基于MEMS热电堆的表面高温测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬态温度由于其温度过高或作用时间很短,难以用传统的热电偶来进行测量。基于微电子技术和半导体技术的的MEMS热电堆传感器,以红外辐射为机理,作为一种非接触式测温器件,不需与被测物体接触,能够有效地消除接触式传感器因安装使温度场产生畸变而出现的测温误差,可以实现非接触式测温;同时由于物体微小的温度波动会产生较大的辐射能量的变化,故传感器的灵敏度很高。因此,可利用MEMS热电堆传感器进行瞬态表面高温测试研究。本文以红外辐射测温为背景,围绕MEMS热电堆传感器表面高温测试系统展开论述,论文主要从理论设计、重点部分性能分析两方面进行了探索。
     论文首先分析了瞬态温度测试的研究现状,并介绍了热电堆传感器的结构、发展现状及应用。其次,针对测温现状,提出一种用MEMS热电堆传感器来实现高温测量的新方法,设计了基于MEMS热电堆的瞬态(ms量级)表面高温(1500℃-3000℃)测试系统,对系统各部分的功能及材料的选择进行了深入的探讨;同时提出了系统的静动态标定方法,为进一步的研制提供了理论依据。再次,对系统的关键元件陶瓷材料衰减片的红外吸收系数进行研究,分析了典型的傅里叶变换红外光谱仪测量法,并结合系统的特点,提出了一种新的测量方法——MEMS热电堆测量法。两种方法互为验证,试验结果表明MEMS热电堆测量法具有计算更加简单、准确的优点,为系统的实现提供了良好依据。最后,采用先成型后烧结法研制了4.5mm、5.5mm氧化锆陶瓷薄片,并对其吸收系数进行实验,实验结果表明性能良好,可用于MEMS热电堆表面高温测试系统中,为系统的进一步完善打下基础。
HTransient temperatureH can hardly be measured using the traditional thermocouple as it is toohigh or the acting time is too short.Based on the HmicroelectronicsH technology and theHsemiconductor technologyH, MEMS Hthermopile sensorH which is a non-contact temperaturemeasuring device, using the Hinfrared radiationH as its mechanism, is not needed to contact themeasured objects and can effectively eliminate the errors of temperature field caused by theinstallation of the sensor to achieve non-contact temperature measurement; at the same time,as the micro temperature fluctuation of the object can cause a great change in radiation energy,the sensitivity of the Hinfrared radiation thermometersH is high.Therefore, the research oftransient surface high temperature measurement is available using MEMS thermopile sensor.Based on the Hinfrared radiation temperature measurementH, this paper Hspreads out expositionHaround the system of surface high temperature measurement using MEMS thermopile sensorand explores it in the aspects of Htheoretical designH and key part Hperformance analysisH.This paper firstly analyzes the Hcurrent research statusH of Htransient temperature testH andintroduces the structure, nowaday development and application of the Hthermopile sensorH.
     Then, aiming at the temperature measuring actuality, a new method of high temperaturemeasurement is proposed using MEMS thermopile sensor and the system of transient (msscale) surface high temperature (1500℃--3000℃) measurement based on MEMS thermopileis designed, the function of various parts of the system and the selection of the material.arediscussed further;at one time, the static and dynamic calibration method of the system aresuggested and provide a theoretical basis to further the investigation.In addition, researchingon the infrared Habsorption coefficientH of key organ of the system--the ceramic material attenuation slice, typical FTIS measurement was discussed,and combination the characteristics ofhigh-temperature test system,a new measurement method—MEMS thermopile measurement wasproposed。The two methods verify each other and the test results show that MEMS thermopilemeasurement has a simpler and more accurate advantage, which gives a good basis for thesystem to achieve.At last, 4.5mm,5.5mm ZrOB2 Bceramic thin slices are manufactured in theway of molding before sintering and its absorption coefficient is being experimented. The testresults show that it has a good performance which can be using in the system of MEMSthermopile surface high temperature measurement and make a basis of furthering theimprovement of the system.
引文
[1]江林涛,朱维东,唐海龙.石墨纤维热电偶的性能测试与分析[J].贵州科学.2007,25(5)
    [2]Hugh E.Redick,etc,Graphite fiber thermocouple device and method United States Patent, US4650920 1987-3-17
    [3]柳刚.非接触式红外测温仪的研制[J].光电子技术与信息.2005,18(5):69
    [4]E.M.斯.帕罗,R.D.塞斯.辐射传热[M].高等教育出版社.1982
    [5]张萍,微机械热电堆红外探测器的设计及应用研究[D].中北大学硕士学位论文.2008.4
    [6]Johnston J. S. Editorial in special issues on temperature[J]. Measurement and control, 1987, 20: 5
    [7]王魁汉.温度测量实用技术[M].北京:机械工业出版社,2007:16-18
    [8]Imber M. A temperature extrapolation method for hollow cylinder[J]. AIAA Journal, 1973, 11(1):117-118
    [9]Chen Ching Jen, Thomsent D. M. On transient cylindrical surface heat flux predicted from interior temperature response[J]. AIAA Journal, 1975, 13(5):697-699
    [10]S.M.Sze.Physics of Semiconductor Devices[J].John Wiley and Sons, Inc,1981
    [11]梅遂生,杨家德.光电子技术一信息装备的新秀[M] .国防工业出版社,1999
    [12]张兴,黄如,刘晓彦编著.微电子学概论[M] .北京大学出版社,2000
    [13]刘君华编著.智能传感器系统[M] .西安电子科技大学出版社,1999
    [14]王亚珍,朱文坚.微机电系统(MEMS)技术及发展趋势[M] .机械设计与研究,2004 2:10-12
    [15]OMRON Releases New,Cyclone-Type MEMS Flow Sensor[J].Business Wire,2007,9.
    [16]刘义冬CMOS兼容的微机械P/N多晶硅热电堆红外传感器[J]功能材料与器件学报. 2007,13(3):226-232
    [17]刘世建.非致冷红外焦平面阵列用探测材料[J].电子元件与材料.2002,21(10):22-24
    [18]梁晋涛.一种新型微机械红外热探测器的吸收层[J].西安交通大学学报.2005,39(8) :856-859
    [19]田涛.一种新型MEMS微波功率传感器的设计与模拟[J].传感技术学报.2008,21(4):611-614
    [20]许雄.基于A2TOPMI的电炉非接触式测温方案[J].实验科学与技术.2006,5:120-122
    [21]Jayanta S.Kapat, Ultra-high temperature micro-electro-mechanical systems (MEMS)- based sensors[P], United States Patent, US7338202B1 2008-3-4 13-19
    [22]S. Udina, M. Carmona, G. Carles, J. Santander, L. Fonseca, S. Marco, Sensors and Actuators B: Chemical, Volume 134, Issue 2, 25 September 2008, Pages 551-558
    [23]P.Adrian.IRThermopile Have Growth Opportunities in Diverse OEM Applications.Sensor Business Digest[J]: Sensor Industry Developments and Trends, 2001,10
    [24]Danijela Randjelovic, Zoran Djuric, Anastasios Petropoulos, Grigoris Kaltsas, Zarko Lazic, Mirjana Popovic,Microelectronic Engineering, In Press, Corrected Proof, Available online 13 December 2008
    [25]A.W.Van Herwaarden,D.C.Van Duyn,B.W.Van Oudheusden and P.M.Sarro,Integrated Thermopile Sensors,Sensors and Actuators,A21-23(1990)621-630
    [26]G.C.M.Meijer and A.W.Herwaarden,Thermal Sensors, Institute of Physics Publishing, 1994
    [27]U.Dillner,E.Kessler,S.Poser,V.Baier,J.Muller,Low Power Consumption Thermal Gas-Flow Sensors Basede on Thermopiles of Highly Effective Thermoelectric Materials,Sensors and Actuators A60(1997)1-4
    [28]W Ghanem,R.Schnupp,C. Temmel and H.Ryssel.Development and Characterization of A Sensor Based on Thermopiles-Array for Human Information and Counting:A Contribution to Innovative House Technique, The 10PthP International Conference on Solid-State Sensors and Actuators (Transducers’99),Sendai, Japan, 1999:7-10
    [29]A. Doctor, MEMS Technology Based Sensors for Payload Instruments and Attitude Control for Small Satellites, Proceeding of the 14Pth PAnnual AIAA/USU Conference on Small Satellite[J], Utah State University, August, 2000, SSC00-III-4.
    [30]李保岐,段绪海.二氧化锆热障涂层在航空发动机上的应用[J].航空工艺技术.1993,3: 33
    [31]惠松骁,周卓华,许大庆等.Al2O3、ZrO2功能薄膜的性能及制备技术[J].电子工艺技术.1996,2:110
    [32]国防科工委科技与质量司.热学计量[M] .原子能出版社,2002:252-257,292-293
    [33]董雪.氧化锆陶瓷在空气炉中钎焊的研究[D].大连交通大学硕士学位论文.2007,6
    [34]陈伦泰.氧化锆复合陶瓷材料结构与性能研究[D].武汉理工大学硕士学位论文,2008
    [35]李美俊.氧化锆和掺杂氧化锆物相及其变化的紫外拉曼光谱研究[D].中国科学院研究生院博士学位论文.2002, 12-14
    [36]G. Pacheco, J. J.Fripiant, J. Phys. Chem.B, 2000, 104, 11906.
    [37]I.Stefanc,S.Music,G.Stefanic,A.Gajovic,J.Mole.Struc..1999,480-481,621-625
    [38]G.Stefanic,S.Music,B.Grzeta,S.Popovic,A.Sekulic,J.Phys.Chem.Solids,1998,59,879
    [39]尹衍升,陈守钢,刘英才等.氧化锆陶瓷的掺杂稳定及生长动力学[M].化学工业出版社. 2004,11
    [40]T K Gupta. Sintering of Tetragonal Zirconia and its Characteristics. Sintering. 1978, 10 (3): 205-216
    [41]土零森.二氧化锆陶瓷(一)[J].陶瓷工程.1997,31(1): 40-44
    [42]Raddatz, G A Schneider, W Macken, etal. Bridging Stresses and R-curves in Ceramicl/Metal Composites. J. Eur. Ceram. Soc., 2000, (20): 2261-2273
    [43]D Casellas,F L Cumbrera. On the Transformation Toughening of Y-Zr02 Ceramics with Mixed Y-TZP/PSZ Microstructures. J Eur. Ceram. Soc., 2001,(21): 765-777
    [44]I W Chen, Reyes P E. Morel Implications of Transformation Plasticity in Zr02-Containg Ceramics: I, Shear and Dilatation Effect. J. Am. Ceram. Soc., 1986 (69):181-189
    [45]F B Jose, D Maicos. Influence of the Metal Particle Size on the Crack Growth Resistance in Mullite-Molybedenum Composites .J. Am. Ceram. Soc,2002, 85(11): 2778-2784.
    [46]周水仙.特种陶瓷在现代工业中的应用现状[J].江苏陶瓷,1998,31(1):30-32
    [47]肖汉宁.特种陶瓷产业化一应用研究与市场开拓并举[J].陶瓷工程.1998,32(1):3-5
    [48]D C Hague,M J Mayo. Sinter-Forging of Nancrystalline Zirconia, Simuation. J. Am. Ceram.Soc., 1999, 82 (3): 545-600
    [49] K Matsu, H Horikoshi, Ohmichi N. Cubic-Formation and Grain-Growth Mechanisms in Tetragonal Zirconia Polycrystal. J. Am. Ceram. Soc. 2003, 86(8): 1401-1408
    [50]D C Hague, M J Mayo. Modeling Densification During Sinter-Forging of Yttria-Partially- Stabilized. Zirconia Mater. Sci. Engng A, 1995,, (204): 83-89
    [51]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].化学工业出版社.2004, 2
    [52]R. Srinivasan,B.H.Davis,Catal.Lett.,1992,14,165-170
    [53]B. Xia, L-Y Duan, Y CH. Xie, J. Am. Chem. Soc., 1961, 83(5), 1077-80
    [54]S.C. Su, A.T. Bell, J. Phys. Chem. B.,1998, 102, 7000
    [55]Z. Dang, B.G.Anderson, Y.Amenomiya, B.A.Morrow, J. Phys.Chem., 1995,99, 14437
    [56]J. M. Miller, L. J. Lakshmi, J. Phys. Chem. B, 1995, 102, 64-65
    [57]K.T. Jung, A.T. Bell, J. Mole. Catal. A: Chem., 2000, 163, 27-42
    [58]M. Hino, S. Kobayashi and K. Arata, J. Am. Chem. Soc., 1979, 101,6439
    [59]M. Hino and K. Arata, J. Chem.Comrnun.,1980, 851
    [60]黄呈辉.一种精确计算光学材料吸收系数的方法[J].激光杂志.2001.22(6),54-55
    [61]Herberger Max, Salzberg Calvin D. Refractive indices of infrared optical materials and color correction of infrared lenses . J Opt Soc Am , 1962, 52(4): 422-427
    [62]米宝永.锗的红外折射率精密测量[J].光学精密工程.1998.6(4),123-126
    [63]范松灿.傅立叶变换红外光谱仪的原理与特点[J].高分子材料研.2007,(11):41-42
    [64]李长治.红外傅立叶光谱在化学上的应用[J].光谱学与光谱分析,1983,3(3):7- 12.
    [65]缪家鼎.光电技术[M].浙江大学出版社.1995.3:8-9
    [66]余怀之.红外光学材料[M].国防工业出版社.2007.1:48-50
    [67]Marvin John Weber.Handbook of Optical Materials[M].CRC Press.2003,64
    [68]李树先.氧化锆陶瓷薄片的制备研究[D].西南交通大学硕士学位论文.2008.5
    [69]李冬云,乔冠军,金志浩.流延法制备陶瓷薄片的研究进展[J].硅酸盐学报.2004 (2):44- 47
    [70]刘晓光,李斌太,李国军,陈大明,李爱兰.水基凝胶注模法制备稳定氧化锆体的研究[J].硅酸盐通报.2003,6:68-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700