微孔淀粉、交联微孔淀粉以及交联微孔淀粉微球的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以微孔淀粉、交联微孔淀粉以及交联微孔淀粉微球的制备、性能测定及其应用研究为课题,以玉米淀粉为原料,分别通过对原淀粉进行酶解反应制得微孔淀粉,对微孔淀粉进行交联反应制得交联微孔淀粉,以及对微孔淀粉通过反相乳液聚合法进行两次交联制得交联微孔淀粉微球。同时,对反应后的产物的吸附性能进行了测定,并对反应过程中所有可能影响产物吸附率的因素进行了系统的考察,优化了反应条件。另外,对微孔淀粉制备过程中,酶解反应时的水解率、交联微孔淀粉制备过程中产物的交联度、冻融稳定性等进行了研究。最后,考察了交联微孔淀粉微球对尼古丁的吸附性能。具体包括以下五个方面内容:
     1.采用酶解反应制备了微孔淀粉。在酶解反应过程中,分别对α-淀粉酶与糖化酶的质量比(mα-淀粉酶/m糖化酶)、酶的总质量与淀粉的质量之比(m总酶/m淀粉)、溶液的总体积与淀粉的质量之比(V溶液/m淀粉)、体系的pH值、酶解反应的温度以及反应时间对产物色素吸附率的影响进行了系统的考察,根据以上结果确定出了该方法制备微孔淀粉的最佳反应条件;对各个反应条件下的水解率进行了考察,并对其结果与色素吸附率的结果进行了对比;通过傅立叶变换红外光谱对比了原淀粉与微孔淀粉结构的异同,用扫描电子显微镜观察了玉米原淀粉微孔化前后表面形貌的变化,利用X-射线粉末衍射表征了微孔淀粉结晶度的变化,用示差扫描量热仪考察了微孔淀粉糊化温度的变化。
     2.以上述制得的微孔淀粉为原料,通过交联反应制备了交联微孔淀粉。探讨了碱化过程中的氯化钠与淀粉的质量比(mNacl/m淀粉)、氢氧化钠与淀粉的质量比(mNaOH/m淀粉)、碱化温度、碱化时间,以及交联过程中的交联剂环氧氯丙烷的体积与淀粉的质量比(V环氧氯丙烷/m淀粉)、溶液的总体积与淀粉的质量比(V溶液/m淀粉)、体系pH值、交联反应温度、交联反应时间等因素对产物色素吸附率的影响,得出了该方法制备交联微孔淀粉的最佳反应条件;通过傅立叶变换红外光谱对比了原淀粉与交联微孔淀粉结构的异同,使用扫描电子显微镜观察了交联微孔淀粉的表面形貌。
     3.对以上制得的交联微孔淀粉的性能进行了研究。考察了各个反应条件与产物的交联度以及产物的冻融稳定性之间的关系;用X-射线粉末衍射表征了交联微孔淀粉结晶度的变化,用示差扫描量热仪考察了交联微孔淀粉糊化温度的变化。
     4.以上述制得的微孔淀粉为原料,通过反相乳液聚合法对其进行两次交联反应,制得了交联微孔淀粉微球。考察了在第一次交联过程中不同乳化剂(司班60、司班80、吐温60、吐温80)、环己烷与水的体积比(V环己烷/V水)、乳化剂司班60与吐温80的质量之比(m司班6dm吐温80)、乳化剂的总质量与环己烷的体积之比(m乳化剂总量/V环己烷)、淀粉的质量与水的体积之比(m淀粉/V水)、交联剂N,N’-亚甲基双丙烯酰胺与淀粉的质量比(mNNMBA/m淀粉)、引发剂硝酸铈铵与淀粉的质量比(mCAN/m淀粉)、交联反应温度和交联反应时间,以及第二次交联过程中交联剂环氧氯丙烷的体积与淀粉的质量比(V环氧氯丙烷/m淀粉)、交联反应温度和交联反应时间对产物色素吸附率的影响,并根据以上结果确定出了该方法制备交联微孔淀粉微球的最佳反应条件;通过傅立叶变换红外光谱对比了交联微孔淀粉微球与原淀粉的结构差异,用扫描电子显微镜观察了其表面形貌,利用X-射线粉末衍射表征了其结晶度的变化,用示差扫描量热仪考察了其糊化温度的变化。
     5.考察了以上制得的交联微孔淀粉微球对尼古丁的吸附性能。
In this thesis, the preparation, performance determination and application of microporous starch, crosslinked microporous starch and crosslinked microporous starch microspheres was carried out. The microporous starch was obtained by enzymatic hydrolysis with native corn starch, and the crosslinked microporous starch was prepared by crosslinking with the microporous starch, and the crosslinked microporous starch microspheres was synthesized in final by two-steps crosslinking with the microporous starch via the method of inverse emulsion polymerization. After that, the adsorption properties of products were mearsured. The factors which can affect the adsorption rate of products were investigated in systematically. According to the results, the reaction conditions were optimized. Besides, the hydrolysis rate was studied in the microporous starch synthesizing process. After the products of crosslinked microporous starch prepared, the crosslinking degree and freeze-thaw stability of them were investigated. Finally, the adsorption properties of crosslinked microporous starch microspheres were studied with nicotine. The main results were summarized as follows:
     1. The microporous starch was obtained by enzymatic hydrolysis reaction. During the process, the main reaction conditions which are expected to affect adsorption rate of the products were investigated systematically, including mα-amylase/mglucoamylase, menzyme/mstarch, Vsolution/mstarch, pH, temperature and time of enzymatic reaction. According to the results, the optimal reaction conditions were obtained. Moreover, the hydrolysis rates in each reaction conditions were studied to realize the relationship between the hydrolysis rates and adsorption rates. FTIR was used to compare the structural differences between the native corn starch and microporous starch. SEM images displayed the morphology changes after the treatment with enzyme. The results of XRD showed the changes in crystallinity. DSC determined that the variation of gelatinization temperature.
     2. The crosslinked microporous starch was prepared by crosslinking with the microporous starch, which obtained by last step. The effect of each reaction condition on adsorption rate of the products is studied systematically, which included NaOH/mstarch, reaction temperature and time of alkalization, VECH/mstarch, h, pH, reaction temperature and time of crosslinking. The optimal reaction conditions were obtained. FTIR spectra showed the characteristic peaks of the crosslinked microporous starch. And SEM photos revealed its surface morphology.
     3. The performance of crosslinked microporous starch prepared by last step was investigated. The relationships among each reaction condition, crosslinking degree of the products, and freeze-thaw stability were studied, In order to study that the changes in crystallinity, the native corn starch and crosslinked microporous starch were examined by XRD. DSC traces showed the alteration in gelatinization temperature.
     4. The crosslinked microporous starch microspheres was synthesized by two-steps crosslinking with the microporous starch via the method of inverse emulsion polymerization. The influence of reaction conditions to adsorption rate of the products, such as the different emulsifier (span 60, span 80, tween 60, tween 80), Vcyclohexane/Vsolution, mspan 60/mtween 80?,memulsifie/Vcyclohexane, mstarch/Vsolution, mNNMBA/mstarch, mCAN/mstarch, temperature and time of the crosslinking reaction with NNMBA, h, temperature and time of the crosslinking reaction with ECH, were investigated. The optimal reaction conditions about this method were obtained. Besides, the samples were characterized by FTIR, SEM, XRD and DSC.
     5. The experiments for absorbing nicotine of crosslinked microporous starch microspheres were conducted. According to the results, the adsorption kinetics and thermodynamics in this process were investigated. polymerization; adsorption rate; hydrolysis rate; settlement volume; adsorption nicotine; adsorption kinetics; adsorption thermodynamics
引文
1.顾正彪.我国淀粉及其深加工工业现状和发展趋势.食品与饲料工业,2000,8:7-9.
    2.唐忠锋,梁兴泉,杨思广等.微孔淀粉制备及性能研究进展.辽宁化工,2004,33(7):403-405.
    3.赵凯.淀粉非化学变性技术.化学工业出版社,2009.
    4. Wurzburg, O. B.(著),沈言行,周永元(译).变性淀粉的性能与应用.纺织工业出版社,1989.
    5.郑丽萍.专题报告:变性淀粉的发展趋势及建议.http://www.alcoholnet.com/ Info/IndustryDynamic/86706.htm.
    6.周坚,沈汪洋,万楚筠.微孔淀粉制备的预处理工艺研究.食品科学,2005,26(11):154-156.
    7.徐忠,缪铭,王鹏等.羧甲基玉米多孔淀粉的制备及性能研究.食品科学,2005,26(10):116-120.
    8. Loisel, C., Maache-Rezzoug, Z., Esneault, C., Doublier, J.L. Effect of hydrothermal treatment on the physical and rheological properties of maize starches. J. Food Sci.. 2006,73:45-54.
    9.刘文宏,袁怀波,王宇.玉米微孔淀粉的制备及性质研究.食品科学,2006,27(10):265-268.
    10.庾文伟,孙波,曾榕兵.大米淀粉多孔微球的开发及吸附性能试验.食品科技,2003,7:14-16.
    11. Galassi, C., Roncari, E., Capiani, C., Fabbri, G., Piancastelli, A., Peselli, M. and Silvano, F. Processing of porous PZT materials for underwater acoustics. Ferroelectrics,2002,268:47-52.
    12.钱和,朱仁宏,姚卫蓉等.多孔淀粉在低脂贡丸中的代脂研究.食品科技,2005,2:68-70.
    13. Ticha, G., Pabst, W. and Smith, D. S. Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure. J. Mater. Sci.,2005, 40:5045-5047.
    14. Shinji, T., Makoto, H., Katsunori, T., Takuo, A. and Tetsuya, Y. Structural change
    of maize starch granules by ball-mill treatment. Starch,1998,8:342-348.
    15.姚卫蓉,姚惠源.淀粉性质及预处理对多孔淀粉形成的影响.中国粮油学报,2005,5(20):51-55.
    16. Galassi, C. Processing of porous ceramics-piezoelectric materials. J. Eur. Ceram. Soc.,2006,26,2951-2958.
    17.姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ:酶和原料粒度对形成多孔淀粉的影响.中国粮油学报,2001,16(1):36-38.
    18. Lyckfeldt, O. and Ferreira, J. M. F. Processing of porous ceramics by "starch consolidation". J. Eur. Ceram. Soc.,1998,18:131-140.
    19. Alves, H. M., Tari, G, Fonseca, A. T. and Ferreira, J. M. F. Processing of porous cordierite bodies by starch consolidation. Mater. Res. Bull.,1998,33:1439-1448.
    20. Shinji, T., Makoto, H., Katsunori, T. and Tetsuya, Y. Structural change of potato starch granules by ball-mill treatment. Starch,1997,11:431-438.
    21. Kim, J. G., Sim, J. H. and Cho, W. S. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch. J. Phys. Chem. Solids.,2002,63:2079-2084.
    22. Kim, J. G., Cho, W. S. and Sim, J. H. Effect of potato-starch on the microstructure and PTCR characteristics of (Ba,Sr)TiO3. J. Mater. Sci. Mater. Electron.,2002,13: 497-501.
    23.汪树生.多孔质淀粉制备及其性质研究.博士学位论文,吉林农业大学,2002.
    24. Studart, A. R., Gonzenbach, T., Tervoort, E. and Gauckler, L. J. Processing routes to macroporous ceramics:a review. J. Am. Ceram. Soc.,2006,89:1771-1789.
    25. Zivcova, Z., Gregorova, E. and Pabst, W., Alumina ceramics prepared with new pore-forming agents. Proc. Appl. Ceram.,2008,2:1-8.
    26.雷娜.超声波对淀粉超分子结构及反应性能的影响.博士学位论文,华南理工大学,2001.
    27. Corbin, S. F. and Apte, P. S. Engineered porosity via tape casting, lamination and the percolation threshold of pyrolyzable particulates. J. Am. Ceram. Soc.,1999,82: 1693-1701.
    28. Davis, J., Kristoffersson, A., Carlstrom, E. and Clegg, W. Fabrication and crack deflection in ceramic laminates with porous interlayers. J. Am. Ceram. Soc.,2000, 83:2369-2374.
    29. Lemos, A. F. and Ferreira, J. M. F. Porous bioactive calcium carbonate implants processed by starch consolidation. Mater. Sci. Eng.,2000,11:35-40.
    30.张永和.超声波降解作用对淀粉性质之影响.食品工业,2001,33(6):19-31.
    31. Garcia-Gabaldon, M., Perez-Herranz, V., Sanchez, E. and Mestre, S. Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in electrochemical reactors. J. Membr. Sci.,2006,280:536-544.
    32.周坚,沈汪洋,万楚筠.微孔淀粉制备的预处理工艺研究.食品科学,2000.,11(26):154-156.
    33. Pabst, W. and Gregorova, E. Cross-property relations between elastic and thermal properties of porous ceramics. Adv. Sci. Technol.,2006,45:107-112.
    34.惠斯特勒,贝密勒,帕斯卡尔.淀粉的化学与工艺学.中国食品出版社,1987.
    35. Lawal, O. S. Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydrate Research,2004,339:2673-2682.
    36. Lawal, O. S. Studies on the hydrothermal modifications of new cocoyam (xanthosoma sagittifolium) starch. International Journal of Biological Macromolecules,2005,37:268-277.
    37.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    38. Huang, Z. Q., Xie, X. L., Chen, Y., Lu, J. P. and Tong, Z. F. Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. Comptes. Rendus. Chimie.,2008,11:73-79.
    39. Diaz, A. and Hampshire, S. Characterization of porous silicon nitride materials produced with starch. J. Eur. Ceram. Soc.,2004,24:413-419.
    40. LeBeau, J. M. and Boonyongmaneerat, Y. Comparison study of aqueous binder systems for slurry-based processing. Mater. Sci. Eng. A,2007,458:17-24.
    41.张燕萍.变性淀粉制造与应用.化学工业出版社,2001.
    42. Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. and Hoffmann, M. J. Preparation of interpenetrating ceramic-metal composites. J. Eur. Ceram. Soc., 2004,24:3399-3408.
    43. Reynaud, C., Thevenot, F., Chartier, T. and Besson, J. L. Mechanical properties and mechanical behaviour of SiC dense-porous laminates. J. Eur. Ceram. Soc.,2005,25: 589-597.
    44. Barea, R., Osendi, M. I., Ferreira, J. M. F. and Miranzo, P. Thermal conductivity of highly porous mullite material. Acta Mater.,2005,53:3313-3318.
    45. Romano, P., Velasco, F. J., Torralba, J. M. and Candela, N. Processing of M2 powder metallurgy high-speed steel by means of starch consolidation. Mater. Sci. Eng. A,2006,419:1-7.
    46. Junistia, L., Sugih, A. K., Manurung, R., Picchioni, F., Janssen, L. P. B. M. and Heeres, H. J. Experimental and modeling studies on the synthesis and properties of higher fatty esters of corn starch. Starch,2009,61:69-80.
    47. Pabst, W. and Gregorova, E. A cross-property relation between the tensile modulus and the thermal conductivity of porous materials. Ceram. Int.,2007,33:9-12.
    48.付陈梅,阚建全.微孔淀粉的进展.粮食与油脂,2003,1:9-11.
    49.张燕萍,刘秋育.变性淀粉作微胶囊壁材初探.食品工业科技,1998,1:18-19.
    50. Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. and Hoffmann, M. J. Preparation of interpenetrating ceramic-metal composites. J. Eur. Ceram. Soc., 2004,24:3399-3408.
    51. Reynaud, C., Thevenot, F., Chartier, T. and Besson, J. L. Mechanical properties and mechanical behaviour of SiC dense-porous laminates. J. Eur. Ceram. Soc.,2005,25: 589-597.
    52.王志民,熊华.多孔淀粉的研制.四川工业学院学报,2001,21(4):101-103.
    53. Pabst, W., Gregorova, E. and Ticha, G Effective properties of suspensions, composites and porous materials. J. Eur. Ceram. Soc.,2007,27:479-482.
    54. Tijsen, C. J., Kolk, H. J., Stamhuis, E. J. and Beenackers, A. A. An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohyd. Polym.,2001,45:219-226.
    55. Barea, R., Osendi, M. I., Ferreira, J. M. F. and Miranzo, P. Thermal conductivity of highly porous mullite material. Acta Mater.,2005,53:3313-3318.
    56. Wu, Z. W. and Song, X. Y. Carboxymethylation of y-irradiated starch. J. Appl. Polym. Sci.,2006,101:2210-2215.
    57.刘雄,阚建全.甘薯微孔淀粉制备技术及吸附性能研究.粮食与油脂,2003,3:7-9.
    58. Pabst, W. and Gregorova, E. Effective elastic properties of alumina-zirconia composite ceramics. Part 2:Micromechanical modeling. Ceramics-Silikaty,2004,
    48:14-23.
    59.林江涛,刘国琴,钟浩明等.微孔性变性淀粉的研究.郑州粮食学院学报,1999,4:45-50.
    60. Mao, X., Wang, S. and Shimai, S. Porous ceramics with tri-modal pores prepared by foaming and starch consolidation. Ceram. Int.,2008,34:107-112.
    61. Gregorova, E., Pabst, W. and Bohacenko, I. Characterization of different starch types for their application in ceramic processing. J. Eur. Ceram. Soc.,2006,26: 1301-1309.
    62.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    63. Bhattacharyya, D., Singhal, R. S. and Kulkarni. P. R. A comparative account of conditions for synthesis of sodium carboxymethyl starch from corn and amaranth starch. Carbohyd. Polym.,1995,27:247-253.
    64. Pabst, W. and Gregorova, E. Mooney-type relation for the porosity dependence of the tensile modulus of ceramics. J. Mater. Sci.,2004,39:3213-3215.
    65. Pabst, W., Gregorova, E., Ticha, G and Tynova, E. Effective elastic properties of alumina-zirconia composite ceramics. Part 4:Tensile modulus of porous alumina and zirconia. Ceramics-Silikaty,2004,48:165-174.
    66. Loeb, A. L. Thermal conductivity Ⅷ-a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc.,1954,37:96-99.
    67.苏东民,金华丽,任顺成等.微孔性变性淀粉吸附性质的研究.郑州粮食学院学报,2000,2:24-27.
    68. Zhou, X., Yang, J. Z. and Qu, G. H. Study on synthesis and properties of modified starch binder for foundry. J. Mater. Process. Tech.,2007,183:407-411.
    69.叶兴乾,张贵平,苏平等.栗粉的理化与功能特性研究.中国粮油学报,2001,4:43-46.
    70. Weisseborn, P. K., Warren, L. J. and Dunn, J. G. Selective flocculation of ultrafine iron ore. I. Mechanism of adsorption of starch onto hematite. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,99:11-27.
    71. Thierry, T., Kittiwut, T., Kuakoon, P. and Klanarong, Sriroth. Effect of starch modifications and hydrocolloids on freezable water in cassava starch systems. Starch,2008,60:61-69.
    72.闰向阳,刘建平,马雪平.阳离子交联淀粉性能研究.粮食与油脂,2007,1:28-30.
    73. Steve, J. Improving starch for food and industrial applications. Current Opinion in Plant Biology,2004,7:210-218.
    74.陆冬梅,杨连生.微波变性淀粉水解规律的研究.化工科技,2005,13(1):26-29.
    75. Song, K. H. and Park, S. J. Factors determining the carbon monoxide sensing properties of tin oxide thick films calcined at different temperature, J. Am. Ceram. Soc.,1994,77:2935-2939.
    76. Roushdi, M., Abdel-Akher, M., Ismail, F. A. and Attla, E. Preparation of mixed derivatives of carboxymethyl starch and determination of substitution degree by a new colorimetric method. Starch,1982,34:410-413.
    77.高嘉安.淀粉与淀粉制品工艺学.中国农业出版社,2001.
    78. Zhang, J. W. and Wu, D. H. Characteristics of the aqueous solution of carboxymethyl starch ether. J. Appl. Polym. Sci.,1992,46:369-374.
    79. Pabst, W., Gregorova, E. and Ticha, G Elasticity of porous ceramics-a critical study of modulus-porosity relations. J. Eur. Ceram. Soc.,2006,26:1085-1097.
    80.姚杰,尤宏,包正,沈晋.羧甲基木薯淀粉的取代方式研究.分析化学研究简报,2005,2:201-206.
    81. Pabst, W. and Gregorova, E. Derivation of the simplest exponential and power-law relations for the effective tensile modulus of porous ceramics via functional equations. J. Mater. Sci. Lett.,2003,22:1673-1675.
    82. Hristopulos, D. T. and Demertzi, M. A semi-analytical equation for the Young's modulus of isotropic ceramic materials. J. Eur. Ceram. Soc.,2008,28:1111-1120.
    83.刘雄,阚建全,陈宗道等.酸法制备微孔淀粉的技术研究.食品科学,2003,24(10):81-83
    84. Schlichting, K. W., Padture, N. P. and Klemens, P. G Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci.,2001,36:3003-3010.
    85. Kingery, W. D. and McQuarrie, M. C. Thermal conductivity I-concepts of measurement and factors affecting thermal conductivity of ceramic materials. J. Am. Ceram. Soc.,1954,37:67-72.
    86.邓宇峰.采用复合壁材的ω-3多不饱合脂肪酸微胶囊化.食品与发酵工业,2001,27(6):30-34.
    87. Sakina, K., Sreerama, Y. N., Raghavendra, D., Suvendu, B. and Bhat, K. K. Properties of enzyme modified corn, rice and tapioca starches. Food Research International,2009,42:1426-1433.
    88.董海洲,刘冠军,侯汉学,张雪丹.预糊化淀粉制备新工艺的研究.粮食与饲料工业,2006,5:15-16.
    89. Krok, F., Szymonska, J., Tomasik, P. and Szymonski, M. Non-contact AFM investigation of influence of freezing process on the surface structure of potato starch granule. Appl. Surf. Sci.,2000,157:382-386.
    90. Munro, R. G Evaluated material properties for a sintered-alumina. J. Am. Ceram. Soc.,1997,80:1919-1928.
    91.周琼,张涛,刘雄等.交联微孔淀粉基本性质的研究.食品与发酵工业,2005,31(8):19-22.
    92. Dos Santos, W. N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J. Eur. Ceram. Soc.,2003,23:745-755.
    93. Smith, D. S., Fayette, S., Grandjean, S., Martin, C., Telle, R. and Tonnessen, T. Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc.,2003,86:105-111.
    94. Lenaerts, V., Dumoulin, Y., Mateescu, M. A., Controlled release of theophylline from CLA tablets, J. Control. Release,1991,15:39-46.
    95. Wootton, M. and Haryadi, X. Effect of starch type and preparation conditions on substituent distribution in hydroxypropyl starches. Journal of Cereal Science,1992, 15:181-184.
    96.王为,于九皋,高建平,张黎明,田汝川.高锰酸钾引发下淀粉/丙烯腈的接枝共聚反应.天津大学学报,1998,5:671-676.
    97.李仲谨,赵新法.交联淀粉微球的阳离子化改性研究.陕西能源职业技术学院学报,2009,4(3):21-24.
    98.杨钟超,顾正彪,程力,洪雁.不同淀粉原料及前处理方法对β-环糊精生产的影响.食品与生物技术学报,2009,5:616-622.
    99.刘汝锋,尚小琴,罗楠,江晓敏,赖雅平,杨素改.淀粉黄原酸酯的合成及捕集重金属离子性能研究.粮食与饲料工业,2009,6:22-27.
    100.李志达,吴永然,陈剑锋,张蓉真,黄椿鉴,陈爱民.预糊化淀粉的研制.福州
    大学学报,1995,23:100-104.
    101.张本山,杨连生.玉米预糊化淀粉结晶性质的研究.华南理工大学学报,1997,2:107-111.
    102.周永元,沈言行.变性淀粉系列讲座III:热转化产品-糊精.棉纺织技术,1988,10:162-166.
    103.Zhang, B. S. and Yang, L. S. Study on the crystallinity of pregelatinized corn starch. Journal of South China University of Technology,1997,2:110-115.
    104.Lu, X. L. and Yin, L. P. A study on preparation process for acid modified starch. Journal of Changshu College,2005,6:125-129.
    105.罗兴发.次氯酸钠轻度氧化淀粉的性质及交联机理.华南理工大学学报,2006,8:83-89.
    106.王秀艳,朱文仓,王彪.氧化淀粉研究的新进展.粘接,2004,3:37-43.
    107.Mao, G. J., Wang, P., Meng, X. S., Zhang, X. and Zheng. T. Crosslinking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. J. Appl. Polym. Sci.,2006,102:5854-5860.
    108.王曙文,南喜平,代永刚.羧甲基淀粉发展现状及开发前景.农产品加工,2005,5:59-64.
    109.Bi, Y. H., Liu, M. Z., Wu, L. and Cui, D. P. Synthesis of carboxymethyl potato starch and comparison of optimal reaction conditions from different sources. Polymers for Advanced Technologies,2008,19:1185-1192.
    110.Bi, Y. H., Liu, M. Z., Wu, L. and Cui, D. P. Optimization of preparation conditions of carboxymethyl potato starch through orthogonal experimental design. Journal of Applied Polymer Science,2009,113:24-33.
    111.杨光,丁霄霖,杨波.酯化淀粉制备方法的研究.食品科学,2006,2:143-146.
    112.Cui, D. P., Liu, M. Z., Liang, R. and Bi, Y. H. Synthesis and optimization of the reaction conditions of starch sulfates in aqueous solution. Starch/Starke,2007,59: 91-98.
    113.Cui, D. P., Liu, M. Z., Wu, L. and Bi, Y. H. Synthesis of potato starch sulfate via chlorosulfonic acid in pyridine solvent and optimization of the reaction conditions. International Journal of Biological Macromolecules,2009,44:294-299.
    114.王百军,谢晖.淀粉接枝共聚物制备及应用研究综述.江苏化工,2006,4:3-8.
    115.吴校彬,傅和青,黄洪等.淀粉接枝共聚改性研究进展.化学工程师,2006,4: 40-44.
    116.Yao, W. R. and Yao H. Y. Adsorbent Characteristics of Porous Starch. Starch,2002, 54:260-263.
    117.王萍,陈磊,曹建伟.大米缓慢消化淀粉的制备.中国粮油学报,2007,22:62-64.
    118.Rupendra, M., Daniel, J. F., Seung-Heon, Y. and John, F. R. Large-scale isolation, fractionation, and purification of soluble starch synthesizing enzymes:starch synthase and branching enzyme from potato tubers. Carbohydr. Res., In Press, Available online 30 April 2010.
    119.Steeg, H. G M., Keizer, A., Cohen Stuart, M. A. and Bijsterbosch, B. H. Adsorption of cationic potato starch on microcrystalline cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,70:91-103.
    120.Chen, Y X. and Wang, G. Y. Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,289:75-83.
    121.陈玲,胡飞,李晓玺等.机械力化学效应对马铃薯淀粉消化性能和抗酶解性能的影响.食品科学,2001,8(22):15-18.
    122.Planchot, V., Colonna, P., Gallant, D. J. and Bouchet, B. Extensive degradation of native starch granules by a-amylase from Aspergilus sumnigapus. J. Cereal Sci., 1995,21:163-171.
    123.Cui, R. and Otes, C. G The effect of retrogradation on enzyme susceptibility of sago starch. Carbohydr. Polym.,1997,32:65-72.
    124.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    125.张燕萍.变性淀粉制造与应用.化学工业出版社,2001.
    126.Mateescu, M. A. and Schell, H. D. A new amyloclastic method for the selective determination of a-amylase using cross-linked amylose as an insoluble substrate, Carbohydr. Res.,1983,124:319-323.
    127.Apinan, S., Yujiro, I., Hidefumi, Y., Takeshi, F., Myllarinen, P., Forssell, P. and Poutanen, K. Visual observation of hydrolyzed potato starch granules by a-amylase with confocal laser scanning microscopy. Starch,2007,59:543-548.
    128.Dummoulin, Y, Cartilier, L. H. and Mateescu, M. A. Cross-linked amylase tablets
    containing a-amylase:an enzymatic-controlled drug release system, J. Control. Release,1999,60:161-167.
    129.Yamada, T., Hisamatsu, M. and Teranishi, K. Components of the porous maize starch granule prepared by amylase treatment. Starch,1995,47:358-361.
    130.Lin, J. H., Wang, S. W. and Chang, Y. H. Impacts of acid-methanol treatment and annealing on the enzymatic resistance of corn starches. Food Hydrocolloid.,2009, 23:1465-1472.
    131.Gregorova, E., Zivcova, Z., Pabst, W. and Sedlarova, I. Characterization of porous ceramics by image analysis and mercury porosimetry. Ceramika Ceramics,2006,97: 219-230.
    132.Gregorova, E., Zivcova, Z. and Pabst, W. Porosity and pore space characteristics of starch-processed porous ceramics. J. Mater. Sci.,2006,41:6119-6122.
    133.Parker, W. J., Jenkins, R. J., Butler, C. P. and Abbot, G L. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys.,1961,32:1679-1684.
    134.Sopyan, I., Mel, M., Ramesh, S. and Khalid, K. A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater.,2007,8:116-123.
    135.Gregorova, E. and Pabst, W. Porosity and pore size control in starch consolidation casting-achievements and problems. J. Eur. Ceram. Soc.,2007,27:669-672.
    136.张力田.变性淀粉.华南理工大学出版社,2000.
    137.Nieto, M. I., Martinez, R., Mazerolles, L. and Baudin, C. Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles. J. Eur. Ceram. Soc.,2004,24:2293-2301.
    138.Thea, H., Lothar, L., Alexander, T. and Annette, Z. Porous Materials Made from Starch. Chem. Engin. Techn.,1998,21:580-584.
    139.Kim, E. J., Ryu, S. I., Bae, H. A., Huong, N. T. and Lee, S. B. Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch.2008,110:979-984.
    140.Calinescu, C., Mulhbacher, J., Nadeau, E., Fairbrother, J. M. and Mateescu, M. A. Carboxymethyl high amylase starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur. J. Pharm. Biopharm.,2005,60:53-60.
    141.Wang, H., Dai, Q., Li, Q., Yang, J., Zhong, X., Huang, Y, Zhang, A. and Yan, Z. Preparation of porous carbon spheres from porous starch. Solid State Ionics,2009,
    180:213-215.
    142.刘雄,阚建全,陈宗道等.酸法制备微孔淀粉的技术研究.食品科学,2003,24(10):81-83.
    143.姚卫蓉,姚惠源.多孔淀粉概述.粮食与饲料工业,2004,3:25-27.
    144.Bhattacharjee, S., Besra, L. and Singh, B. P. Effect of additives on the microstructure of porous alumina. J. Eur. Ceram. Soc.,2007,27:47-52.
    145.Francl, J. and Kingery, W. D. Thermal conductivity IX-experimental investigation of the effect of porosity on thermal conductivity. J. Am. Ceram. Soc.,1954,37: 99-107.
    146.Le, Q. T., Lee, C. K., Kim, Y. W., Lee, S. J. and Zhang, R. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohyd. Polym.,2009,75:9-14.
    147.Zuzana, I., Eva, G. and Willi, P. Low-and high-temperature processes and mechanisms in the preparation of porous ceramics via starch consolidation casting. Starch,2010,62:3-10.
    148.Wang, X., Wang, H., Dai, Q., Li, Q., Yang, J., Zhang, A. and Yan, Z. Preparation of novel porous carbon spheres from corn starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,346:213-215.
    149.王占忠.小麦交联淀粉的制备及性质研究.粮食与饲料工业,2004,2:20-22.
    150.Nigam, P. and Singh, D. Enzyme and microbial system involved in starch processing. Enzyme Microb. Technol.,1995,17:770-778.
    151.Lars, N. and Bjorn, B. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 2007,308:508-513.
    152.Li, H., Chi, Z., Duan, X., Wang, L., Sheng, J. and Wu, L. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem.,2007,42:462-465.
    153.Eva, G., Zuzana, I. and Willi, P. Starch as a Pore-forming and Body-forming Agent in Ceramic Technology. Starch,2009,61:495-502.
    154.Argirakes, G, Johnwase, D. A. and Thayanithy, K. Effect of immobilization on production of a-amylase by industrial strain of β-amyloliquefaciens. J. Chem. Technol. Biotechnol.,1992,53:33-38.
    155.Qiao, L., Gu, Q. M. and Cheng, H. N. Enzyme-catalyzed synthesis of
    hydrophobically modified starch:-Carbohydr. Polym.,2006,66:135-140.
    156.Chen, Y., Liu, S. and Wang, G Kinetics and adsorption behavior of carboxymethyl starch on a-alumina in aqueous medium. Journal of Colloid and Interface Science, 2006,303:380-387.
    157.Deltricampus, B. G, Priest, F. G. and Stark, J. R. Hydrolysis of starch granules by the amylase from B. stearothermophilus NCL. Process Biochem,1992,27:17-21.
    158.张惟杰.糖复合物生化研究技术.浙江大学出版社,1999.
    159.Pongjanta, J., Utaipattanaceep, A., Naivikul, O. and Piyachomkwan, K. Debrancehing enzyme concentration effected on physicochemical properties and alpha-amylase hydrolysis rate of resistant starch type Ⅲ from amylose rice starch. Carbohyd. Polym., DOI:10.1016/j.carbpol.2009.03.037.
    160.Sathaporn, S., Naoto, I., Takashi, M. and Makoto, H. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. International Journal of Biological Macromolecules, 2005,37:115-121.
    161.Subramanian, S. and Natarajan, K. A. Some studies on the adsorption behaviour of an oxidised starch onto haematite. Minerals Engineering,1988,1:241-254.
    162.Chadha, B. S., Singh, S., Vohra, G and Saini, H. S. Shake culture studies for the production of amylases by Thermomyces lanuginosus. Acta Microbiologica Et Immunologica Hungarica,1997,44:181-185.
    163.Ramesh, M., Girish, B. and Mahalingeshwara, K. B. Thermophilic fungi:their physiology and enzymes. Microbiol. Mol. Biol. Rev.,2000,64:461-488.
    164.Iben, H., Susanne, H. E., Bo, J. and Jorgen, O. Growth and glucoamylase production by the thermophilic fungus Thermomyces lanuginosus in a synthetic medium. Appl. Microbiol. Biotechnol.,1991,34:656-660.
    165.Michael, R. H., Andreas, B., Sven, P. and S(?)ren, B. E. Enzyme modification of starch with amylomaltase results in increasing gel melting point. Carbohydr. Polym., 2009,78:72-79.
    166.Juszczak, L., Fortuna, T. and Wodnicka, K. Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering,2002,54:103-110.
    167.Mulhbacher, J. and Mateescu, M. A. Cross-linked high amylase starch derivatives for drug release Ⅲ. Diffusion properties. Int. J. Pharm.,2005,297:22-29.
    168.孙彦明.淀粉微细化处理及其糊化特性研究.硕士学位论文,中国农业大学, 2005.
    169.Vorwerg, W., Dijksterhuis, J., Borghuis, J. and Kroger, A. Film properties of hydroxypropyl starch. Starch,2004,56:297-306.
    170.Waliszewski, K. N., Aparicio, M. A., Bello, L. A. and Monroy, J. A. Changes of banana starch by chemical and physical modification. Carbohydrate Polymers,2003, 52:237-242.
    171.胡玉洁.天然高分子材料改性与应用.化学工业出版社,2003.
    172.Colonna, P., Buleon, A. and LemarieA, F., Action of Bacillus subtilis aamylase on native wheat starch. Biotechnol. Bioeng.,1988,31:895-904.
    173.Xu, S. M., Wang, J. L., Wu, R. L., Wang, J. D. and Li, H. Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chemical Engineering Journal., 2006,117:161-167.
    174.武赞.多孔淀粉制备工艺的研究及其在卷烟过滤嘴中的应用.硕士学位论文,安徽农业大学,2008.
    175.Rees, D.A.(著),孙志伟(译).多糖形态.科学出版社,1982.
    176.Claudia, N. and Roy, L. W. Effect of ccid hydrolysis and ball milling on porous corn starch. Starch,1992,44:409-414.
    177.Zhang, Y. J., Chen, J. R., Yan, X. Y and Feng, Q. M. Equilibrium and kinetics studies on adsorption of Cu(II) from aqueous solutions onto a graft copolymer of cross-linked starch/acrylonitrile (CLSAGCP). The Journal of Chemical Thermodynamics,2007,39:862-865.
    178.Tetsuya, Y, Makoto, H., Katsunori, T., Kimiaki, K., Nobuyu, H. and Mitsugu, H. Components of the porous maize Starch granule prepared by amylase treatment. Starch,1992,44:409-414.
    1.胡玉洁.天然高分子材料改性与应用.化学工业出版社,2003.
    2. Wurzburg, O. B.(著),沈言行,周永元(译).变性淀粉的性能与应用.纺织工业出版社,1989.
    3. Gregorova, E. and Pabst, W. Porosity and pore size control in starch consolidation casting-achievements and problems. J. Eur. Ceram. Soc.,2007,27:669-672.
    4. Gregorova, E., Pabst, W. and Bohacenko, I. Characterization of different starch types for their application in ceramic processing. J. Eur. Ceram. Soc.,2006,26: 1301-1309.
    5.孙彦明.淀粉微细化处理及其糊化特性研究.硕士学位论文,中国农业大学,2005.
    6.周坚,沈汪洋,万楚筠.微孔淀粉制备的预处理工艺研究.食品科学,2005,26(11):154-156.
    7. Bhattacharjee, S., Besra, L. and Singh, B. P. Effect of additives on the microstructure of porous alumina. J. Eur. Ceram. Soc.,2007,27:47-52.
    8. Mao, X., Wang, S. and Shimai, S. Porous ceramics with tri-modal pores prepared by foaming and starch consolidation. Ceram. Int.,2008,34:107-112.
    9.徐忠,缪铭,王鹏等.羧甲基玉米多孔淀粉的制备及性能研究.食品科学,2005,26(10):116-120.
    10.刘文宏,袁怀波,王宇.玉米微孔淀粉的制备及性质研究.食品科学,2006,27(10):265-268.
    11. Lawal, O. S. Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydrate Research,2004,339:2673-2682.
    12. Lawal, O. S. Studies on the hydrothermal modifications of new cocoyam (xanthosoma sagittifolium) starch. International Journal of Biological Macromolecules,2005,37:268-277.
    13. Romano, P., Velasco, F. J., Torralba, J. M. and Candela, N. Processing of M2 powder metallurgy high-speed steel by means of starch consolidation. Mater. Sci. Eng. A,2006,419:1-7.
    14.庾文伟,孙波,曾榕兵.淀粉多孔微球的开发及吸附性能试验.食品科技,2003,7:14-16.
    15.钱和,朱仁宏,姚卫蓉等.多孔淀粉在低脂贡丸中的代脂研究.食品科技,2005,2:68-70.
    16. LeBeau, J. M. and Boonyongmaneerat, Y. Comparison study of aqueous binder systems for slurry-based processing. Mater. Sci. Eng. A,2007,458:17-24.
    17. Yang, L., Ning, X., Chen, K. and Zhou, H. Preparation and properties of hydroxyapatite filters for microbial filtration. Ceram. Int.,2007,33:483-489.
    18. Sopyan, I., Mel, M., Ramesh, S. and Khalid, K. A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater.,2007,8:116-123.
    19.姚卫蓉,姚惠源.淀粉性质及预处理对多孔淀粉形成的影响.中国粮油学报,2005,20(5):51-56.
    20. Kim, J. G, Sim, J. H. and Cho, W. S. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch. J. Phys. Chem. Solids.,2002,63:2079-2084.
    21. Kim, J. G., Cho, W. S. and Sim, J. H. Effect of potato-starch on the microstructure and PTCR characteristics of (Ba,Sr)TiO3. J. Mater. Sci. Mater. Electron.,2002,13: 497-501.
    22. Diaz, A. and Hampshire, S. Characterization of porous silicon nitride materials produced with starch. J. Eur. Ceram. Soc.,2004,24:413-419.
    23.刘雄,阚建全,陈宗道等.酸法制备微孔淀粉的技术研究.食品科学,2003,24(10):81-83.
    24. Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. and Hoffmann, M. J. Preparation of interpenetrating ceramic-metal composites. J. Eur. Ceram. Soc., 2004,24:3399-3408.
    25.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    26. Yamada, T., Hisamatsu, M. and Teranishi, K. Components of the porous maize starch granule prepared by amylase treatment. Starch,1995,47:358-361.
    27. Galassi, C., Roncari, E., Capiani, C., Fabbri, G., Piancastelli, A., Peselli, M. and Silvano, F. Processing of porous PZT materials for underwater acoustics. Ferroelectrics,2002,268:47-52.
    28. Reynaud, C., Thevenot, F., Chartier, T. and Besson, J. L. Mechanical properties and mechanical behaviour of SiC dense-porous laminates. J. Eur. Ceram. Soc.,2005,25: 589-597.
    29.姚卫蓉,姚惠源.多孔淀粉概述.粮食与饲料工业,2004,3:25-27.
    30. Barea, R., Osendi, M. I., Ferreira, J. M. F. and Miranzo, P. Thermal conductivity of highly porous mullite material. Acta Mater.,2005,53:3313-3318.
    31. Galassi, C. Processing of porous ceramics-piezoelectric materials. J. Eur. Ceram. Soc.,2006,26:2951-2958.
    32. Garcia-Gabaldon, M., Perez-Herranz, V, Sanchez, E. and Mestre, S. Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in electrochemical reactors. J. Membr. Sci.,2006,280:536-544.
    33.王占忠.小麦交联淀粉的制备及性质研究.粮食与饲料工业,2004,2:20-22.
    34. Loeb, A. L. Thermal conductivity Ⅷ-a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc.,1954,37:96-99.
    35. Francl, J. and Kingery, W. D. Thermal conductivity IX-experimental investigation of the effect of porosity on thermal conductivity. J. Am. Ceram. Soc.,1954,37: 99-107.
    36. Pabst, W. and Gregorova, E. Derivation of the simplest exponential and power-law relations for the effective tensile modulus of porous ceramics via functional equations. J. Mater. Sci. Lett.,2003,22:1673-1675.
    37. Hristopulos, D. T. and Demertzi, M. A semi-analytical equation for the Young's modulus of isotropic ceramic materials. J. Eur. Ceram. Soc.,2008,28:1111-1120.
    38.张力田.变性淀粉.华南理工大学出版社,2000.
    39. Planchot, V, Colonna, P., Gallant, D. J. and Bouchet, B. Extensive degradation of native starch granules by a-amylase from Aspergilus sumnigapus, J. Cereal Sci., 1995,21:163-171.
    40. Landauer, R. The electrical resistance of binary metallic mixtures. J. Appl. Phys., 1952,23:779-784.
    41. Apinan, S., Yujiro, I., Hidefumi, Y., Takeshi, F., Myllarinen, P., Forssell, P. and Poutanen, K. Visual observation of hydrolyzed potato starch granules by a-amylase with confocal laser scanning microscopy. Starch,2007,59:543-548.
    42. Iben, H., Susanne, H. E., Bo, J. and Jorgen, O. Growth and glucoamylase production by the thermophilic fungus Thermomyces lanuginosus in a synthetic medium. Appl. Microbiol. Biotechnol.,1991,34:656-660.
    43. Deltricampus, B. G, Priest, F. G and Stark, J. R. Hydrolysis of starch granules by the amylase from B. stearothermophilus NCL. Process Biochem,1992,27:17-21.
    44. Pabst, W., Gregorova, E. and Ticha, G Elasticity of porous ceramics-a critical study of modulus-porosity relations. J. Eur. Ceram. Soc.,2006,26:1085-1097.
    45. Schlichting, K. W., Padture, N. P. and Klemens, P. G Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci.,2001,36:3003-3010.
    46. Kingery, W. D. and McQuarrie, M. C. Thermal conductivity I-concepts of measurement and factors affecting thermal conductivity of ceramic materials. J. Am. Ceram. Soc.,1954,37:67-72.
    47. Gregorova, E., Zivcova, Z. and Pabst, W. Porosity and pore space characteristics of starch-processed porous ceramics. J. Mater. Sci.,2006,41:6119-6122.
    1.姚卫蓉,姚惠源,刘传宁.多孔淀粉的应用.粮食与饲料工业,2001,1:45-47.
    2.邓宇峰.采用复合壁材的ω-3多不饱合脂肪酸微胶囊化.食品与发酵工业,2001,27(6):30-34.
    3. Munro, R. G Evaluated material properties for a sintered-alumina. J. Am. Ceram. Soc.,1997,80:1919-1928.
    4. Dos Santos, W. N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J. Eur. Ceram. Soc.,2003,23:745-755.
    5.陆冬梅,杨连生.微波变性淀粉水解规律的研究.化工科技,2005,13(1):26-29.
    6. 胡飞.粉体机械力化学与淀粉微细化发展概况.化学工业与工程,2003,20(6):372-376.
    7. Smith, D. S., Fayette, S., Grandjean, S., Martin, C., Telle, R. and Tonnessen, T. Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc.,2003,86:105-111.
    8. Yamada, T., Hisamatsu, M. and Teranishi, K. Components of the porous maize starch granule prepared by amylase treatment. Starch,1995,47:358-361.
    9. Yao, W. R. and Yao, H.Y. Adsorbent characteristics of porous starch. Starch,2002, 54:260-283.
    10.陈玲,胡飞,李晓玺等.机械力化学效应对马铃薯淀粉消化性能和抗酶解性能的影响.食品科学,2001,8(22):15-18.
    11. Poulier, C., Smith, D. S. and Absi, J. Thermal conductivity of pressed power compacts:tin oxide and alumina. J. Eur. Ceram. Soc.,2007,27:475-478.
    12. Gregorova, E., Zivcova, Z., Pabst, W. and Sedlarova, I. Characterization of porous ceramics by image analysis and mercury porosimetry. Ceramika-Ceramics,2006, 97:219-230.
    13.姚卫蓉,姚惠源.淀粉性质及预处理对多孔淀粉形成的影响.中国粮油学报,2005,5(20):51-55.
    14. Gregorova, E., Zivcova, Z. and Pabst, W. Porosity and pore space characteristics of starch-processed porous ceramics. J. Mater. Sci.,2006,41:6119-6122.
    15. Parker,W. J., Jenkins, R. J., Butler, C. P. and Abbot, G. L. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys.,1961,32:1679-1684.
    16.刘灿召,杨光,董俊杰,李凯.α-淀粉酶和葡萄糖苷酶对玉米微孔淀粉制备的影响.食品工业,2008,2:31-33.
    17.姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ:酶和原料粒度对形成多孔淀粉的影响.中国粮油学报,2001,16(1):36-38.
    18.汪树生.多孔质淀粉制备及其性质研究.博士学位论文,吉林农业大学,2002.
    19. Ogacho, A. A., Aduda, B. O. and Nyonesa, F.W. Thermal conductivity of a kaolinite refractory:effect of a plant-derived organic binder. J. Mater. Sci.,2003,38: 2293-2297.
    20. Kingery, W. D., Francl, J., Coble, R. L. and Vasilos, T. Thermal conductivity X-data for several pure oxide materials corrected to zero porosity. J. Am. Ceram. Soc.,1954, 37:107-110.
    21. Calinescu, C., Mulhbacher, J., Nadeau, E., Fairbrother, J. M. and Mateescu, M. A. Carboxymethyl high amylase starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur. J. Pharm. Biopharm.,2005,60:53-60.
    22.雷娜.超声波对淀粉超分子结构及反应性能的影响.博士学位论文,华南理工大学,2001.
    23. Le, Q. T., Lee, C. K., Kim, Y. W., Lee, S. J. and Zhang, R. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohyd. Polym.,2009,75:9-14.
    24. Pongjanta, J., Utaipattanaceep, A., Naivikul, O. and Piyachomkwan, K. Debrancehing enzyme concentration effected on physicochemical properties and alpha-amylase hydrolysis rate of resistant starch type III from amylose rice starch. Carbohyd. Polym., DOI:10.1016/j.carbpol.2009.03.037.
    25. Apinan, S., Yujiro, I., Hidefumi, Y., Takeshi, F., Myllarinen, P., Forssell, P. and Poutanen, K. Visual observation of hydrolyzed potato starch granules by a-amylase with confocal laser scanning microscopy. Starch,2007,59:543-548.
    26.张永和.超声波降解作用对淀粉性质之影响.食品工业,2001,33(6):19-31.
    27. Mulhbacher, J. and Mateescu, M. A. Cross-linked high amylase starch derivatives for drug release III. Diffusion properties. Int. J. Pharm.,2005,297:22-29.
    28.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品
    科技,2007,11:63-65.
    29. Zuzana, I., Eva, G and Willi, P. Low-and high-temperature processes and mechanisms in the preparation of porous ceramics via starch consolidation casting. Starch,2010,62:3-10.
    1.庾文伟,孙波,曾榕兵.淀粉多孔微球的开发及吸附性能试验.食品科技,2003,7:14-16.
    2. Eva, G, Zuzana, I. and Willi, P. Starch as a Pore-forming and Body-forming Agent in Ceramic Technology. Starch,2009,61:495-502.
    3. Yao, W. R. and Yao H. Y. Adsorbent Characteristics of Porous Starch. Starch,2002, 54:260-263.
    4.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    5.王占忠.小麦交联淀粉的制备及性质研究.粮食与饲料工业,2004,2:20-22.
    6. Deltricampus, B. G., Priest, F. G and Stark, J. R. Hydrolysis of starch granules by the amylase from B. stearothermophilus NCL. Process Biochem,1992,27:17-21.
    7. Claudia, N. and Roy, L. W. Effect of acid hydrolysis and ball milling on porous corn starch. Starch,1992,44:409-414.
    8. Tetsuya, Y, Makoto, H., Katsunori, T., Kimiaki, K., Nobuyu, H. and Mitsugu, H. Components of the porous maize Starch granule prepared by amylase treatment. Starch,1992,44:409-414.
    9. Nigam, P. and Singh, D. Enzyme and microbial system involved in starch processing, Enzyme Microb. Technol.,1995,17:770-778.
    10.张惟杰.糖复合物生化研究技术.浙江大学出版社,1999.
    11. Wang, H., Dai, Q., Li, Q., Yang, J., Zhong, X., Huang, Y., Zhang, A. and Yan, Z. Preparation of porous carbon spheres from porous starch. Solid State Ionics,2009, 180:213-215.
    12. Thea, H., Lothar, L., Alexander, T. and Annette, Z. Porous Materials Made from Starch. Chem. Engin. Techn.,1998,21:580-584.
    13. Wang, X., Wang, H., Dai, Q., Li, Q., Yang, J., Zhang, A. and Yan, Z. Preparation of novel porous carbon spheres from corn starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,346:213-215.
    14.周琼,张涛,刘雄等.交联微孔淀粉基本性质的研究.食品与发酵工业,2005,31(8):19-22.
    15. Argirakes, G., Johnwase, D. A. and Thayanithy, K. Effect of immobilization on
    production of a-amylase by industrial strain of β-amyloliquefaciens. J. Chem. Technol. Biotechnol.,1992,53:33-38.
    16. Michael, R. H., Andreas, B., Sven, P. and S(?)ren, B. E. Enzyme modification of starch with amylomaltase results in increasing gel melting point. Carbohydr. Polym., 2009,78:72-79.
    17.唐忠锋,梁兴泉,杨思广等。微孔淀粉制备及性能研究进展.辽宁化工,2004,33(7):403-405.
    18. Kim, E. J., Ryu, S. I., Bae, H. A., Huong, N. T. and Lee, S. B. Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch.2008,110:979-984.
    19. Deltricampus, B. G., Priest, F. G and Stark, J. R. Hydrolysis of starch granules by the amylase from β-stearothermophilus NCL. Process Biochem.,1992,27:17-21.
    20. Li, H., Chi, Z., Duan, X., Wang, L., Sheng, J. and Wu, L. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem.,2007,42:462-465.
    21. Qiao, L., Gu, Q. M. and Cheng, H. N. Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydr. Polym.,2006,66:135-140.
    22.林江涛,刘国琴,钟浩明等.微孔变性淀粉的研究.郑州粮食学院学报,1999,4:45-50.
    23. Sathaporn, S., Naoto, I., Takashi, M. and Makoto, H. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. International Journal of Biological Macromolecules, 2005,37:115-121.
    24. Sakina, K., Sreerama, Y. N., Raghavendra, D., Suvendu, B. and Bhat, K. K. Properties of enzyme modified corn, rice and tapioca starches. Food Research International,2009,42:1426-1433.
    1.周坚,沈汪洋,万楚筠.微孔淀粉制备的预处理工艺研究.食品科学,2005,26(11):154-156.
    2. Wang, X., Wang, H., Dai, Q., Li, Q., Yang, J., Zhang, A. and Yan, Z. Preparation of novel porous carbon spheres from corn starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,346:213-215.
    3.王占忠.小麦交联淀粉的制备及性质研究.粮食与饲料工业,2004,2:20-22.
    4. Moussa, I. S., Lenaerts, V., Cartilier, L. H., Effect of some physical parameters on the swelling properties of cross-linked amylase matrices, Int. J. Pharm.,1998,173: 35-41.
    5.徐忠,缪铭,王鹏等.羧甲基玉米多孔淀粉的制备及性能研究.食品科学,2005,26(10):116-120.
    6.刘文宏,袁怀波,王宇.玉米微孔淀粉的制备及性质研究.食品科学,2006,27(10):265-268.
    7. Yamada, T., Hisamatsu, M. and Teranishi, K. Components of the porous maize starch granule prepared by amylase treatment. Starch,1995,47:358-361.
    8.庾文伟,孙波,曾榕兵.淀粉多孔微球的开发及吸附性能试验.食品科技,2003,7:14-16.
    9. Perera, C. and Hoover, R. The reactivity of porcine pancreatic alpha amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Starch,1998,50:206-213.
    10.钱和,朱仁宏,姚卫蓉等.多孔淀粉在低脂贡丸中的代脂研究.食品科技,2005,2:68-70.
    11. Jacobs, H., Eerlinger, R. C., Spaepen, H., Grobet, P. J. and Delcour, J. A. Impact of annealing on the susceptibility of wheat, potato, and pea starches to hydrolysis with pancreatin. Carbohydr. Res.,1998,305:193-207.
    12. MacGregor, E. A. a-Amylase structure and activity. J. Protein Chem.,1988,7: 399-415.
    13. Erlinger, R. C., Jacobs, H. and Delcour, L. A. Enzyme-resistant starch (V). Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal. Chem.,1994, 71:351-355.
    14. Sattler, W., Esterbaur, H., Glatter, O. and Steiner, W. The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol. Bioeng.,1989, 33:1221-1234.
    15.张力田.变性淀粉.华南理工大学出版社,2000.
    16. Shi, X. and BeMiller, J. N. Effect of sulphate and citrate salts on derivatization of amylose and amylopectin during hydroxypropylation of corn starch. Carbohydr. Polym.,2000,43:333-336.
    17. Gallant, D. J., Bouchet, B., Buleon, A. and Perez, S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr.,1992, 46:S3-S16.
    18. Leloup, V. M., Colonna, P. and Ring, S. G Physico-chemical aspects of resistant starch. J. Cereal Sci.,1992,16:253-266.
    19. Song, X. Y, He, G Q., Ruan, H. and Chen, Q. H. Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch,2006,38: 156-159.
    20.周琼,张涛,刘雄等,交联微孔淀粉基本性质的研究,食品与发酵工业,2005,31(8):19-22.
    21. Leloup, V. M., Colonna, P. and Ring, S. G a-Amylase adsorption on starch crystallites. Biotechnol. Bioeng.,1991,38:127-134.
    22. Seow, C. C. and Thevamalar, K. Internal plasticization of granular rice starch by hydroxypropylation:Effects of phase transitions associated with gelatinization. Starch,1993,45:85-88.
    23. Planchot, V., Colonna, P., Gallant, D. J. and Bouchet, B. Extensive degradation of native starch granules by α-amylase from Aspergilus sumnigapus. J. Cereal Sci., 1995,21:163-171.
    24. Sakina, K., Sreerama, Y. N., Raghavendra, D., Suvendu, B. and Bhat, K. K. Properties of enzyme modified corn, rice and tapioca starches. Food Research International,2009,42:1426-1433.
    25. Wang, H., Dai, Q., Li, Q., Yang, J., Zhong, X., Huang, Y., Zhang, A. and Yan, Z. Preparation of porous carbon spheres from porous starch. Solid State Ionics,2009, 180:213-215.
    26. Perera, C. and Hoover, R. Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chemistry,1999,64:361-375.
    27. Rupendra, M., Daniel, J. F., Seung-Heon, Y. and John, F. R. Large-scale isolation, fractionation, and purification of soluble starch synthesizing enzymes:starch synthase and branching enzyme from potato tubers. Carbohydr. Res., In Press, Available online 30 April 2010.
    28. Cui, R. and Otes, C. G. The effect of retrogradation on enzyme susceptibility of sago starch. Carbohydr. Polym.,1997,32:65-72.
    1. Wang, X., Wang, H., Dai, Q., Li, Q., Yang, J., Zhang, A. and Yan, Z. Preparation of novel porous carbon spheres from corn starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,346:213-215.
    2. 惠斯特勒,贝密勒,帕斯卡尔.淀粉的化学与工艺学.中国食品出版社,1987.
    3. Qiao, L., Gu, Q. M. and Cheng, H. N. Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydr. Polym.,2006,66:135-140.
    4. 付陈梅,阚建全.微孔淀粉的进展.粮食与油脂,2003,1:9-11。
    5.陈有双,唐忠锋,凌新龙.酸法制备木薯微孔淀粉的工艺及吸附性研究.食品科技,2007,11:63-65.
    6. 张燕萍.变性淀粉制造与应用.化学工业出版社,2001.
    7.武赟.多孔淀粉制备工艺的研究及其在卷烟过滤嘴中的应用.硕士学位论文,安徽农业大学,2008.
    8. Kim, J. G, Sim, J. H. and Cho, W. S. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch. J. Phys. Chem. Solids,2002,63:2079-2084.
    9. Kim, J. G, Cho, W. S. and Sim, J. H. Effect of potato-starch on the microstructure and PTCR characteristics of (Ba,Sr)TiO3. J. Mater. Sci. Mater. Electron.,2002,13: 497-501.
    10. Gregorova, E., Zivcova, Z. and Pabst, W. Porosity and pore space characteristics of starch-processed porous ceramics. J. Mater. Sci.,2006,41:6119-6122.
    11. Rupendra, M., Daniel, J. F., Seung-Heon, Y. and John, F. R. Large-scale isolation, fractionation, and purification of soluble starch synthesizing enzymes:starch synthase and branching enzyme from potato tubers. Carbohydr. Res., In Press, Available online 30 April 2010.
    12. Diaz, A. and Hampshire, S. Characterization of porous silicon nitride materials produced with starch. J. Eur. Ceram. Soc.,2004,24:413-419.
    13. Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. and Hoffmann, M. J. Preparation of interpenetrating ceramic-metal composites. J. Eur. Ceram. Soc., 2004,24:3399-3408.
    14. Reynaud, C, Thevenot, F., Chartier, T. and Besson, J. L. Mechanical properties and
    mechanical behaviour of SiC dense-porous laminates. J. Eur. Ceram. Soc.,2005,25: 589-597.
    15.王志民,熊华.多孔淀粉的研制.四川工业学院学报,2001,21(4):101-103.
    16. Barea, R., Osendi, M. I., Ferreira, J. M. F. and Miranzo, P. Thermal conductivity of highly porous mullite material. Acta Mater.,2005,53:3313-3318.
    17. Galassi, C. Processing of porous ceramics-piezoelectric materials. J. Eur. Ceram. Soc.,2006,26:2951-2958.
    18. Poulier, C., Smith, D. S. and Absi, J. Thermal conductivity of pressed power compacts:tin oxide and alumina. J. Eur. Ceram. Soc.,2007,27:475-478.
    19. Gregorova, E., Zivcova, Z., Pabst, W. and Sedlarova, I. Characterization of porous ceramics by image analysis and mercury porosimetry. Ceramika Ceramics,2006,97: 219-230.
    20. Sathaporn, S., Naoto, I., Takashi, M. and Makoto, H. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. International Journal of Biological Macromolecules, 2005,37:115-121.
    21. Garcia-Gabaldon, M., Perez-Herranz, V., Sanchez, E. and Mestre, S. Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in electrochemical reactors. J. Membr. Sci.,2006,280:536-544.
    22.张燕萍.变性淀粉制造与应用.化学工业出版社,2001.
    23. Lawal, O. S. Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydrate Research,2004,339:2673-2682.
    24. Lawal, O. S. Studies on the hydrothermal modifications of new cocoyam (xanthosoma sagittifolium) starch. International Journal of Biological Macromolecules,2005,37:268-277.
    25. Romano, P., Velasco, F. J., Torralba, J. M. and Candela, N. Processing of M2 powder metallurgy high-speed steel by means of starch consolidation. Mater. Sci. Eng. A,2006,419:1-7.
    26.刘雄,阚建全.甘薯微孔淀粉制备技术及吸附性能研究.粮食与油脂,2003,3:7-9.
    27. LeBeau, J. M. and Boonyongmaneerat, Y. Comparison study of aqueous binder systems for slurry-based processing. Mater. Sci. Eng. A,2007,458:17-24.
    28. Yang, L., Ning, X., Chen, K. arid Zhou, H. Preparation and properties of hydroxyapatite filters for microbial filtration. Ceram. Int.,2007,33:483-489.
    29. Sopyan, I., Mel, M., Ramesh, S. and Khalid, K. A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater.,2007,8:116-123.
    30. Gregorova, E. and Pabst, W. Porosity and pore size control in starch consolidation casting-achievements and problems. J. Eur. Ceram. Soc.,2007,27:669-672.
    31. Bhattacharjee, S., Besra, L. and Singh, B. P. Effect of additives on the microstructure of porous alumina. J. Eur. Ceram. Soc.,2007,27:47-52.
    32. Mao, X., Wang, S. and Shimai, S. Porous ceramics with tri-modal pores prepared by foaming and starch consolidation. Ceram. Int.,2008,34:107-112.
    33.林江涛,刘国琴,钟浩明等.微孔性变性淀粉的研究.郑州粮食学院学报,1999,4:45-50.
    34. Gregorova, E., Pabst, W. and Bohacenko, I. Characterization of different starch types for their application in ceramic processing. J. Eur. Ceram. Soc.,2006,26: 1301-1309.
    35. Subramanian, S. and Natarajan, K. A. Adsorption behaviour of an oxidised starch onto haematite in the presence of calcium. Minerals Engineering,1989,2:55-64.
    36. Loeb, A. L. Thermal conductivity Ⅷ-a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc.,1954,37:96-99.
    37. Francl, J. and Kingery, W. D. Thermal conductivity IX-experimental investigation of the effect of porosity on thermal conductivity. J. Am. Ceram. Soc.,1954,37: 99-107.
    38. Steeg, H. G M., Keizer, A., Cohen Stuart, M. A. and Bijsterbosch, B. H. Adsorption of cationic potato starch on microcrystalline cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,70:91-103.
    39. Lars, N. and Bjorn, B. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 2007,308:508-513.
    40.苏东民,金华丽,任顺成等.微孔变性淀粉吸附性质的研究.郑州粮食学院学报,2000,2:24-27.
    41. Landauer, R. The electrical resistance of binary metallic mixtures. J. Appl. Phys., 1952,23:779-784.
    42. Zhao, P., Jiang, J., Zhang, F. W., Zhao, W. F., Liu, J. T. and Li, R. Adsorption separation of Ni(Ⅱ) ions by dialdehyde o-phenylenediamine starch from aqueous solution. Carbohydr. Polym., In Press, Available online 2 April 2010.
    43. Pabst, W., Gregorova, E. and Ticha, G Elasticity of porous ceramics-a critical study of modulus-porosity relations. J. Eur. Ceram. Soc.,2006,26:1085-1097.
    44. Michael, R. H., Andreas, B., Sven, P. and S(?)ren, B. E. Enzyme modification of starch with amylomaltase results in increasing gel melting point. Carbohydr. Polym., 2009,78:72-79.
    45.刘雄,阚建全,陈宗道等.酸法制备微孔淀粉的技术研究.食品科学,2003,24(10):81-83.
    46. Pabst, W. and Gregorova, E. Derivation of the simplest exponential and power-law relations for the effective tensile modulus of porous ceramics via functional equations. J. Mater. Sci. Lett.,2003,22:1673-1675.
    47. Hristopulos, D. T. and Demertzi, M. A semi-analytical equation for the Young's modulus of isotropic ceramic materials. J. Eur. Ceram. Soc.,2008,28:1111-1120.
    48. Li, H., Chi, Z., Duan, X., Wang, L., Sheng, J. and Wu, L. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem.,2007,42:462-465.
    49. Kingery, W. D. and McQuarrie, M. C. Thermal conductivity I-concepts of measurement and factors affecting thermal conductivity of ceramic materials. J. Am. Ceram. Soc.,1954,37:67-72.
    50. Shen, D., Li, S., Li, W., Zhang, X. and Wang, L. Adsorption studies of cationic starch onto quartz surface through an electrode-separated piezoelectric sensor. Microchemical Journal,2002,71:49-55.
    51. Weisseborn, P. K., Warren, L. J. and Dunn, J. G Selective flocculation of ultrafine iron ore. I. Mechanism of adsorption of starch onto hematite. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,99:11-27.
    52. Chen, Y, Liu, S. and Wang, G. Kinetics and adsorption behavior of carboxymethyl starch on a-alumina in aqueous medium. Journal of Colloid and Interface Science, 2006,303:380-387.
    53. Subramanian, S. and Natarajan, K. A. Some studies on the adsorption behaviour of an oxidised starch onto haematite. Minerals Engineering,1988,1:241-254.
    54. Yin, Q. F., Ju, B. Z., Zhang, S.F., Wang, X. B. and Yang, J. Z. Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu (Ⅱ) ions from aqueous solution. Carbohydrate Polymers,2008,72: 326-333.
    55. Chen, Y. X. and Wang, G. Y. Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,289:75-83.
    56. Juszczak, L., Fortuna, T. and Wodnicka, K. Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering,2002,54:103-110.
    57. Xu, S. M., Wang, J. L., Wu, R. L., Wang, J. D. and Li, H. Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chemical Engineering Journal, 2006,117:161-167.
    58. Zhang, Y. J., Chen, J. R., Yan, X. Y. and Feng, Q. M. Equilibrium and kinetics studies on adsorption of Cu(II) from aqueous solutions onto a graft copolymer of cross-linked starch/acrylonitrile (CLSAGCP). The Journal of Chemical Thermodynamics,2007,39:862-865.
    59. Wang, H., Dai, Q., Li, Q., Yang, J., Zhong, X., Huang, Y, Zhang, A. and Yan, Z. Preparation of porous carbon spheres from porous starch. Solid State Ionics,2009, 180:213-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700