H. Chen, H.H. Ko, A. Sakthivel, et al., The detection of protein expression of clusterin and Kj-67 and the status of cell apoptosis in bladder transitional cell carcinoma [J], Catal. Today, 2006, 116: 111-114.
    
    [40] E.P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity [J], J. Catal., 1963, 2: 371-379.
    
    [41] C. Morterra, G. Cerrato, M. Visca, et al., IR surface characterization of some TiO2-based pigments. 1. Preparation of pigmentary materials [J], Chem. Mater., 1991, 3: 132-142.
    [42]T.Riemer,D.Spielbauer,M.Hunger,et al.,Superacid properties of sulfated zirconia as measured by Raman and H-1 MAS NMR-Spectroscopy[J],Chem.Commun.,1994:1181-1182.
    [43]C.Morterra,G.Verrato,F.Pinna,et al.,On the Acid-Catalyzed Isomerization of Light Paraffins over a ZrO_2/SO_4 System:The Effect of Hydration[J],J.Catal.,1994,149:181-188.
    [44]T.Jin,T.Yamaguchi,K.Tanabe,Mechanism of acidity generation on sulfur-promoted metal oxides[J],J.Phys.Chem.,1986,90:4794-4796.
    [45]J.A.Moreno,G.Poncelet,Isomerization of n-Butane over Sulfated Al- and Ga-Promoted Zirconium Oxide Catalysts.Influence of Promoter and Preparation Method [J],J.Catal.,2001,203:453-465.
    [46]高滋,陈建民,唐颐,SO_4~(2-)/ZrO_2超强酸体系红外光谱研究,高等学校化学学报,1993,14:658-662.
    [47]Z.Gao,J.M.Chen,W.M.Hua,et al.,Characterization of solid superacidity by n-alkane isomerization reactions at low temperature[J],Stud.Surf.Sci.Catal.,1994,90:507-518.
    [48]C.X.Miao,W.M.Hua,J.M.Chen,et al.,Sulfated binary and ternary oxide solid superacids[J],Catal.Lett.,1996,39:406-415.
    [49]Y.D.Xia,W.M.Hua,Z.Gao,A new catalyst for n-butane isomerization:Persulfate-modified Al_2O_3-ZrO_2[J],Appl.Catal.A:General,1999,185:293-300.
    [50]X.Li,K.Nagaoka,J.A.Lercher,A method for denoising of DC test signal[J],J.Catal.,2004,227:130-134.
    [51]X.Li,K.Nagaoka,L.J.Simon,et al.,The clinical evaluation for the mitochondrial DNA detected from hair follicles[2][J],J.Catal.,2005,230:214-216.
    [52]Y.Y.Sun,S.Walspurger,B.Louis,et al.,Investigation of factors influencing catalytic activity for n-butane isomerization in the presence of hydrogen on Al-promoted sulfated zirconia[J],Appl.Catal.A:General,2005,292:200-207.
    [53]M.Bensitel,O.Saur,J.C.Lavalley,et al.,An infrared study of sulfated zirconia[J],Mater.Chem.Phys.,1988,19:147-156.
    [54]C.Breitkopf,H.Papp,X.Li,et al.,Activation and isomerization of n-butane on sulfated zirconia model systems-An integrated study across the materials and pressure gaps[J],Phys.Chem.Chem.Phys.,2007,9:3600-3616.
    [55]RT.Patil,K.M.Malshe,P.Kumar,et al.,Benzoylation of anisole over borate zirconia solid acid catalyst[J],Catal.Commun.,2002,3:411-416.
    [56]B.J.Xu,W.M.Hua,Y.H.Yue,et al.,Alkylation of hydroquinone with tert-butanol over Al-SBA- 15 mesoporous molecular sieves[J],Catal.Lett.,2005,100:95-100.
    [1]Z.Gao,Y.D.Xia,W.M.Hua,et al.,New catalyst of SO_4~(2-)/Al_2O_3-ZrO_2 for n-butane isomerization[J],Top.Catal.,1998,6:101-106.
    [2]W.M.Hua,Y.D.Xia,Y.H.Yue,et al.,Promoting effect of Al on SO_4~(2-)/M_xO_y (M=Zr,Ti,Fe) catalysts[J],J.Catal.,2000,196:104-114.
    [3]W.M.Hua,A.Goeppert,J.Sommer,H/D exchange and isomerization of small alkanes over unpromoted and Al_2O_3-promoted SO_4~(2-)/ZrO_2 catalysts[J],J.Catal.,2001,197:406-413.
    [4]R.Olindo,A.Goeppert,D.Habermacher,et aI.,New methods for quantitative determination of Brφnsted acid sites on solid acids:Applicability and limits for Al_2O_3-promoted SO_4~(2-)/ZrO_2 catalysts[J],J.Catal.,2001,197:344-349.
    [5]M.Haouas,S.Walspurger,J.Sommer,Regioselective H/D isotope exchange and skeletal rearrangement reactions of propane over strong solid acids[J],J.Catal.,2003,215:112-128.
    [6]M.Haouas,S.Walspurger,F.Taulelle,et al.,The initial stages of solid acid-catalyzed reactions of adsorbed propane.A mechanistic study by in situ MAS NMR[J],J.Am.Chem.Soc.,2004,126:599-606.
    [7]J.A.Moreno,G.Poncelet,Isomerization of n-butane over sulfated Al- and Ga-promoted zirconium oxide catalysts.Influence of promoter and preparation method[J],J.Catal.,2001,203:453-465.
    [8]P.Canton,R.Olindo,F.Pinna,et al.,Alumina-promoted sulfated zirconia system:Structure and microstructure characterization[J],Chem.Mater.,2001,13:1634-1641.
    [9]G.K.Chuah,S.H.Liu,S.Jaenicke,et al.,Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids[J],J.Catal.,2001,200:352-359.
    [10]N.Besgun,F.Ozkan,G.Gunduz,Alpha-pinene isomerization on acid-treated clays[J],Appl.Catal.A:General,2002,224:285-297.
    [11]K.Y.Mukesh,D.C.Chintansinh,R.V.Jasra,Isomerisation of alpha-pinene using modified montmorillonite clays[J],J.Mole.Catal.A:Chemical,2004,216:51-59.
    [12]S.Findik,G.Gunduz,Isomerization of alpha-pinene to camphene[J],J.Am.Chem.Soc.,1997,74(9):1145-1151.
    [13]A.Allahverdiev,G.Gunduz,D.Yu Murzin,Kinetics of alpha-pinene isomerization[J],Ind.Eng.Chem.Res.,1998,37:2373-2377.
    [14]F.Ozkan,G.Gunduz,O.Akpolat,N.Besgun,et al.,Isomerization of alpha-pinene over ion-exchanged natural zeolites[J],Chem.Eng.J.,2003,91:257-269.
    [15]C.M.Lopez,F.J.Machado,K.Rodriguez,et al.,Gas-versus liquid-phase alpha-pinene transformation over faujasite-like zeolites and an amorphous silicoaluminate[J],Catal.Lett.,1999,62:221-226.
    [16]C.M.Lopez,F.J.Machado,K.Rodriguez,et al.,Selective liquid-phase transformation of alpha-pinene over dealuminated mordenites and Y-zeolites[J],App.Catal.A:General,1998,173:75-85.
    [17]A.Severino,A.Esculcas,J.Rocha,et al.,Effect of extra-lattice aluminium species on the activity,selectivity and stability of acid zeolites in the liquid phase isomerisation of alpha-pinene[J],Appl.Catal.A:General,1996,142:255-278.
    [18]C.M.Lopez,K.Rodriguez,B.Mendez,et al.,Influence of the silicon content upon the acidity and catalytic properties of AFI-like catalysts[J],Appl.Catal.A:General,2000,197(1):131-139.
    [19]C.M.Lopez,K.Rodriguez,B.Mendez,et al.,Influence of the silicon content upon the acidity and catalytic properties of AFI-like catalysts[J],Appl.Catal.A:General,2000,197(1):131-139.
    [20]O.Akpolat,G.Gunduz,F.Ozkanc,et al.,Isomerization of alpha-pinene over calcined natural zeolites[J],Appl.Catal.A:General,2004,265:11-22.
    [21]G.Gunduz,R.Dimitrova,S.Yilmaz,et al.,Isomerisation of alpha-pinene over Beta zeolites synthesised by different methods[J],J.Mole.Catal.A:Chemical,2005,225:253-258.
    [22]T.Yamamoto,T.Matsuyama,T.Tanaka,et al.,Generation of acid sites on silica-supported rare earth oxide catalysts:Structural characterization and catalysis for alpha-pinene isomerization[J],Phys.Chem.Chem.Phys.,1999,1:2841-2849.
    [23]L.Grzona,N.Comelli,O.Masini,et al.,Liquid phase isomerization of alpha-pinene.Study of the reaction on sulfated ZrO_2[J],React.Kinet.Catal.Lett.,2000,69(2):271-276.
    [24]M.A.Ecormier,K.Wilson,A.F.Lee,Structure-reactivity correlations in sulphated-zirconia catalysts for the isomerisation of alpha-pinene[J],J.Catal.,2003,215:57-65.
    [25]M.A.Ecormier,A.F.Lee,K.Wilson,High activity,templated mesoporous SO_4~(2-)/ZrO_2/HMS catalysts with controlled acid site density for alpha-pinene isomerisation[J],Micropor,Mesopor.Mater.,2005,80:301-310.
    [26]B.Jarry,F.Launay,J.P.Nogier,et al.,Characterisation,acidity and catalytic activity of Ga-SBA-15 materials prepared following different synthesis procedures[J],Appl.Catal.A:General,2006,309:177-186.
    [27]C.Ferragina,P.Cafarelli,G Perez,Selective isomerization of α-pinene,React.Kinet.Catal.Lett.,2002,77(1):173-179.
    [1]C.Y.Hsu,C.R.Heimbuch,C.T.Armes,et al.,A highly-active solid superacid catalyst for n-butane isomerization-a sulfated oxide containing iron,manganese and zirconium[J],J.Chem.Soc.Chem.Comm.,1992:1645-1646.
    [2]G.D.Adeeva,W.M.H.Lei,Sachtler,Isomerization of C-13 labeled butane over Fe,Mn-promoted sulfated ZrO_2 catalyst[J],Appl.Catal.A:General,1994,118:L11-L15.
    [3]V.Adeeva,J.W.de Haan,J.Janchen,et al.,Acid sites in sulfated and metal-promoted zirconium dioxide catalysts[J],J.Catal.,1995,151:364-372.
    [4]J.E.Tabora,R.J.Davis,Structure of Fe,Mn-promoted sulfated ZrO_2 catalyst by X- ray and in absorption spectroscopies[J],J.Chem.Soc.Faraday Trans.,1995,91:1825-1833.
    [5]R.S.Drago,N.Kob,Acidity and reactivity of sulfated zirconia and metal-doped sulfated zirconia[J],J.Phys.Chem.B,1997,101:3360-3364.
    [6]K.T.Wan,C.B.Khouw,M.E.Davis,Studies on the catalytic activity of zirconia promoted with sulfate,iron,and manganese[J],J.Catal.,1996,158:311-326.
    [7]S.Rezgui,R.E.Jentoft,B.C.Gates,n-pentane isomerization and disproportiona tion catalyzed by promoted and unpromoted sulfated zirconia[J],Catal.Lett.,1998,51:229-234.
    [8]S.X.Song,R.A.Kydd,The effect of pretreatment procedures on the activities of Fe- and Mn- promoted sulfated zirconia catalysts[J],Catal.Lett.,1998,51:95-100.[9]N.Comelli,L.Grzona,O.Masini,et al.,Catalyst deactivation during α-pinene isomerization.Fe-Mn-promoted sulfated zirconium oxide[J],React.Kinet.Catal.Lett.,2000,71(1):27-32.
    [10]J.A.Moreno,G.Poncelet,n-Butane isomerization over transition metalpromoted sulfated zirconia catalysts:effect of metal and sulfate content[J],Appl.Catal.A:General,2001,210:151-164.
    [11]R.E.Jentoft,A.Hahn,F.C.Jentoft,et al.,Manganese,iron and sulfur K edge XAFS of promoted sulfated zirconia catalysts[J],J.Synchrotron Rad.,2001,8:563-565.
    [12]M.Hino and K.Arata,One-step preparation of manganese-,iron-,and alumiNum-promoted sulfated zirconias for reaction of butane to isobutene[J],React.Kinet.Catal.Lett.,2004,81(2):321-326.
    [13]B.S.Klose,F.C.Jentoft,R.Schlogl,In situ diffuse-reflectance infrared spectroscopic investigation of promoted sulfated zirconia catalysts during n-butane isomerization[J],J.Catal.,2005,233:68-80.
    [14]R.L.Martins,M.Schmal,Methane activation on superacidic catalysts based on oxoanion modified zirconium oxide[J],Appl.Catal.A:General,2006,308:143-152.
    [15]B.S.Klose,F.C.Jentoft,P.Joshi,et al.,In situ spectroscopic investigation of activation,start-up and deactivation of promoted sulfated zirconia catalysts[J],Catalysis Today,2006,116:121-131.
    [16]A.Breda,M.Signoretto,E.Ghedini,et al.,Acylation of veratrole over promoted SZ/MCM-41 catalysts:Influence of metal promotion[J],Appl.Catal.A:General,2006,308:216-222.
    [17]A.Jatia,C.Chang,J.D.MacLeod,et al.,ZrO_2 promoted with sulfate,iron and manganese:A solid superacid catalyst capable of low-temperature n-butane isomeration[J],Catal.Lett.,1994,25:21-28.
    [1]M.Hino and K.Arata,Reaction of butane and isobutene catalyzed by titanium-oxide treated with sulfate ion-solid superacid catalyst[J],Chem.Commun,1979:1148-1149.
    [2]M.Hino and K.Arata,Solid catalysts treated with anions-synthesis of solid superacid catalyst with acid strength of H_0 Less-Than-or-Equal-to-16.04[J],Chem.Commun.,1980:851-852.
    [3]G.D.Yadav,N.Kirthivasan,Single-pot synthesis of meththyl tert-butyl ether from tert-butyl alcohol and methanol dodecatungstophosphoric acid superacid on clay as an efficient catalyst[J],Chem.Commun.,1995:203-204.
    [4]G.D.Yadav,J.J.Nair,Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J],Micropor.Mesopor.Mater.,1999,33:1-48.
    [5]K.Arata,Preparation of superacids by metal oxides for reactions of butanes and pentanes[J],Appl.Catal.A:General,1996,146:3-32.
    [6]X.M.Song,A.Sayari,Sulfated zirconia-based strong solid-acid catalysts:Recent progress[J],Catal.Rev.Sci.Eng.,1996,38:329-412.
    [7]Y.D.Xia,W.M.Hua,Y.Tang,et al.,A highly active solid superacid catalyst for n-butane isomerization:persulfate modified Al_2O_3-ZrO_2[J],Chem.Commun.,1999,1899-1900.
    [8]G.W.Wang,M.Hattori,K.Tanabe,The enhancement of acid strength and catalytic activity of SnO_2 by the addition of sulfate ion[J],Chem.Lett.,1983:277-280.
    [9]H.Matsuhashi,M.Hino,K.Arata,Solid catalyst treated with anion.19,synthesis of the solid superacid catalyst of Tin oxide treated with superacid ion[J],Appl.Catal.,1990,59:205-212.
    [10]H.Matsuhashi,M.Hino and K.Arata,Synthesis of the solid superacid of SO_4~(2-)/SnO_2 with acid strength of Ho-less-than-or-equal-to-16.04[J],Chem.Lett.,1988:1027- 1028.
    [11]K.Arata,H.Nakamura,M.Shouji,Friedel-Crafts acylation of toluene catalyzed by solid superacids[J],Appl.Catal.A:General,2000,197:213-219.
    [12]H.Matsuhashi,H.Miyazaki,K.Arata,The preparation of solid superacid of sulfated tin oxide with acidity higher than sulfated zirconia[J],Chem.Lett.,2001:452-453.
    [13]H.Matsuhashi,H.Miyazaki,Y.KawaMura,et al.,Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation[J],Chem.Mater.,2001,13:3038-3042.
    [14]S.Furata,H.Matsuhashi,K.Arata,Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia[J],Appl.Catal.,2004,269:187-191.
    [15]Z.Gao,Y.D.Xia,W.M.Hua,et al.,New catalyst of SO_4~(2-)/Al_2O_3-ZrO_2 for n-butane isomerization[J],Top.Catal.,1998,6:101-106.
    [16]W.M.Hua,Y.D.Xia,Y.H.Yue,et al.,Promoting effect of Al on SO_4~(2-)/M_)xO_y (M=Zr,Ti,Fe) catalysts[J],J.Catal.,2000,196:I04-114.
    [17]W.M.Hua,A.Goeppert,J.Sommer,H/D exchange and isomerization of small alkanes over unpromoted and Al_2O_3-promoted SO_4~(2-)/ZrO_2 catalysts[J],J.Catal.,2001,197:406-413.
    [18]R.Olindo,A.Goeppert,D.Habermacher,et al.,New methods for quantitative determination of Brφnsted acid sites on solid acids:Applicability and limits for Al_2O_3-promoted SO_4~(2-)/ZrO_2 catalysts[J],J.Catal.,2001,197:344-349.
    [19]M.Haouas,S.Walspurger,J.Sommer,Regioselective H/D isotope exchange and skeletal rearrangement reactions of propane over strong solid acids[J],J.Catal.,2003,215:122-128.
    [20]M.Haouas,S.Walspurger,F.Taulelle,et al.,The initial stages of solid acid-catalyzed reactions of adsorbed propane.A mechanistic study by in situ MAS NMR[J],J.Am.Chem.Soc.,2004,126:599-606.
    [21]J.A.Moreno,G.Poncelet,Isomerization of n-butane over sulfated Al- and Ga-promoted zirconium oxide catalysts.Influence of promoter and preparation method[J],J.Catal.,2001,203:453-465.
    [22]P.Canton,R.Olindo,F.Pinna,et al.,Alumina-promoted sulfated zirconia system:Structure and microstructure characterization[J],Chem.Mater.,2001,13:1634-1641.
    [23]A.Bouaine,N.Brihi,G.Schmerber,et al.,Structural,optical,and magnetic properties of Co-doped SnO_2 powders synthesized by the coprecipitation technique[J],J.Phy.Chem.C,2007,111:2924-2928.
    [24]丁硕,刘玉龙,萧季驹,不同晶粒尺寸SnO_2纳米粒子的拉曼光谱研究[J],物理学报,2005,54:4416-4421.
    [25]M.Signoretto,S.Melada,F.Pinna,et al.,Ga_2O_3-promoted sulfated zirconia systems:Morphological,structural and redox properties[J],Micropor.Mesopor.Mater.,2005,81:19-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700