电化学超级电容器多孔碳电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学超级电容器是介于传统电容器和充电电池之间的一种新型储能装置,因具有高比功率和长寿命等突出优点,近年来已成为电化学储能领域的研究热点。但是,与传统的二次电池如锂离子电池相比,超级电容器的能量密度较低,因此目前有许多研究工作者都致力于提高超级电容器体系的能量密度。根据超级电容器的能量密度公式E=1/2 CV2,可以通过两种有效的方法来提高电容器的能量密度:一是增大电极材料的比电容(C),二是提高电容器的工作电压(V)。基于这种分析,为了提高多孔碳电极的能量密度,本论文的研究内容首先集中在对于多孔碳材料孔结构的优化,通过调节孔的大小、孔连接以及构建有序多级孔结构,提高多孔比表面积的利用率,从而提高电极材料的比能量。其次,从碳纳米管/线出发,采用制备简单的MnO2及天然生物表壳为模板,创新合成了具有多种新颖结构的介孔碳纳米管/线、介孔碳纳米线阵列材料,多孔结构增加了碳纳米管/线的比表面积,增大了材料的比电容;同时,管线结构减小了电极材料的内阻,提高了电容器的工作电压。具体内容介绍如下:
     1.三维有序介孔碳球阵列的制备及电化学性能的研究
     目前,广泛应用于电容器的活性炭材料虽然具有较高的比表面积,但是由于存在大量的封闭微孔以及无序的孔连接,比表面积利用率较低,因而对比电容的贡献甚微。由于介孔碳材料具有高度有序的孔道结构,且在中孔范围内孔径分布单一,因此引起了人们的广泛关注。我们以介孔碳孔的大小、孔连接为出发点,采用硬模板Si02与软模板P123相结合的两步模板法制备三维有序介孔碳球阵列,比表面积为601 m2/g,球内介孔孔径为10.4 nm,且碳球阵列间存在孔径为60 nm的堆积窗口。对其在有机系中进行电化学性能的测试,结果表明,其比电容为84 F/g,单位表面积比电容为14μF/cm2,相比于商业活性炭的表面积比电容有很大提高,而且倍率性能和循环性能也均有很大的改善。这是因为较大的孔径为电解液提供了更多的入口,使电极材料更易被电解液浸润,从而具有更高的表面利用率,提高了表面积比电容;此外,阵列间的窗口也提供了电解液的储存空间,更有利于电解液的渗透和离子的快速传输,石墨化结构以及阵列结构也提高了材料的导电性,从而提高了材料的倍率和循环性能。
     2.有序介孔/微孔复合多级孔碳材料的制备及电化学性能的研究
     有序介孔有着非常优异的倍率特性,但是其比容量一直受到比表面积的制约,而小于2 nm的微孔碳会在特定的孔径范围内拥有超反常的大比容量储能能力。我们以有序介孔碳化钛/碳的复合物为前躯体,通过氯气原位除钛反应,得到了有序介孔孔壁上拥有大量微孔结构的有序多级孔碳材料。通过调节TiC中的Ti含量、碳化温度、氯气处理温度来调节微孔、介孔的孔径大小以及微孔/介孔的比例,得到了较高的比表面积1917 m2/g,介孔孔径为3.0 nm,微孔孔径为0.69nm及1.25 nm的多级孔碳材料,从而提高了材料在有机体系中的电化学性能,表现出146 F/g较高的比电容。有序的介孔结构保证了电解液的浸润和传输,以及较高的电导率,从而提高比功率;同时接近有机电解液离子大小的微孔可以大大提高材料的储能比表面积,提高比电容。因此有序介孔/微孔复合多级孔碳材料表现出具有高能量密度以及高功率密度的双重特性。
     3.天然生物前驱体制备微孔/介孔复合多级孔碳材料及其电化学性能的研究
     采用模板法及氯气处理法可以制备得到多级孔碳材料,但是其操作复杂耗时,并且一定程度上对环境造成了影响。而天然生物由于其来源充足、可再生、环境友好,是一种理想的新型碳源。我们首次尝试采用天然生物(海藻)为直接前驱体,通过冷冻干燥及高温碳化的过程制备微孔/介孔复合多级孔碳材料。不同种类的海藻经过碳化处理后也形成不同多级孔结构的碳材料,并在超级电容器的应用中显示出良好的电化学性能,水系中比电容为150 F/g。同时我们通过ZnCl2的活化作用达到扩孔目的,提高多级孔碳材料的比表面积,使得电解液充分的浸润和储存,同时提供了更有效的离子传输通道,提高碳材料的比电容至194 F/g。介孔结构有利于提高材料的功率密度,介孔孔壁上的大量微孔结构也对提高材料的能量密度起到了至关重要的作用,同时通过活化扩孔处理,可以调节微孔与介孔的比例,从而优化材料的电化学性能。
     4.MnO2模板法制备不同形貌的介孔碳纳米管材料及其电化学性能的研究
     碳纳米管表面性质稳定,电导率高,也被应用在较高工作电压的电容器中,但由于碳纳米管材料的比表面积较小,对比电容的贡献十分有限。因此我们采用环保的,形貌可控的二氧化锰为硬模板,并结合软模板的方法制备不同形貌的有序介孔碳纳米管、介孔碳纳米管刺球、介孔碳纳米管套线。得到的介孔碳纳米管具有较高的比表面积1079 m2/g,较大的介孔孔径为9.6 nm,在有机体系中表现了较高的比电容124 F/g。二氧化锰可被盐酸羟胺简便除去,大大降低了实验的成本,提高实验操作的安全性。电化学测试结果表明,相比于活性炭材料,介孔碳纳米管的管状结构降低了材料的内阻,从而提高了电容器的实际工作电压;同时,大量的介孔也提高了碳纳米管材料的比表面积,从而使电极材料具有更高的比电容;此外,碳纳米管上的介孔以及管内较大的管径通道均为电解液提供了更多的传输通道,更有利于电解液的渗透和离子的快速传输,从而提高了材料的倍率和循环性能。同时采用形貌可控的MnO2为模板也可以运用到其它氧化物等无机材料的合成中。
     5.天然生物模板法制备介孔碳纳米线阵列及其电化学性能的研究
     碳纳米管/线材料由于其比表面积较低对比电容有一定的制约作用,但是将其有序排列成阵列结构,既会增加材料的比表面积,也会提高其导电性。我们首次采用天然生物螃蟹表壳(主要为碳酸钙)为模板,结合自组装软模板法,制备了高度有序介孔碳纳米线阵列。该材料具有有序的多级孔结构:大孔孔道为1μm,阵列纳米线间通道为70 nm,纳米线上高度有序的介孔为11 nm,比表面积为1270 m2/g,并表现了较高的比电容152 F/g,同时也具备了优越的倍率和循环性能。碳纳米线的阵列结构以及纳米线上的介孔结构,都大大提高材料的比表面积,并且有效的提供了电解液离子浸润和传输的通道,具有更高的比电容;微米级有序阵列结构相比于活性炭以及杂乱分散堆积的单体碳纳米管/线结构具有较高的导电性能,从而降低了内阻,提高了材料的倍率和循环性能。另外,生物模板由于其来源充足,可持续性强,成本低,环保,结构复杂有序,由此可获得多种具有多级有序结构与特殊形貌的仿生材料。
     6.高温处理介孔碳纳米线阵列及其在高电位超级电容器中的应用研究
     在碳纳米管制备和纯化的过程中,表面会引入有机官能团杂质,使其在高电位时与电解液发生不可逆的副反应,从而影响了电容器的充电电压和比电容。因此,我们尝试对介孔碳纳米线阵列在氮气气氛中进行进一步的高温处理,去除表面有机官能团。测试表明其表面的C=O、C-O以及O-H基团都有一定程度的减少;并且随着处理温度的进一步增高,碳材料的石墨化程度也相应的提高,从而有利于提高材料的电导率。在较高的0-4 V的电位区间对其进行充放电测试表明,其比电容及库伦效率都有了很大的提高。因此,较高的表面处理温度有效的减少了碳纳米线表面的有机杂质官能团,避免了在高电位时发生的不可逆的副反应,提高电容器的充电电压和库伦效率;同时表面基团的减少也提高了碳材料表面的浸润性,降低电极材料的内阻,从而提高双电层电容器的倍率性能和循环寿命。
Electrochemical supercapacitor is a new type of energy storage device between traditional capacitors and rechargeable batteries. Because of its high specific power and long life and other outstanding advantages, in recent years, supercapacitors have attracted great interest in energy storage applications. However, its energy density is much lower than that of secondary batteries, such as lithium-ion battery, so many researchers are committed to improve the energy density of supercapacitor system. According to the energy equation of supercapacitors E=1/2 CV2, two effective apporaches can be used to improve the energy density of supercapacitors:one is increasing the specific capacitance of electrode material (C), the other one is to promote the output voltage (V). Based on this analysis, in order to improve the energy density of the porous carbon electrode, firstly, the researches of this thesis focused on the optimization of pore structure, by adjusting the pore size, pore connectivity and building hierarchical porous structure to improve the utilization of surface area, so improve the specific energy of electrode materials. Secondly, we creatively synthesize mesoporous carbon nanotubes/nanowires with a variety of novel structure and mesoporous carbon nanofiber arrays by MnO2 and natural carb shll templates, and the porous structures increase the surface area of he carbon materials which is benefit to improving the specific capacitance. Meanwhile, the nanotube and nanofiber structures will reduce the internal resistance of the electrode material, so increase the capacitor working voltage.
     1. Synthsis of three-dimensional ordered mesoporous carbon sphere arrays and its electrochemical performance in supercapacitor
     Currently, activated carbon materials with a high surface area are widely used in capacitors, but because there are a lot of closed pores and disordered pore connectivity, the utilization of the surface area is low, thus it contributes little to specific capacitance. Ordered mesoporous carbon has attracted much attention due to its highly ordered pore structure and narrow pore size distribution in mesopore range. A novel three-dimensional ordered mesoporous carbon sphere arrays (MCSAs) with surface area of 601 m2/g, a large pore size of 10.4 nm and a window size of 60 nm was successfully synthesized through a two-step template method by the combination of the surfactant-templating organic resol self-assembly, colloidal crystals of polystyrene and silica hard templating routes. MCSAs deliver a larger specific area capacitance of than commercial activated carbon (14μF/cm2,84 F/g). The good performances might be owing to its large ordered pore size and the continuous connected windows between the spheres which are favorable for the penetration of electrolyte and ion transportation at high scan rates, so it shows a higher surface utilization and high specific capacitance. Also the arrays of electrode materials and the graphite structure should have better electrical conductivity, so the rate capability and cycling performance are greatly improved.
     2. Synthsis of hierarchical ordered mesoporous/microporous carbon and its electrochemical performance in supercapacitor
     Mesoporous carbon has excellent rate capability characteristics, but its specific energy has been subjected to its low surface area. While there is an anomalous increase in carbon capacitance at pore size smaller than 2 nm. We develop a facile approach to prepare hierarchical ordered mesoporous/microporous carbon (OMMC) by synthesizing ordered mesoporous nanocrystalline titanium-carbide/carbon composites, followed by in situ chlorination of carbides. By adjusting the content of Ti in TiC, carbonization temperature, temperature of chlorine treatment, we regulate the micropore size, the mesopore size and the microporous/mesoporous ratio. The obtained hierarchical porous carbon materials consist of a narrow mesopore with size of 3.0 nm, and micropores on the walls with size of 0.69 and 1.25 nm. The ordered mesoporous channels ensure retention and immersion of the electrolyte, serving as a favorable ion-path for electrolyte penetration and allowing for fast ionic transport into the bulk of the OMMC particles, good electronic conductivity, thus show an excellent capacitance retention at high discharge rates for pulse power applications. At the same time, the micropores drilled on the mesopore walls allow the produced OMMC to exhibit a specific surface area up to 1917 m2/g and a specific capacitance up to 146 F/g for an outstanding energy density. The unique hierarchical porous structure contributes to attractive capabilities as a promising material in energy storage with both high energy density and high power density.
     3. Preparation of hierarchical mesoporous/microporous carbon from natural organism precursor and its electrochemical performance in supercapacitor
     Using the template method and chlorination treatment method can prepare hierarchical porous carbon materials, but it is time-consuming, operation-complicated, and with a bad impact on the environment. However, novel carbon sources, seaweeds, are naturally occurring, simple and environmentally benign. Hierarchical mesoporous/microporous carbons are produced by freeze-drying and carbonization processes using various seaweeds as carbon sources. Different hierarchical porous carbon materials come from different type seaweed after carbonization, and the application in supercapacitor show a good electrochemical performance with a capacity of 150 F/g in 6 M KOH solution. Meanwhile, treatment with ZnCl2 as pore-enlarge activation was successfully achieved by a simple pyrolysis process. It improves the surface area, making it sufficient for electrolyte infiltration and storage, and providing a more efficient ion transmission channel, so it shows a lager specific capacitance of 194 F/g. Mesoporous materials can improve the power density, and the micropores play a crucial role in improving the energy density. We can also adjust microporous/mesoporous ratio through activation, in order to optimize the electrochemical performance.
     4. Direct synthesis of different morphology mesoporous carbon nanotubes using MnO2 as template and their electrochemical performance in supercapacitors
     Because of the stability of surface properties and high conductivity, carbon nanotubes are an ideal electrode material for use in high voltage capacitor. But the specific surface area of carbon nanotubes is small, so the capacitance contribution is very limited. Therefore, we use MnO2 as hard template, which is environmental friendly and morphology controllable, combined with the soft template self-assembly process, to prepare mesoporous carbon nanotubes, mesoporous carbon nano-thorn microspheres and mesoporous carbon nanowires in nanotubes. Mesoporous carbon nanotube with a high surface area of 1079 m2/g and a large pore size of 9.6 nm show a capacitance of 124 F/g. MnO2 can be easily removed by HCl, so greatly reduce the costs, improve the safety of experimental operation. Electrochemical test results show that the nanotube structure can reduce the internal resistance of carbon materials, thus improves the actual working voltage; meanwhile, a large number of mesoporous on the carbon nanotubes also contribute to the surface area, so that the material has a higher specific capacitance. In addition, the large mesopores and large inner tubes provide more channels for the electrolyte rapid penetration and ion transmission, thereby reducing the internal resistance of nanotubes, and improve the rate capability and cycling performance. At the same time, this synthesis method can be easily extended to preparation of other nano-sized mesoporous materials.
     5. Synthesis of highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its electrochemical performance in supercapacitors
     The low surface area of carbon nanotubes/wires restricts the capacitance in supercapacitor. However, arranged them in an orderly array will not only increase the surface area, but also improve its conductivity. We develope a natural biological template approach for the successful synthesis of novel highly-ordered mesoporous carbon nanofiber arrays by combining surfactant-templating self-assembly of organic resols with natural crab shell hard-templating process. The obtained materials consist of a mesoporous carbon nanofiber (70 nm in mean diameter and 11 nm in mesopore), an interspacing void of 70 nm between nanofibers, and 1 micrometer of pores between nanofiber arrays. The structure of arrays and the large mesopores in the nanofiber greatly increase the surface area of materials to 1270 m2/g, and effectively provides transport channel for electrolyte ion, so it has a higher specific capacitance of 152 F/g. The micro-sized array structure also has higher electronic conductivity than activated carbon and the accumulation of single carbon nanotube/line, so it reduces the internal resistance, and ensures a higher actual working voltage, better rate capability and cycling performance. In addition, the biological templates are abundant, sustainable, low cost, environmental friendly, structural complex and ordered. Furthermore, the biomimetic strategy may present a new possibility for the synthesis of various nano-structured mesoporous materials with special morphologies.
     6. High-temperature treatment of mesoporous carbon nanowire arrays and its high voltage application in supercapacitors
     In the process of the preparation and purification of carbon nanutubes, the impurities of organic functional groups will be introduced on the surface, which may irreversibly reacted with the electrolyte at high voltage, thus affecting the charge voltage and specific capacitance of the capacitors. By further treatment of mesoporous carbon nanowires in nitrogen at high temperature, we remove the surface organic functional groups off. Tests show that the C=O, CO and OH groups on the carbon surface have a reduction with certain degree;and as the temperature further increased, the graphitization degree of the carbon materials increased accordingly. The above factors help to improve electrical conductivity, so it shows an improving specific capacitance at higher voltage of 4 V. Higher treatment temperatures effectively reduce the organic impurities functional groups on the surface of carbon nanowires, to avoid irreversible reaction at high voltage. So it improves the rated voltage of capacitors and the coulomb efficiency. The treatment of surface also increases the infiltration ability of electrolyte and reduces the internal resistance of the electrode material, thereby enhancing the rate capability and cycling performance of supercapacitor.
引文
[1]辛克伟,周宗祥,卢国良,国外电动汽车发展及前景预测,电力需求侧管理,2008,1,75.
    [2]B. J. Andrew, Ultracapacitors:why, how, and where is the technology, J. Power Sources,2000,91(1),37.
    [3]B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources,1997, 66(1-2),1.
    [4]J.O'.M. Bockris, A. K.N. Reddy, Modern Electrochemistry. New York, Plenum Press,1970.
    [5]H. L. Becker, Low voltage electrolytic capacitor, U. S. Patent,1957-07-23, 2800616.
    [6]B. E. Conway, Electrochemical Supercapacitors, New York, Kluwer Academic/Plenum Publishers,1999;
    [7]B. E. Conway, Transition from "Supercapacitor" to "Battery" behavior in electrochemical energy storage,J. Electrochem. Soc.,1991,138,1539.
    [8]Maxwell Technologies Bobby Maher,超级电容器简介,今日电子,2007
    [9]J. P. Zheng, T. R. Jow, A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc.,1995,142, L6.
    [10]L. T. Lam, R. H. Newnham, H. Ozgun, F. A. Fleming, Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles,J. Power Sources, 2000,88(1),92.
    [11]K. V. Schaller, C. Gruber, Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus, Fuel Cells Bulletin,2000,3(27),9.
    [12]G. Gutmann, Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple, J. Power Sources,1999,84(2),275.
    [13]E. Faggioli,P. Rena, V. Danel, et al. Supercapacitors for the energy management of electric vehicles, J. Power Sources,1999,84(2),261.
    [14]A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization, J. Power Sources,2002,112(1),236.
    [15]B.E. Conway, W.G. Pell, Power limitations of supercapacitor and capacitance distribution operation associated with resistance in porous electrode devices, J.Power Sources,2002,105(2),169.
    [16]W. G. Pell, B.E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, J.Power Sources,2001,96(1),57.
    [17]C.J. Farahmandi, D. Gideon, Proceedings of the 6th International Seminar on Double-layer capacitors and Similar Energy Storage Devices. Deerfield Beach, FL, December 1996, Florida Educational Seminars Inc.
    [18]J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources,2001,101(1),109.
    [19]C. Arbizzani, M. Mastragostino, L. Meneghello, Polymer-based redox supercapacitors:A comparative study, Electrochim. Acta,1996,41(1),21.
    [20]唐致远,徐国祥,电子导电聚合物在电化学电容器中的应用,化工进展,2002,21(9),652.
    [21]A. D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes, J. Power Sources,2003,113,62.
    [22]I. Plitz, A. DuPasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, G. G. Amatucci, The design of alternative nonaqueous high power chemistries, Appl. Phys. A,2006,82,615.
    [23]Y. G. Wang, Y. Y. Xia, A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system, Electrochem. Commun.,2005,7(11),1138.
    [24]Y. G. Wang, Y. Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system, J. Electrochem. Soc.,2006,153(2), A450.
    [25]Y. G. Wang, J. Y. Luo, C. X. Wang, Y. Y Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅱ. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes, J. Electrochem. Soc.,2006,153(8), A1425.
    [26]Y G. Wang, J. Y. Luo, W. Wu, C. X. Wang, Y Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅲ. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions, J. Electrochem. Soc.,2007,154(3), A228.
    [27]程亮,电化学超级电容器负极材料Li4Ti5O12的研究,[博士学位论文],上海:复旦大学,2008
    [28]J. H. Lim, D. J. Choi, H. K. Kim et al., Thin film supercapacitors using a sputtered RuO2 electrode,J.Electrochem. Soc.,2001,148(3), A275.
    [29]J. P. Zheng, T. R. Jow, Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc.,1998,145(1), 49.
    [30]Y. U. Jeong, A. Manthiram, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors, J. Electrochem. Soc.,2001,148(3), A189.
    [31]F. Cao, J. Prakash, Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors, J. Power Sources,2001,92(1-2),40.
    [32]K. Yokoshima, W. Sugimoto, Y. Murakami, Y. Takasu, Investigation on the redox behavior of rutile-type Ti1-xVxO2, Electrochemistry,2005,73(12),1026.
    [33]W. Sugimoto, T. Shibutani, Y. Murakami, Y Takasu, Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors, Electrochemical and Solid-State Letters,2002,5(7), A170.
    [34]W. Sugimoto, T. Ohnuma, Y. Murakami, Y. Takasu, Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors, Electrochemical and Solid-State Letters,2001,4(9), A145.
    [35]H. Y. Lee, J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chemistry,1999,144(1),220.
    [36]H. Y. Lee, J. B. Goodenough, Ideal supercapacitor behavior of amorphous V2O5 center dot nH(2)O in potassium chloride (KCl) aqueous solution, J. Solid State Chemistry,1999,148(1),81.
    [37]王晓峰,孔祥华,刘庆国等,氧化镍超电容器的研究,电子元件与材料,2000,19(5),26.
    [38]K. C. Liu, M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc.,1996,143(1),124.
    [39]S. C. Pang, M. A. Anderson, T. W. Chapman, Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc., 2000,147,444.
    [40]S. C. Pang, M. A. Anderson, Novel electrode materials for ultracapacitors: Structural and electrochemical properties of sol-gel-derived manganese dioxide thin films, Mat. Res. Symp. Proc,2000,575,415.
    [41]D. Choi, G. E. Blomgren, P. N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater., 2006,18,1178.
    [42]刘献明,张校刚,CoAl双氢氧化物作超级电容器的电极材料,电源技术,2003,27(3),315.
    [43]刘献明,张校刚,包淑娟等,掺钴MnO2电极的电化学电容行为研究,功能材料与器件学报,2003,9(3),267.
    [44]张丹丹,姚宗干,大容量高储能密度电化学电容器的研究进展,科学动态,2000,19(1),34.
    [45]P. K. Rajendra, N. Munichandraiah, Potentiodynamically deposited polyaniline on stainless steel-Inexpensive, high-performance electrodes for electrochemical supercapacitors, J. Electrochem. Soc.,2002,149(11),A1393.
    [46]C. C. Hu, C. H. Chu, Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors, Materials Chemistry and Physics,2000,65,329.
    [47]F. Florence, G. Pascal, V. Dominique, B. Daniel, Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors, J. Electrochem. Soc.,2002,148,A1.
    [48]M.D. Ingram, H. Staesche, K.S. Ryder,'Ladder-doped' polypyrrole:a possible electrode material for inclusion in electrochemical supercapacitors?, J. Power Sources,2004,129(1),107.
    [49]J.P. Ferraris, M. M. Eissa, I. D. Brotherston, et al., Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications, Chem.Mater,1998,10,3528.
    [50]T. Liu, T. V. Streekumar, S. Kumar, R. H. Hauge, R. E. Smalley, SWNT/PAN composite film-based supercapacitors, Carbon,2003,41(12),2440。
    [51]V. Gupta, N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochim. Acta,2006,52(4), 1721.
    [52]Y. G. Wang, H. Q. Li, Y. Y. Xia, Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance, Adv. Mater.,2006,18 (19),2619.
    [53]V. Gupta, N. Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, J. Power Sources,2006,157(1),616.
    [54]J. Jang, J. Bae, M. Choi, S. H. Yoon, Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon,2005,43(13), 2730.
    [55]Stan Zurek. Ragone plot showing energy density vs. power density for various devices. Vector conversion from Image:Supercapacitors chart.png, from Maxwell Technologies. [2006-06-12]. http://www.maxwell.com/(The plot presented here is based on data provided by Maxwell Technologies.)
    [56]M. Yoshio, H. Nakamura, H.Y. Wang, Novel megalo-capacitance capacitor based on graphitic carbon cathode, Electrochemical and Solid State Letters,2006, 9,A561.
    [57]J. P. Zheng, The limitations of energy density of battery/double-layer capacitor asymmetric cells, J. Electrochem. Soc.,2003,150, A484-A492.
    [58]Y. G. Wang, L. Yu, Y. Y. Xia, Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)(2)/carbon nanotube composites and activated carbon, J. Electrochem. Soc.,2006,153, A743-A748.
    [59]Stan Zurek. Ragone plot showing energy density vs. power density for various devices. Vector conversion from Image:Supercapacitors chart.png, from Maxwell Technologies. [2006-06-12]. http://www.maxwell.com/(The plot presented here is based on data provided by Maxwell Technologies.)
    [60]Kinoshita K. Carbon:Electrochemical and Physicochemical Properties [M]. New York:Kodansa Press,1988.326.
    [61]Y. Maletin, P. Novak, E. Shembe, V. Izotov, N. Strizhakova, A. Mirronora, V. Danilin, S. Podmogilny, Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors, Appl. Phys. A,2006,82,653.
    [62]B. Kastening, M. Heins, Properties of electrolytes in the micropores of activated carbon, Electrochim. Acta,2005,50(12),2487.
    [63]G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J Electrochem. Soc.,2000,147(7),2486.
    [64]L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes:estimating effective ion size in electrolytic solutions. J. Phys. Chem. B,2001,105(29),6880.
    [65]L. Eliad, G Salitra, A. Soffer, D. Aurbach, Proton selective environment in the pores of activated molecular sieving carbon electrodes. J. Phys. Chem. B,2002, 106(39),10128.
    [66]H. Shi, Activated carbons and double layer capacitance, Electrochim. Acta,1996, 41,1633.
    [67]D. Y. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources,1998,74,99.
    [68]H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Electrochemical properties of a zeolite-like ordered mesoporous carbon prepared by direct tri-constituent co-assembly in Supercapcitor and Lithium battery, Carbon,2007,45,2628-2635.
    [69]K. Kim, X. Chu, Carbon for supercapacitors in electrochemical capacitors [A], The electrochemical Society Proceedings Serious [C], Pennington,1996,135, 121.
    [70]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science,2006, 313,1760.
    [71]杨红生,周啸,冯天富,汤孝平,电化学电容器最新研究进展I.双电层电容器,电子元件与材群,2003,22(2),14.
    [72]S. Yoon, J. H. Jang, B. H. Ka, S. M. Oh, Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness, Electrochim. Acta,2005,50,2255.
    [73]H. Q. Li, J. Y. Luo, X. F. Zhou, C. Z. Yu, Y. Y. Xia, A new ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor application, J. Electrochem. Soc.,2007.154, A731-A736.
    [74]D. Y. Qu, Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources,2002,109(2),403.
    [75]T. Momma, X. J. Liu, T. Osaka, Y. Ushio, Y. Sawada, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources,1996,60(2),249.
    [76]M. Ishikawa, A. Sakamoto, M. Monta, Y. Matsuda, K. Ishida, Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors, J. Power Sources,1996,60(2), 233.
    [77]C. H. Kim, S. Pyun, H. C. Shin, Kinetics of double-layer charging/discharging of activated carbon electrodes:role of surface acidic functional groups, J. Electrochem. Soc.,2002,149(2), A93
    [78]A. Y. Rychagov, Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor, Russian J. Electrochem., 2001,37(11),1172.
    [79]M. Nakamura, M. Nakanishi, K. Yamamoto, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, J. Power Sources,1996,60(2),225.
    [80]A. Yoshida, I. Tanahashi, A. Nishino, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon,1990,28(5),611.
    [81]X. Chu, K. Kinoshitain, Electrochemical capacitors, Electrochemical society proceedings, vol.96-25, F. Delnick and M. Tomkiewicz, eds.,1995,171.
    [82]W.C. Chen, T. C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochim. Acta,2003,48(6),641.
    [83]Q.H. Huang, X.Y. Wang, J. Li, et al., Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors, J. Power Sources,2007,164 (1),425.
    [84]I.H. Kim, J.H. Kim, B.W. Cho, et al., Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate, J. Electrochem. Soc.,2006,153, A1451.
    [85]B. Fang, Y.Z. Wei, M. Kumagai, Modified carbon materials for high-rate EDLCs application, J. Power Source,2006,155 (2),487.
    [86]K. Wang, W. Zhang, R. Phelan, M. Morris, J. Holmes, Direct Fabrication of Well-Aligned Free-Standing Mesoporous Carbon Nanofiber Arrays on Silicon Substrates, J. Am. Chem. Soc.,2007,129,13388.
    [87]徐斌,曹高萍,杨裕生,杨东平,用杏壳制备电化学电容器高比容量炭电极材料,第十一届电化学会议论文集,2001
    [88]E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Relationship between the nanoporous texture of activated carbons and their capacitance properies in different electrolytes, Carbon,2006,44,2498-2507.
    [89]Y. J. Kim, Y. Abe, T. Yanagiura, K. C, Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors, Carbon,2007,45,2116-2125.
    [90]S. Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujii, T. Taguchi, H. Kinoshita, Polyacence capacitors, J. Power Sources,1996,60(2),207.
    [91]Anon, Electrochemical Society, Extended abstracts of 188th fall meeting,1995, 313-317.
    [92]M. G. Sullivan, R. Kotz, O. Haas, Thick active layers of electrochemically modified glassy carbon. electrochemical impedance studies, J. Electrochem. Soc., 2000,147(1),308.
    [93]E. Mora, V. Ruiz, R. Sanamaria, C. Blanco, M. Granda, R. Menendez, J. M. Juarez-Galan, F. Rodriguez-Reinoso, Influence of mesophase activation conditions on the specific capacitance of he resulting carbons, J. Power Sources, 2006,156,719-724.
    [94]J. Y. Ying, C. P. Mehnert, M. S. Wong, Synthesis and applications of supermolecular-templateed mesoporous materials, Angew. Chem. Int. Ed.,1999, 38,56-57.
    [95]T. Kyotami, T. Nagai, S. Inoue, A. Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels, Chem. Mater.,1997,9, 609-615.
    [96]J. Lee, S. Yoon, S. M. Oh, C. H. Shin, T. Hyeon, Development of a new mesoporous carbon using an HMS aluminosilicate template, Adv. Mater.,2000, 12,359-362.
    [97]K. V. Schaller, C. Gruber, Fuel cell drive and high dynamic energy storage systems- Opportunities for the future city bus, Fuel Cells Bulletin,2000,3(27),9.
    [98]H. F. Yang, D. Y. Zhao, Synthesis of replica mesostructures by the nanocasting strategy, J. Mater. Chem.,2005,15,1217.
    [99]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon,2006,44,216.
    [100]W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Nirogen-containing carbon spheres with very large uniform mesopores:The superior electrode materials for EDLC in organic electrolyte, Carbon,2007,45, 1757-1763.
    [101]M. Sevilla, S. Alvareza, T. A. Centeno, A. B. Fuertes, F. Stoeckli, Performance of templated mesoporous carbons in supercapacitors, Electrochimica Acta.,2007,52,3207-3215.
    [102]D. Wang, F. Li, M. Liu, G. Q. Lu, H. Cheng,3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy strorage, Angew. Chem. Int. Ed.,2008,47,373-376.
    [103]J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater.,2006,18,2073.
    [104]A. B. Fuertes, F. Pico, J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources, 2004,133,329.
    [105]S. Alvarez, M. C. Blanco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Carbon,2005,43,866.
    [106]S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem.Soc.,2000,147,2507.
    [107]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources,2003,122,219.
    [108]J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun.,1999,2177.
    [109]H. Q. Li, J. Y. Luo, Y. Y. Xia, A new ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor application, J. Electrochem. Soc.,2007,154, A731.
    [110]Y. Zhao, M. B. Zheng, J. M. Cao, X. F. Ke, J. S. Liu, Y. P. Chen, J. Tao, Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors, Mater. Lett.2008,62,548.
    [111]W. R. Li, D. H. Chen, Z. Li, Y. F. Shi, Y. Wan, J. J. Huang, J. Yang, D. Y. Zhao, Z. Y. Jiang, Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor, Electrochem. Commun.,2007,9,569.
    [112]B. Xu, L. Peng, G. Q. Wang, G. P. Cao, F. Wu, Carbon 2010,48,2377-2380.
    [113]R. K. Hash, A. Nikitin, Y. Gogotsi, Microporous carbon derived from boron carbide, Micropor. Mesopor. Mater.,2004,72,203-208.
    [114]R. K. Hash, G. Yushin, Y. Gogotsi, Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Micropor. Mesopor. Mater.,2006,86,50-57.
    [115]J. Leis, A. Perkson, M. Arulepp, G. Svensson, Carbon nanosructures produced by chlorinating aluminiun carbide. Carbon,2001,39,2043-2048.
    [116]A. Janes, T. Thomberg, E. Lust, Synthesis and characterization of nanoporous carbide-derived carbon by chlorination of vanadium carbide, Carbon, 2007,45,2717-2722.
    [117]M. Latt, J. Leis, M. Arulepp, ET AL. Proceedings of 16th inernational seminar on double layer capacitors and hybrid energy storage devices:Florida Educational Seminar,2006,60-72.
    [118]J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources,2006, 158(1),765.
    [119]M. Arulepp, J. Leis, A. Kuura, Proceedings of 15th inernational seminar on double layer capacitors and hybrid energy storage devices:Florida Educational Seminar,2005,12-21.
    [120]R. H. BAUGHMAN, a. a. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications, Science,2002,297,787-792.
    [121]C. Niu, E. K. Sichiel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997,70,1480.
    [122]E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett.,2000,77(15), 2421.
    [123]K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, Y. H. Lee, Supercapacitor using single-walled carbon nanotube electrodes, Adv. Mater.,2001,13,497-500.
    [124]E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters,2002,361,35-41.
    [125]马仁志,魏秉庆,徐才录,梁吉,吴德海,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8),7.
    [126]E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon,2001,39(6),937.
    [127]Q. L. Chen, K. H. Xue, W. Shen, F. Tao, S. Yin, W. Xu, Fabrication and electrochemical properties od carbon nanotube array electrode for supercapacitors, Electrochimica Acta,2004,49,4157-41.
    [128]张浩,电化学电容器用碳纳米管阵列及其复合电极的制备与性能,[博士学位论文],北京:中国人民解放军防化研究院,2008
    [129]S. T. Mayer, R. W. Pekala, The Aerocapacitor:An electrochemical double-layer energy-storage device, J. Electrochem. Soc.,1993,140(2),446.
    [130]T. D. Tran, D. Leni, Effect of processing conditions on the physics and electrochemical properties of carbon aerogel composites, J. Mat. Res. Symp. Proc.,1998,496,607.
    [131]S. T. Mayer, Method of low pressure and/or evaporation drying of aerogel, WO patent,1994,94/22943.
    [132]赵根祥,玻璃炭,新型炭材料,2000,15,79.
    [133]J. Miklos, Double-layer capacitors[P]. DE 3011701,1980.
    [134]Y. H. Wen, G. P. Cao, Y. S. Yang, Study on nanoporous glassy carbon as a new electrochemical capacitor maerial, J. Power Sources,2005,148,121-128.
    [135]M Okamura, Introducing the "nanogate" capacitors, IEEE Power Electronics Society NEWS LETTER,2004,16(10),9.
    [136]朱春野,曹高萍,纳米门炭及纳米门电容器,新型炭材料,2005,20,380-381.
    [137]王晓峰,王大志,梁吉,氧化钌/活性炭超级电容器电极材料的研制,稀有金属材料与工程,2003,32(6),424.
    [138]W. C. Chen, C. C. Hu, C. C. Wang, C. K. Min, Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors, J. Power Sources,2004,125(2),292.
    [139]马仁志,魏秉庆,徐才录,梁吉,吴德海,基于碳纳米管的超级电容器, 中国科学(E辑),2000,30(2),112.
    [140]K. H. An. K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole, J. Electrochem. Soc.,2002, 149(8), A1058.
    [141]王永刚,高比能量电化学电容器的研究,[博士学位论文],上海:复旦大学,2007.
    [142]李会巧,超级电容器及其相关材料的研究,[博士学位论文],上海:复旦大学,2008.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001.
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992.
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980.
    [5]周伟舫,电化学测量,上海科学技术出版社,1983
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998.
    [7]查全性等,电极过程动力学导论,科学出版社:北京,1984.
    [8]田昭武,电化学研究方法,科学出版社:北京,1984.
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [1]A. B. Fuertes, F. Pico and J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources,2004,133,329-336.
    [2]H. Y. Liu, K. P. Wang and H. S. Teng, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 2005,43,559-566.
    [3]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources,2003,122,219-223.
    [4]K. L. Yang, S. Yiacoumi and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem.,2003,540,159-167.
    [5]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anormaous increase in carbon capacitance at pore size less than 1 nanometer, Science,2006,313, 1760-1763.
    [6]C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi and P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc., 2008,130,2730-2731.
    [7]J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem. Int. Edit,2008,47,3392-3395.
    [8]E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon,2006,44,2498-2507.
    [9]S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem. Soc.,2000,147(7), 2507-2512.
    [10]J. Lee, S. Yoon, S. M. Oh, C. H. Shin and T. Hyeon, Development of a new mesoporous carbon using an HMS aluminosilicate template, Adv. Mater.,2000,12,359-362.
    [11]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006,44,216-224.
    [12]S. Alvarez, M. C. Blanco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon,2005,43,866-870.
    [13]J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun.,1999, 2177-2178.
    [14]A. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta,2005,50,2799-2805.
    [15]T. A. Centeno, M. Sevilla, A. B. Fuertes, F. Stoeckli, On the electrical double-layer capacitance of mesoporous templated carbons, Carbon,2005,43,3012.
    [16]C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon,2005,43, 1293.
    [17]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance,.Adv. Mater,2003,15,2107.
    [18]R. Ryoo, S. H. Joo, S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation,J.Phys. Chem. B,1999,103, 7743-7746
    [19]Y. Wan, H. F. Yang, D. Y. Zhao, "Host-Guest" Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials, Acc. Chem. Res.,2006,39.423.
    [20]J. Lee, J. Kim, T. Hyeon, Recent Progress in the Synthesis of Porous Carbon Materials, Adv. Mater,2006,18,2073.
    [21]S. N. Che, K. Lund, T. Tatsumi, S. Iijima, S. H. Joo, R. Ryoo, O. Terasaki, Direct Observation of 3D Mesoporous Structure by Scanning Electron Microscopy, Angew. Chem. Int. Ed.,2003,42,2182
    [22]A. H. Lu, F. Schuth, Nanocasting:A Versatile Strategy for Creating Nanostructured Porous Materials, Adv. Mater.,2006,18,1793.
    [23]M. Inagaki, K. Kaneko, T. Nishizawa, Nanocarbons-recent research in Japan, Carbon,2004,42,1401
    [24]F. Schuth, Non-siliceous Mesostructured and Mesoporous Materials, Chem. Mater.,2001,13,3184
    [25]Y. H. Deng, C. Liu, T. Yu, F. Liu, F. Q. Zhang, Y. Wan, L. J. Zhang, C. C. Wang, B. Tu, P. A. Webley, H. T. Wang, D. Y. Zhao, Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach, Chem. Mater., 2007,19(13),32710-3277.
    [26]S. Jun, S. H. Hoo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc.2000,122,10712
    [27]H. Q. Li, J. Y. Luo, X. F. Zhou, C. Z. Yu, Y. Y. Xia, An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications,J.Electrochem. Soc.,2007,154(8), A731-736
    [28]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science,1998,279,548-552.
    [29]C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed.,2004,43,5785
    [30]C. D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction, J. Am. Chem. Soc.,2006,128,5316
    [31]F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, C. Z. Yu, B. Tu, D. Y. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure, J. Am. Chem. Soc., 2005,127,13508-13509.
    [32]Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed., 2005,44,7053-7059.
    [33]Y Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y. Wan, A. Stein, D. Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater.,2006,18, 4447-4464.
    [34]R. L. Liu, Y. F. Shi, Y. Wan, Y. Meng, F. Q. Zhang, D. Gu, Z. X. Chen, B. Tu, D. Y. Zhao, Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas, J. Am. Chem. Soc.,2006,128,11652-11662.
    [35]Y H. Deng, T. Yu, Y. Wan, Y. F. Shi, Y. Meng, D. Gu, L. J. Zhang, Y. Huang, C. Liu, X. J. Wu, D. Y Zhao, Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene, J. Am. Chem. Soc.,2007,129,1690-1697.
    [36]H. Q. Li, R. L. Liu, D. Y Zhao and Y Y. Xia, Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly, Carbon,2007,45, 2628-2635.
    [37]B. T. Holland, C. F. Blanford, T. Do and A. Stein, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chem. Mater.,1999,11,795-805.
    [38]L. Eliad, G Salitra, A. Soffer and D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes:Estimating effective ion size in electrolytic solutions, J. Phys. Chem. B,2001,105(29),6880-6887.
    [39]L. V. Woodcock, Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures, Nature,1997,385,141-143.
    [40]W. L. Vos, M. Megens, C. M. van Kats and P. Boecke, X-ray diffraction of photonic colloidal single crystals, Langmuir,1997,13,6004-6008.
    [41]L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang and Y Y Xia, Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation, J. Electrochem. Soc.,2007,154(7), A692-697.
    [42]G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J. Electrochem. Soc.,2000,147(7),2486-2493.
    [43]L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton selective environment in the pores of activated molecular sieving carbon electrodes, J. Phys. Chem. B 2002,106, 10128-10134.
    [44]D. Aurbach, M. D. Levi, G. Salitra, N. Levy, E. Pollak, and J. Muthu, J. Electrochem. Soc.,2008,155(10), A745-753.
    [1]T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, O. M. Yaghi, Tailored porous materials, Chem. Mater.1999,11,2633-2656.
    [2]T. Kyotani, Control of pore structure in carbon, Carbon 2000,38,269-286.
    [3]K. Kaneko, Determination of pore-size and pore-size distribution.1. adsorbents and catalysts, J. Membr. Sci.1994,96,59-89.
    [4]S. M. Saufi, A. F. Ismail, Fabrication of carbon membranes for gas separation-a review, Carbon 2004,42,241-259.
    [5]A. B. Fuertes, F. Pico and J. M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons, J. Power Sources 2004, 133,329-336.
    [6]H. Y. Liu, K. P. Wang and H. S. Teng, Carbon 2005,43,559-566.
    [7]H. S. Zhou, S. M. Zhu, M. Hibino and I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon,J. Power Sources 2003,122(2),219-223.
    [8]K. L. Yang, S. Yiacoumi and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem.2003,540, 159-167.
    [9]H. J. Liu, W. J. Cui, L. H. Jin, C. X. Wang, Y. Y. Xia, Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors, J. Mater. Chem.,2009, 19,3661-3667
    [10]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 1998,279,548-552.
    [11]S. Yoon, J. W. Lee, T. Hyeon, S. M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem. Soc.,2000,147,2507
    [12]S. Alvarez, M. C. Blanco-Lopez, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon,2005,43,866.
    [13]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon,2006, 44,216.
    [14]C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon,2005, 43(6),1293-1302.
    [15]H. Q. Li, J. Y. Lou, X. F. Zhou, C. Z. Yu and Y Y. Xia, Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly, Carbon.2007, 45(13),2628-2635.
    [16]J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources,2006,158(1), 765.
    [17]J. Chmiola, G. Yushin, R. K. Dash, E. N. Hoffman, J. E. Fischer, M. W. Barsoum, Y. Gogotsi, Double-layer capacitance of carbide derived carbons in sulfuric acid, Electrochem. Solid State Lett.,2005,8, A357.
    [18]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science,2006, 313,1760.
    [19]Y. Gogotsi, A. Nikitin, H. H. Ye, W. Zhou, J. E. Fischer, Y. Bo, H. C. Foley, M. W. Barsoum, Nanoporous carbide-derived carbon with tunable pore size, Nature Mater.,2003,2,591.
    [20]R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon,2006,44,2489.
    [21]A. Janes, L. Permann, M. Arulepp, E. Lust, Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions, Electrochem. Commun.,2004,6,313.
    [22]L. Permann, M. Latt, J. Leis, M. Arulepp, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim. Acta,2006,51, 1274.
    [23]S. W. Woo, K. Dokko, H. Nakano, K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors J. Mater. Chem.,2008,18,1674-1680
    [24]D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng,3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed.2008,47,373-376
    [25]H. J. Liu, X. M. Wang, W. J. Cui, Y. Q. Dou, D. Y. Zhao, Y. Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells,J.Mater. Chem.2010,20,4223-4230
    [26]Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon, ACS Nano,2010,4 (3),1337-1344
    [27]Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y Zhao, Ordered Mesoporous Polymers and Homologous Carbon Frameworks:Amphiphilic Surfactant Templating and Direct Transformation, Angew. Chem., Int. Ed.2005,44, 7053-7059.
    [28]T. Kemmitt, N. I. Al-Salim, G. J. Gainsford, A. Bubendorfer, M. Waterland, Unprecedented oxo-titanium citrate complex precipitated from aqueous citrate solutions, exhibiting a novel bilayered Ti8O10 structural core, Inorg. Chem.2004,43,6300.
    [29]T. Yu, Y. H. Deng, L. Wang, R. L. Liu, L. J. Zhang, B. Tu, D. Y. Zhao, Ordered Mesoporous Nanocrystalline Titanium-Carbide/Carbon Composites from In Situ Carbothermal Reduction, Adv. Mater.2007,19,2301-2306
    [30]C. L. Dai, X. Y.Wang, Y. Wang, N. Li, J. L. Wei, Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation, Mate. Chem. Phys.2008,112,461-465
    [31]P. I. Ravikovitch, A. V. Neimark, Characterization of nanoporous materials from adsorption and desorption isotherms, Colloids Surf. A:Physicochem. Eng. Aspects 2001,187-188,11-21
    [32]L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes:Estimating effective ion size in electrolytic solutions, J. Phys. Chem. B 2001,105(29),6880-6887
    [33]G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitors-I. Relations between ion and pore dimensions, J. Electrochem. Soc.2000,147(7),2486-2493
    [34]L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton-selective environment in the pores of activated molecular sieving carbon electrodes, J. Phys. Chem. B 2002,106(39), 10128-10134.
    [1]L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin and A. Dugast, Electrode optimisation for carbon power supercapacitors, J. Power Sources,1999,79,37-42.
    [2]H. B. Gu, J. U. Kim, H. W. Song, G C. Park and B. K. Park, Electrochemical properties of carbon composite electrode with polymer electrolyte for electric double-layer capacitor, Electrochim. Acta 2000,45,1533-1536.
    [3]F. C. Wu, R. L. Tseng, C. C. Hu and C. C. Wang, Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors, J. Power Sources,2005,144,302-309.
    [4]S. Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujii, T. Taguchi, H. Kinoshita, Polyacence capacitors, J. Power Sources,1996,60(2),207.
    [5]M. G. Sullivan, R. Kotz, O. Haas, Thick active layers of electrochemically modified glassy carbon. electrochemical impedance studies, J. Electrochem. Soc., 2000,147(1),308.
    [6]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources,2003,122,219-223.
    [7]Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed.,2005,44,7053-7059.
    [8]H. J. Liu, W. J. Cui, L. H. Jin, C. X. Wang, Y. Y. Xia, Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors, J. Mater. Chem.,2009, 19,3661-3667
    [9]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anormaous increase in carbon capacitance at pore size less than 1 nanometer, Science,2006, 313,1760-1763.
    [10]F. Rodriguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation:an overview, Carbon,1992,30, 1111-1118.
    [11]K. Gcrgova, N. Petrov and S. Eser, Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis, Carbon,1994,32,693-702.
    [12]J. Laine and A. Calafat, Factors affecting the preparation of activated carbons from coconut shell catalized by potassium, Carbon,1991,29,949-953.
    [13]A. G. Pandolfo, M. Amini-Amoli and J. S. Killingley, Activated carbons prepared from shells of different coconut varieties, Carbon,1994,32,1015-1019.
    [14]S. Balci, T. Dogu and H. Yucel, Characterization of activated carbon produced from almond shell and hazelnut shell, J. Chem. Tech. Biotechnol.,1994,60, 419-426.
    [15]J. D. Lopez-Gonzalez, F. Martinez-Vitchez and F. Rodriguez-Reinoso, Preparation and characterization of active carbons from olive stones, Carbon, 1980,18,413-418.
    [16]F. Caturla, M. Molina-Sabio and F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon,1991,29,999-1007.
    [17]J. Rodriguez-Mirasol, T. Cordero and J. J. Rodriguez, Preparation and characterization of activated carbons from eucalyptus kraft lignin, Carbon,1993, 31,87-95.
    [18]V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, B. Q. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C,2007,111,7527.
    [19]E. Raymundo-Pinero, F. Leroux, F. Beguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 2006,18,1877.
    [20]I. Tanahashi, Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber, J. Appl. Electrochem.,2005,35,1067-1072.
    [21]A. Ahmadpour and D. D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon,1997,35,1723-1732.
    [22]A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon,1996,34,471-479.
    [1]马仁志,魏秉庆,徐才录,梁吉,吴德海,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8),7.
    [2]E. Franckowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Leters,2002,361,35-41
    [3]E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett.,2000,77(15),2421.
    [4]E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon,2001,39(6),937.
    [5]Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance, Electrochemical and Solid-State Letters, 2007,10(4),A106-A110
    [6]B. Xu, F. Wu, R. J. Chen, G. P. Cao, S. Chen, G. Q. Wang, Y. S. Yang, Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors, Journal of Power Sources,2006,158,773-778
    [7]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Haori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Materials,2006,5,987-994
    [8]A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density, Adv. Mater.,2010,22(35), E235-241
    [9]C. Du, J. Yeh, N. Pan, High power density supercapacitors using locally aligned carbon nanotube electrodes, Nanotechnology,2005,16,350-353
    [10]M. Jung, H. G. Kim, J. K. Lee, O. S. Joo, S. I. Mho, EDLC characteristics of CNTs grown on nanoporous alumina templates, Electrochimica Acta,2004,50, 857-862
    [11]C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett.,1997,70 (11), 1480-1482
    [12]K. H. An, W.S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Adv. Funct. Mater.,2001,11(5), 387-392
    [13]B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, J. H. Han, Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes, Chemical Physics Letters,2004,388,170-174
    [14]T. Kyotani, L. Tsai and A. Tomita, Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as a Template, Chem. Mater.1995,7, 1427-1428;
    [15]Z. Ma, T. Kyotani and A. Tomita, Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite, Chem. Commun.2000, 2365-2366;
    [16]A. Zakhidov, R. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. Dantas, J. Marti and V. Ralchenko, Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths, Science 1998,282,897;
    [17]A. B. Fuertes, Low-Cost Synthetic Route to Mesoporous Carbons with Narrow Pore Size Distributions and Tunable Porosity through Silica Xerogel Templates, Chem. Mater,2004,16,449-455.
    [18]Y. Wan, H. F. Yang, D. Y. Zhao, "Host-Guest" Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials, Acc. Chem. Res.,2006,39,423.
    [19]G. Che, B. Lakshmi, E. Fisher and C. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature,1998,393,346-349
    [20]S. Joo, S. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 2001,412,169-172
    [21]J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 1999,2177-2178.
    [22]S. Jun, S. H. Hoo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc.2000,122,10712
    [23]J. S. Lee, S. H. Joo, R. Ryoo, Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters, J. Am. Chem. Soc.2002,124,1156-1157
    [24]Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed.,2005,44,7053-7059
    [25]K. Wang, W. Zhang, R. Phelan, M. Morris, J. Holmes, Direct Fabrication of Well-Aligned Free-Standing Mesoporous Carbon Nanofiber Arrays on Silicon Substrates, J. Am. Chem. Soc.,2007,129,13388
    [26]K. X. Wang, Y. D. Li, Selected-Control Hydrothermal Synthesis of MnO2 Single Crystal Nanowires, J. Am. Chem. Soc.,2002,124,2880-2881.
    [27]J. K. Yuan, W. N. Li, S. Gomez, S. L. Suib, Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures, J. Am. Chem. Soc.,2005,127,14184-14185.
    [28]D. S. Zheng, S. X. Sun, W. L. Fan, H. Y. Yu, C. H. Fan, G. X. Cao, Z. L. Yin, X. Y. Song, One-Step Preparation of Single-Crystalline MnO2 Nanotubes, J. Phys. Chem. B,2005,109,16439-16443.
    [29]P. P. Chu, H.-D. Wu, Solid state NMR studies of hydrogen bonding network formation of novolac type phenolic resin and poly(ethylene oxide) blend, Polymer, 2000,41,101-109.
    [30]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources,2003,122,219-223.
    [1]R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanutubes-the route toward applications, Science,2002,297,787-792
    [2]C. Emmenegger, P. Mauron, A. Zuttel, C. Nutzenadel, A. Schneuwly, R. Gallay, L. Schlapbach, Carbon nanotube synthesized on metallic substraes, Applied Surface Science,2000,162-163,452-456
    [3]B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, J. H. Han, Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes, Chemical Physics Letters,2004,388,170-174
    [4]J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen, Z. F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon,2002,40,1193-1197
    [5]D. N. Futaba, K. Hata, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials,2006,5,987-994
    [6]H. Zhang, G. P. Cao, Y. S. Yang, Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte, J. Power Sources,2007, 172,476.
    [7]H. Zhang, G. P. Cao, Y. S. Yang, Using a cut-paste method to prepare a carbon nanotube fur electrode, Nanotechnology,2007,18,195607.
    [8]H. Zhang, G. P. Cao, Y. S. Yang, Z. N. Gu, Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes, J. Electrochem. Soc.,2008,155, K19
    [9]F. C. Meldrum and R. Seshadri, Porous gold structures through templating by echinoid skeletal plates, Chem. Commun.,2000,29-30
    [10]W. Ogasawara, W. Shenton, S. A. Davis and S. Mann, Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chem. Mater.,2000,12,2835-2837
    [11]S. Chia, J. Urano, F. Tamanoi, B. Dunn and J. I. Zink, Patterned hexagonal arrays of living cells in sol-gel silica films, J. Am. Chem. Soc.,2000,122,6488-6489
    [12]M. W. Anderson, S. M. Holmes, N. Hanif and C. S. Cundy, Hierarchical pore structures through diatom zeolitization, Angew. Chem. Int. Ed.,2000,39, 2707-2710.
    [13]B. Zhang, S. A. Davis, N. H. Mendelson and S. Mann, Bacterial templating of zeolite fibres with hierarchical structure, Chem. Commun.,2000,781-782.
    [14]C. E. Fowler, W. Shenton, G. Stubbs and S. Mann, Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles, Adv. Mater.,2001,13,1266-1269
    [15]Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu and D. Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angew. Chem., Int. Ed.,2005,44,7053-7059.
    [16]K. X. Wang, P. Birjukovs, D. Erts, R. Phelan, M. A. Morris, H. S. Zhou and J. D. Holmes, Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres, J. Mater. Chem.,2009,19,1331-1338
    [17]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources,2003,122,219-223.
    [18]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science,2006,313,1760-1763
    [19]J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun.,1999,2177-2178
    [20]L. Eliad, G. Salitra, A. Soffer and D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes:Estimating effective ion size in electrolytic solutions, J. Phys. Chem. B,2001,105(29),6880-6887.
    [21]G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J. Electrochem. Soc.,2000,147,2486-2493
    [22]L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Proton selective environment in the pores of activated molecular sieving carbon electrodes, J. Phys. Chem. B 2002, 106,10128-10134.
    [1]C. Niu, E. K. Sichiel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes,Appl. Phys. Lett.,1997,70,1480.
    [2]K. H. An, W. S. Kim, Y. S. Park, J.-M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater,2001,11,387-392.
    [3]V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan, Flexible energy storage devices based on nanocomposite paper, Proc. Natl. Acad. Sci. USA,2007,104,13574-13577.
    [4]P.C. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films, Appl. Phys. Lett.,2009,94,043113.
    [5]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett.,2008,8,2664-2668.
    [6]S. Yasuda, T. Hiraoka, D. N. Futaba, T. Yamada, M. Yumura, K. Hata, Existence and Kinetics of Graphitic Carbonaceous Impurities in Carbon Nanotube Forests to Assess the Absolute Purity, Nano Lett.,2009,9,769-773.
    [7]T. Hiraoka, A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, S. Yasuda, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, K. Hata, Compact and Light Supercapacitor Electrodes from a Surface-Only Solid by Opened Carbon Nanotubes with 2200 m(2) g(-1) Surface Area, Adv. Funct. Mater.,2010,20,422-428.
    [8]A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon,2001,39, 507-514.
    [9]A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density, Adv. Mater.,2010,22(35), E235-241
    [10]D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Source,1998,74,99-107.
    [11]K. Kinoshita, Carbon, Wiley, New York,1988.
    [12]R. F. Strickland-Constable, Trans. Faraday Soc.,1938,34,1074.
    [13]L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, A. Dugast, Electrode optimization for carbon power supercapacitors, J. Power Sources,1999,79, 37-42.
    [14]S. M. Lipka, IEEE AES Systems Magazine,1997,7,27-30.
    [15]R. Richner, S. Muller, A. Wokaum, Grafted and crosslinked carbon black as an electrode material for double layer capacitors, Carbon,2002,40,307-314.
    [16]L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang and Y. Y. Xia, Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation, J. Electrochem. Soc.,2007,154(7), A692-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700