小鼠脐血移植模型的建立及角质细胞生长因子在移植后免疫重建中作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、小鼠脐带血造血干细胞移植模型的建立
     目的:探讨小鼠脐带血收集方法、建立可长期生存的小鼠异基因脐带血造血干细胞移植模型。
     方法:采用C57BL/6雌性小鼠腹腔注射5IU孕马血清促性腺激素,48h后注射5IUβ-人绒毛膜促性腺激素促进排卵并按2:1雌雄比与C57BL/6雌性小鼠合笼,次晨分开。取孕E19.5 d小鼠,无菌条件下取出胎鼠,置于0.4%柠檬酸钠的RPMI-1640完全培养基内,先后剪开胎鼠颈动脉和心脏,充分释放外周血。将32只8-10周龄SPF级BALB/c小鼠随机分为4组,每组8只,BALB/c小鼠接受8.0Gy X射线全身照射。分别输注0.4ml PBS或1×10~6、2×10~6或3×10~6个脐血TNCs。+8天每只鼠输注1×10~9个血小板。
     结果:成年C57BL/6小鼠予促排卵处理单次妊娠可获得6-11只胎鼠/胎,平均8只。单个胎鼠采集外周血有核细胞数6.4×10~5-11.4×10~5个,平均有核细胞数9.37×10~5个。PBS对照组小鼠13.5d内全部死于造血衰竭。同基因脐血移植输注1×10~6、2×10~6 TNCs两组小鼠100d生存率分别为87.5%(7/8只)、100.0%(8/8只),三组生存时间差别具有统计学意义(P<0.001)。同基因脐血移植输注1×10~6个脐血TNCs小鼠给予血小板输注支持100d生存率为100.0%(8/8只)。异基因脐血移植输注1×10~6、2×10~6、3×10~6个TNCs三组小鼠100d生存率分别为25%(2/8只)、37.5%(3/8只)、37.5%(3/8只),三组生存时间比较差别无统计学意义(χ~2=0.4990,P=0.7792),移植组与PBS对照组相比生存时间具有统计学意义(χ~2=39.99,P<0.001)(图3A)。第二批脐血移植实验中含血小板输注支持,异基因脐血移植输注1×10~6、2×10~6、3×10~6个TNCs三组小鼠100d生存率分别为87.5%(7/8只)、100.0%(8/8只)、100.0%(8/8只)。长期生存小鼠无明显GVHD表现。
     结论:采用抗凝培养基可以明显增加单个胎鼠平均采集脐带血有核细胞数,在小鼠脐血移植后予血小板输注成功建立了能重建造血并长期生存的异基因小鼠脐血移植模型。
     二、白血病小鼠脐带血造血干细胞移植模型的建立
     目的:建立C57BL/6→BALB/c白血病小鼠异基因脐带血造血干细胞移植模型。
     方法:BALB/c小鼠尾静脉接种1×10~6个EL9611细胞。接种4天后分组:无TBI对照、TBI对照、同基因小鼠脐带血造血干细胞移植对照、异基因小鼠脐带血造血干细胞移植组,每组8只。TBI处理后输注2×10~6个脐带血TNCs;移植后+8d予输血小板支持。
     结果:无TBI处理对照组小鼠接种后14天内全部死于白血病。单纯TBI处理组小鼠处理后14天内全部死于造血衰竭所致全血细胞减少。同基因对照小鼠20天内全部死于白血病,移植前4天接种EL9611白血病细胞后予TBI预处理可成功制备白血病微小残留病灶模型。异基因UCBT组3/8只小鼠长期生存,5/8只小鼠于UCBT后44天内死于EL9611白血病复发。四组生存时间采用Log-rank检验,χ~2=29.24, P < 0.0001。异基因UCBT组小鼠生存期明显比同基因UCBT组小鼠生存期长(χ~2= 9.545, P= 0.0020)。结论:在成功建立血小板输注支持的小鼠异基因脐带血造血干细胞移植模型的基础上,本部分采用脐血移植前4天尾静脉接种EL9611白血病细胞建立白血病脐血造血干细胞移植模型。异基因UCBT具有明显的移植物抗白血病作用
     三、KGF对小鼠脐带血造血干细胞移植后免疫重建和白血病复发的影响
     目的:探讨研究KGF输注对移植后免疫重建和白血病复发的影响。
     方法:采用定量PCR方法检测脾细胞sjTREC评价胸腺输出功能;RT-PCR方法检测T细胞受体β链谱型;流式细胞仪检测淋系重建;外周血涂片瑞氏染色检测白血病复发。免疫重建实验共设立2组,每组12只小鼠。PBS免疫重建对照组:不接种白血病,小鼠自TBI前-3d起每日皮下注射0.2ml PBS连用7天,TBI处理后输注2×10~6个脐带血TNCs,移植后+8d予输血小板支持;KGF免疫重建实验组:不接种白血病,小鼠自TBI前-3d起每日皮下注射重组人KGF(Peprotech)1mg/kg连用7天,TBI处理后输注2×10~6个脐带血TNCs,移植后+8d予输血小板支持。白血病实验共设立4组,每组10-12只小鼠。对照1组:接种白血病,无TBI处理;对照2组:TBI前-4d时接种白血病,单纯TBI处理;PBS白血病实验对照组:TBI前-4d时接种白血病,小鼠自TBI前-3d起每日皮下注射0.2ml PBS连用7天,TBI处理后输注2×10~6个脐带血TNCs,移植后+8d予输血小板支持;KGF白血病实验组:接种白血病,小鼠自TBI前-3d起每日皮下注射重组人KGF 1mg/kg连用7天,TBI处理后输注2×10~6个脐带血TNCs,移植后+8d予输血小板支持。
     结果: +35天PBS免疫重建对照组小鼠脾细胞总数、T、NK和B细胞数分别为(3.51±0.31)×10~7、(9.32±0.48)×10~6、(1.59±0.11)×10~6、(18.74±2.01)×10~6个;KGF免疫重建实验组小鼠脾细胞总数、T、NK和B细胞数分别为(4.06±0.19)×10~7、(13.20±1.14)×10~6、(1.75±0.12)×10~6、(20.36±0.86)×10~6个。KGF免疫重建组脾细胞总细胞数、T细胞、NK细胞较PBS对照组高(P<0.05)。PBS对照组小鼠sjTRECs水平为182.2±10.7拷贝/105脾细胞;KGF实验组小鼠为sjTRECs水平为224.2±9.6拷贝/105脾细胞,KGF免疫重建实验组sjTRECs水平明显高于PBS对照组(P=0.019)。PBS白血病对照组白血病小鼠脐带血移植后28天后陆续出现白血病复发,4/12只生存期超过100天,100天生存率33.3%。KGF白血病实验组白血病小鼠脐带血移植后34天后陆续出现白血病复发,9/12只生存期超过100天,100天生存率75.0%。两组白血病小鼠生存时间比较差别有统计学意义(χ~2= 4.996,P= 0.0254)。
     结论:异基因脐带血造血干细胞移植TBI预处理前KGF输注可以促进胸腺上皮功能恢复,增强胸腺输出功能,促进外周T淋系免疫重建,并且增强的T细胞免疫重建可降低异基因脐带血移植后白血病复发。
Part ?: Establishment of a viable murine umbilical cord blood stem cell transplantation (UCBT) model.
     Objective: To explore the isolation of murine umbilical cord blood and establishment of a viable murine umbilical cord blood stem cell transplantation (UCBT) model. Methods: Female C57BL/6 mice were treated with 5IU PMSG i.p., female C57BL/6 mice were mated with male C57BL/6 mice at a ratio of 2:1. We humanely killed E19.5d pregnant mice. We collected umbilical cord blood with 0.4% sodium citrate supplemented RPMI-1640 complete medium. Thirty-two BALB/c mice were assigned to four groups with 8 mice per group. Recipient mice were reconstituted with PBS, 1×10~6, 2×10~6 or 3×10~6 umbilical cord blood TNCs。Platelet concentrate support with 1×10~9 platelets was incorporated in parts of experiment.
     Results: Average number of peripheral blood TNCs is 9.37×10~5 (range, 6.4×10~5 to 11.4×10~5) per fetus by using anticoagulant-supplemented media. BALB/c mice received TBI and PBS treatment died of hematopoietic failure between + 9.5 and +14 day post TB. The 100-day survival rates of C57BL/6 mice reconstituted with 1×10~6, 2×10~6 UCB TNCs were 87.5% (7/8) and 100% (8/8), respectively.
     The 100-day survival rates of BALB/c mice reconstituted with 1×10~6, 2×10~6, 3×10~6 UCB TNCs were 25.0% (2/8), 37.5% (3/8) and 37.5% (3/8), respectively(χ~2=0.4990, P=0.7792. There was not a trend of prolonged survival time with increasing UCB NCs inoculation. The 100-day survival rates of BALB/c mice reconstituted with 1×10~6, 2×10~6, 3×10~6 UCB NCs in the second experiment cohort were 87.5% (7/8), 100.0% (8/8) and 100.0% (8/8), respectively. No GVHD was observed post UCBT.
     Conclusion: We had modified a protocol with anticoagulant supplemented medium to collect murine umbilical cord TNCs. We established a viable murine allogeneic umbilical cord blood transplantation model.
     PartПEstablishment of leukemia-bearing murine allogeniec umbilical cord blood hematopoietic stem cell transplantation model Objective: To establish C57BL/6→BALB/c leukemia-bearing murine allogeniec umbilical cord blood hematopoietic stem cell transplantation model.
     Methods: BALB/c mice were inoculated with 1×10~6 EL9611 cells 4 days prior to TBI conditioning. BALB/c mice were randomly assigned to four groups, no TBI, TBI, syngeneic UCBT control, allogeneic UCBT. Recipient mice were reconstituted with 2×10~6 UCB TNCs with platelet concentrate support on +8day post UCBT.
     Results: All mice died of leukemia within 14d with no TBI. All mice died of aplasia within 14d with TBI. All mice of syngeneic UCBT group died of leukemia relapse within 20d. 62.5%(5/8) of mice of allogeneic UCBT group died of leukemia relapse within 20d, 37.5%(3/8) mice survived 100d post UCBT. The survival time of four groups are significant different (χ~2=29.24, P < 0.0001). Allogeneic group had a prolonged survival than syngeneic group (χ~2= 9.545, P= 0.0020).
     Conclusion: We established a viable C57BL/6→BALB/c leukemia-bearing murine allogeneic umbilical cord blood hematopoietic stem cell transplantation model with platelet concentrate support.
     PartШThe effects of KGF on immune reconstitution and leukemia relapse post allogeneic umbilical cord blood transplantation
     Objective: To explore the effects KGF on immune reconstitution and leukemia relapse post allogeneic umbilical cord blood transplantation.
     Methods: Real-time quantitative PCR was used to assay TREC in splenocytes. RT-PCR and runoff PCR were used to assay TRBV family spectrum. FCM was used to assay splenic lymphoid immune reconstitution.
     In the immune reconstitution model, twenty-four BALB/c mice were randomly assigned to allogeneic UCBT PBS control group and KGF treatment group. KGF group mice received KGF treatment s.c. 3 days prior to TBI for 7 consecutive days. Mice were reconstituted with 2×10~6 UCB TNCs with platelet concentrate support on +8 days. In the leukemia model, forty-four leukemia-loaded BALB/c mice were randomly assigned to allogeneic UCBT PBS control group and KGF treatment group. KGF group mice received KGF treatment s.c. 3 days prior to TBI for 7 consecutive days. All mice were reconstituted with 2×10~6 UCB TNCs with platelet concentrate support on +8 days.
     Results: The total splenocytes, T cell, NK cell and B cell per mouse of mice on +35day in PBS treatment group were (3.51±0.31)×10~7, (9.32±0.48)×10~6 and (1.59±0.11)×10~6 and (18.74±2.01)×10~6 , respectively. The splenic T, NK cell counts in KGF treatment group were higher than those of PBS control group. The sjTREC level of PBS control group was 182.2±10.7 per 105 cells, while the sjTREC level of KGF treatment group were 224.2±9.6 per 105 cells, respectively. 75.0 percent of KGF treated mice (9/12) survived +100 d and 25.0 percent (3/12) died of leukemia. 33.3 percent of PBS treated mice (4/12) survived +100 d and 66.7 percent (8/12) died of leukemia. KGF group mice had prolonged survival than PBS control group (χ~2= 4.996, P= 0.0254).
     Conclusion: KGF pretreatment prior to TBI could protect thymus tissue, promote T lymphoid immune reconstitution and enhance graft-versus-leukemia effect in leukemia-loaded murine allogeneic UCBT.
引文
1. Gluckman E and Rocha V. Cord blood transplantation: state of the art. Haematologica, 2009, 94: 451-454.
    2. Frassoni F, Gualandi F, PodestàM, et al. Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. Lancet Oncol, 2008, 9(9): 831-839.
    3. Broxmeyer HE. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy, 2005, 7(3): 209-218.
    4. Fujio M, Atsuhiko O, Shunzo K, et al. Full reconstitution of hematopoietic system by murine umbilical cord blood. Transplantation, 2003, 75: 1820-1826.
    5. Szabolcs P and Niedzwiecki D. Immune reconstitution in children after unrelated cord blood transplantation. Bio Blood Marrow Transplant, 2008, 14: 66-72.
    6. Komanduri KV, John LS, de Lima M, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood, 2007, 110: 4543-4551.
    7. Takami A, Mochizuki K, Asakura H, et al. High incidence of cytomegalovirus reactivation in adult recipients of an unrelated cord blood transplant. Haematologica, 2005, 90: 1290-1292.
    8. Kurtzberg J, Prasad VK, Carter SL, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood, 2008, 112: 4318-4327.
    9. Bernstein ID, Boyd RL, van den Brink M. Clinical strategies to enhance posttransplant immune reconstitution. Bio Blood Marrow Transplant, 2008, 14: 94-99.
    10. Rossi S, Blazar BR, Farrell CL, et al. Keratinocyte growth factor preserves normalthymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood, 2002, 100: 682-691.
    11. Chen BJ, Cui X, Sempowski GD, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood, 2002, 99: 364-371.
    12. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood, 1996, 88: 3230-3239.
    13. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100:3175-3182.
    1. Lorenz E, Uphoff D, Reid TR,et al. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951; 12: 197-201.
    2. Hollingsworth JW and Perfetto MC. Immunologic mechanisms in heavily irradiated mice treated with bone marrow. Blood 1959 14: 548-557.
    3. Thomas ED, Lochte HL Jr., Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257: 491-496.
    4. Reddy P, Negrin R, Hill GR. Mouse models of bone marrow transplantation. Bio Blood Marrow Transplant 2008; 14:129-135.
    5. Ryu T, Hosaka N, Miyake T, et al. Transplantation of newborn thymus plus hematopoietic stem cells can rescue supralethally irradiated mice. Bone Marrow Transplantation 2008; 41: 659-666.
    6. Korngold R and Friedman TM. Murine models for Graft-vs.-Host Disease. Blume KG, Forman SJ, Appelbaum FR. Thomas' Hematopoietic Cell Transplantation (Third Edition), 2004 by Blackwell Publishing Ltd.
    7. Glass B, Uharek L, Zeis M, et al. Allogeneic peripheral blood progenitor cell transplantation in a murine model: evidence for an improved graft-versus-leukemia effect. Blood 1997; 90(4): 1694-1700.
    8. Zeng D, Hoffmann P, Lan F, et al. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 2002; 99(4): 1449-1457.
    9. Chen BJ, Cui X, Liu C, et al. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood 2002; 99(9): 3083-3088.
    10. Sato K, Torimoto Y, Tamura Y, et al. Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice. Blood 2001; 98(6): 1852-1857.
    11.丁顺利,褚建新,赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性.中华血液学杂志; 1998; 12: 637-641.
    12.段连宁,郭坤元,褚建新,等.小鼠红白血病细胞在半相合型小鼠体内的生物特性.中国实验血液学杂志,2002,10(3): 218-221.
    13.陈广华,吴德沛,孙爱宁,等. IL-2和IL-15激活供者自然杀伤细胞在异基因造血干细胞移植应用的实验研究.中华血液学杂志,2008; 29(8): 526-530.
    14. Chen G, Wu D, Wang Y, et al. Expanded donor natural killer cell and IL-2, IL-15 treatment efficacy in allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2008; 81(3): 226-235.
    15.王春燕,郭坤元,吴秉毅,等. NK细胞促进小鼠MHC半相合骨髓移植后造血重建的实验研究.中华血液学杂志, 2004, 25(5): 290-292.
    16. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230-3239.
    17. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104(12): 3804-3812.
    18. Hill GR, Crawford JM, Cooke KR, et al. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204-3213.
    19. Sun K, Wilkins D, Anver MR, et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 2005; 106(9): 3293-3299.
    20. Green EL. Biology of the laboratory mouse, second edition. DOVER PUBLICATIONS, INC., NEW YORK 1966
    21. Finkelstein SE, Heimann DM, Klebanoff CA, et al. Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. JLeukoc Biol 2004; 76: 333-337.
    22. Taylor PA, Panoskaltsis-Mortari A, Freeman GJ, et al. Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood 2005; 105: 3372-3380.
    23. Edinger M, Cao YA, Verneris MR, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 2003; 101: 640-648.
    24. Tsukada N, Kobata T, Aizawa Y, et al. Graft-Versus-Leukemia Effect and Graft-Versus-Host Disease Can Be Differentiated by Cytotoxic Mechanisms in a Murine Model of Allogeneic Bone Marrow Transplantation. Blood 1999; 93: 2738-2747.
    25. Lan F, Zeng D, Huie P, et al. Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-αβ. Blood 2001; 97: 3458-3465.
    26. Fujio M, Atsuhiko O, Shunzo K, et al. Full reconstitution of hematopoietic system by murine umbilical cord blood. Transplantation, 2003, 75: 1820-1826.
    27. Komanduri KV, John LS, de Lima M, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood, 2007, 110: 4543-4551.
    28. Takami A, Mochizuki K, Asakura H, et al. High incidence of cytomegalovirus reactivation in adult recipients of an unrelated cord blood transplant. Haematologica, 2005, 90: 1290-1292.
    29. Kurtzberg J, Prasad VK, Carter SL, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood, 2008, 112: 4318-4327.
    30. Rossi S, Blazar BR, Farrell CL, et al. Keratinocyte growth factor preserves normalthymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood, 2002, 100: 682-691.
    31. Chen BJ, Cui X, Sempowski GD, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood, 2002, 99: 364-371.
    32.王易,陈广华,吴德沛,等.小鼠脐血移植模型的建立及角质细胞生长因子增强移植后免疫重建的机制研究.中华血液学杂志, 2010, 31(2): 82-87.
    33. Yi Wang, Guanghua Chen, Shumin Qiao, Xiao Ma, Xiaowen Tang, Aining Sun, Depei Wu. Keratinocyte growth factor enhances immune reconstitution in murine allogeneic umbilical cord blood cell transplantation. Leukemia & Lymphoma (accept)
    1. Lapierre V, Oubouzar N, Aupérin A, et al. Influence of the hematopoietic stem cell source on early immunohematologic reconstitution after allogeneic transplantation. Blood 2001; 97: 2580-2586.
    2. Jakubowski AA, Small TN, Young JW, et al. T cell–depleted stem-cell transplantation for adults with hematologic malignancies: sustained engraftment of HLA-matched related donor grafts without the use of antithymocyte globulin. Blood 2007; 110: 4552-4559.
    3. Johnston S and Wettstein P. Spectratyping of TCRexpressed by CTL-infiltrating male antigen (HY)-disparate allografts. J Immunol 1998; 160: 3374-3384.
    4. Schilbach K, Schick J, Fluhr H, et al. Organ-specific T cell receptor repertoire in targetorgans of murine graft-versus-host after transplantation across minor mistocompatibility antigen barriers. Transplantation 2004; 78: 31–40.
    5. Gorski J, Yassai M, Zhu X, et al. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 1994; 152: 5109-5119.
    6. Miles J, Elhassen D, Borg N, et al. CTL recognition of a bulged viral peptide involves biased TCR selection. J Immunol 2005; 175: 3826-3834.
    7. Hazenberg M, Verschuren M, Hamann D, et al. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med 2001; 79: 631–640.
    8. Wu C, Chillemi A, Alyea E, et al. Reconstitution of T-cell receptor repertoire diversity following T-cell depleted allogeneic bone marrow transplantation is related to hematopoietic chimerism. Blood 2000; 95: 352-359.
    9. Godthelp B, Tol M, Vossen J, et al. T-cell immune reconstitution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood 1999; 94: 4358-4369.
    10. Rossi S, Blazar B, Farrell C, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 2002; 100: 682-691.
    11. Peggs K and Mackinnon S. Immune reconstitution following haematopoietic stem cell transplantation. Bris J Haematol 2004; 124: 407-420.
    12. Finkelstein SE, Heimann DM, Klebanoff CA, et al. Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J Leukoc Biol 2004; 76: 333-337.
    13. Levine JE, Blazar BR, DeFor T, et al. Long-Term follow-up of a Phase I/II Randomized, Placebo-Controlled Trial of Palifermin to Prevent Graft-versus-Host Disease (GVHD) after Related Donor Allogeneic Hematopoietic Cell Transplantation(HCT). Bio Blood Marrow Transplant 2008; 14: 1017-1021
    14. Rossi SW, Jeker LT, Ueno T, et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 2007; 109:3803-3811.
    15. Panoskaltsis-Mortari A, Lacey DL, Vallera DA, Blazar BR. Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 1998;92:3960-3967.
    16. Migishima F, Oikawa A, Kondo S, et al. Full reconstitution of hematopoietic system by murine umbilical cord blood. Transplantation 2003;75:1820-6.
    17. Chen BJ, Cui X, Sempowski GD, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood 2002;99:364-731.
    18.陈广华,吴德沛,孙爱宁,等. IL-2和IL-15激活供者自然杀伤细胞在异基因造血干细胞移植应用的实验研究.中华血液学杂志,2008; 29(8): 526-530.
    19. Chen G, Wu D, Wang Y, et al. Expanded donor natural killer cell and IL-2, IL-15 treatment efficacy in allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2008; 81(3): 226-235.
    20.符粤文,吴德沛,孙爱宁,等.异基因造血干细胞移植后T细胞免疫重建的分子特征.中华血液学杂志200; 28(5): 312-317.
    21. Nash RA, Gooley T, Davis C, et al. The problem of thrombocytopenia after hematopoietic stem cell transplantation. The Oncologist 1996;1:371-380.
    22. Komanduri KV, John LS, de Lima M, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007;110:4543-4551.
    23. Szabolcs P ,Niedzwiecki D. Immune reconstitution in children after unrelated cord blood transplantation. Bio Blood Marrow Transplant 2008;14:66-72.
    24. Takami A, Mochizuki K, Asakura H, et al. High incidence of cytomegalovirus reactivation in adult recipients of an unrelated cord blood transplant. Haematologica2005;90:1290-1292.
    25. Ooi J, Iseki T, Takahashi S, et al. Unrelated cord blood transplantation for adult patients with de novo acute myeloid leukemia. Blood 2004;103:489-491.
    26. Kurtzberg J, Prasad VK, Carter SL, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 2008;112:4318-4327.
    27. Talvensaari K, Clave E, Douay C, et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002;99:1458-1464.
    28. Solh M, Brunstein C, Morgan S, et al. Platelet and Red Blood Cell Utilization and Transfusion Independence in Umbilical Cord Blood and Allogeneic Peripheral Blood Hematopoietic Cell Transplants. Bio Blood Marrow Transplant 2011; 17: 710-716.
    29. Miller JS, Weisdorf DJ, Burns LJ, et al. Lymphodepletion followed by donor lymphocyte infusion (DLI) causes significantly more acute graft-versus-host disease than DLI alone. Blood 2007;110:2761-2763.
    30. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996;88:3230-3239.
    31. Broers A, Sluijs SJ, Spits H, et al. Interleukin-7 improves T-cell recovery after experimental T-cell–depleted bone marrow transplantation in T-cell–deficient mice by strong expansion of recent thymic emigrants. Blood 2003;102:1534-1540.
    32. Reddy P, Negrin R, Hill GR. Mouse models of bone marrow transplantation. Bio Blood Marrow Transplant 2008;14:129-135.
    33. Patel SR, Cadwell CM, Medford A, Zimring JC. Transfusion of minor histocompatibility antigen-mismatched platelets induces rejection of bone marrow transplants in mice. J Clin Invest 2009;119:2787-2794.
    34. Duran-Struuck R, Dysko RC. Principles of bone marrow transplantation (BMT):providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci 2009;48:11-22.
    35. Min D, Taylor PA, Panoskaltsis-Mortari A, et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 2002;99: 4592-4600.
    36. Bernstein ID, Boyd RL, van den Brink M. Clinical strategies to enhance posttransplant immune reconstitution. Bio Blood Marrow Transplant 2008;14:94-99.
    37. Seggewiss R, LoréK, Guenaga FJ, et al. Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 2007;110:441-449.
    38. Alpdogan ?, Hubbard VM, Smith OM, et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2006;107:2453-2460.
    39. Kelly RM, Goren EM, Taylor PA, et al. Short-term inhibition of p53 combined with keratinocyte growth factor improves thymic epithelial cell recovery and enhances T-cell reconstitution after murine bone marrow transplantation. Blood 2010;115: 1088-1097.
    40. Kelly RM, Highfill SL, Panoskaltsis-Mortari A, et al. Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood 2008;111:5734-5744.
    41. Mackall CL, Bare CV, Granger LA, et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996;156:4609-4616.
    42.丁顺利,褚建新,赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及生物学特性.中华血液学杂志;1998; 12: 637-641.
    43.王易,陈广华,吴德沛,等.小鼠脐血移植模型的建立及角质细胞生长因子增强移植后免疫重建的机制研究.中华血液学杂志, 2010, 31(2): 82-87.
    44. Yi Wang, Guanghua Chen, Shumin Qiao, Xiao Ma, Xiaowen Tang, Aining Sun, Depei Wu. Keratinocyte growth factor enhances immune reconstitution in murine allogeneic umbilical cord blood cell transplantation. Leukemia & Lymphoma (accept)
    1. Ende M, Ende N. Hematopoietic transplantation by means of fetal (cord) blood. A new method. Va Med Mon (1918)1972;99:276- 80.
    2. Broxmeyer HE, Douglas GW, Hangoc G et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989;86:3828-32.
    3. Gluckman E, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy 2005;7:219- 27.
    4. Broxmeyer HE. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy 2005;7:209-18.
    5. Leung W, Ramirez M, Civin CI. Quantity and quality of engrafting cells in cord blood and autologous mobilized peripheral blood. Biol Blood Marrow Transplant 1999;5: 69-76.
    6. Frassoni F, Podesta M, Maccario R et al . Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood 2003;102:1138-41.
    7. Gluckman E, Broxmeyer HA, Auerbach AD et al. Hematopoietic reconstitution in apatient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989;321:1174-8.
    8. Rubinstein P, Dobrila L, Rosenfield RE et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA 1995;92:10119 -22.
    9. Kurtzberg J, Graham M, Casey J et al. The use of umbilical cord blood in mismatched related and unrelated hemopoietic stem cell transplantation. Blood Cells 1994;20:275-83.
    10. Rocha V, Gluckman E. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 2006;12:34-41.
    11. Barker JN, Davies SM, DeFor T et al. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood 2001;97: 2957-61.
    12. Rocha V, Cornish J, Sievers EL et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001;97:2962-71.
    13. Koh LP, Chao NJ. Umbilical cord blood transplantation in adults using myeloablative and nonmyeloablative preparative regimens. Biol Blood Marrow Transplant 2004;10:1-22.
    14. Rubinstein P, Carrier C, Scaradavou A et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998;339:1565-77.
    15. Rocha V, Labopin M, Sanz G et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004;351:2276 -85.
    16. Kurtzberg J, Carter SL, Baxter-Lowe LA et al. Results of the cord blood transplantation study (COBLT): clinical outcomes of 193 unrelated donor umbilical cord blood transplantation in pediatric patients with malignant conditions. Biol BloodMarrow Transplant 2005;11:Suppl 1:6.
    17. Laughlin MJ, Eapen M, Rubinstein P et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004;351:2265-75.
    18. Parody R, Martino R, Rovira M et al. Severe infections after unrelated donor allogeneic hematopoietic stem cell transplantation in adults: comparison of cord blood transplantation with peripheral blood and bone marrow transplantation. Biol Blood Marrow Transplant 2006;12:734-48.
    19. Barker JN, Hough RE, Van Burik JA et al. Serious infections after unrelated donor transplantation in 136 children: impact of stem cell source. Biol Blood Marrow Transplant 2005;11:362-70.
    20. 20 Cohen G, Carter SL, Weinberg KI et al. Antigen-specific Tlymphocyte function after cord blood transplantation. Biol Blood Marrow Transplant 2006;12:1335-42.
    21. Fry TJ, Mackall CL. Immune reconstitution following hematopoietic progenitor cell transplantation: challenges for the future. Bone Marrow Transplant 2005;35(Suppl 1):S53-7.
    22. Parkman R, Weinberg KI. Immunological reconstitution following bone marrow transplantation. Immunol Rev 1997;157:73 -8.
    23. Parkman R. Antigen-specific immune function after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2003;9:287 -91.
    24. Crooks GM, Weinberg K, Mackall C. Immune reconstitution: from stem cells to lymphocytes. Biol Blood Marrow Transplant 2006;12:42 -6.
    25. Mackall CL, Bare CV, Granger LA et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996;156:4609-16.
    26. Garderet L, Dulphy N, Douay C et al. The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood 1998;91:340-6.
    27. Broxmeyer HE, American Association of Blood Banks. Cord Blood: Biology, Immunology, and Clinical Transplantation . Bethesda: AABB Press, 2004.
    28. Talvensaari K, Clave E, Douay C et al. A broad T-cell repertoirediversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002;99:1458-64.
    29. Han P, Hodge G, Story C, Xu X. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. Br J Haematol 1995;89:733-40.
    30. D’Arena G, Musto P, Cascavilla N et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 1998;83:197-203.
    31. Szabolcs P, Park KD, Reese M et al. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol 2003;31:708-14.
    32. Chalmers IM, Janossy G, Contreras M, Navarrete C. Intracellular cytokine profile of cord and adult blood lymphocytes. Blood 1998;92:11 -8.
    33. Risdon G, Gaddy J, Stehman FB, Broxmeyer HE. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol 1994;154:14 -24.
    34. Suen Y, Lee SM, Qian J et al. Dysregulation of lymphokine production in the neonate and its impact on neonatal cell mediated immunity. Vaccine 1998;16:1369 -77.
    35. Bradley MB, Cairo MS. Cord blood immunology and stem cell transplantation. Hum Immunol 2005;66:431 -46.
    36. 36 Berthou C, Legros-Maida S, Soulie A et al. Cord blood T lymphocytes lack constitutive perforin expression in contrast to adult peripheral blood T lymphocytes. Blood 1995;85:1540 -6.
    37. Godfrey WR, Spoden DJ, Ge YG et al . Cord blood CD4(_)CD25(_)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function.Blood 2005;105:750 -8.
    38. Schonland SO, Zimmer JK, Lopez-Benitez CM et al. Homeostatic control of T-cell generation in neonates. Blood 2003;102:1428 -34.
    39. Gardiner CM, Meara AO, Reen DJ. Differential cytotoxicity of cord blood and bone marrow-derived natural killer cells. Blood 1998;91:207-13.
    40. Harris DT, Schumacher MJ, Locascio J et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci USA 1992;89: 10006-10.
    41. Roth I, Corry DB, Locksley RM et al. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med 1996;184:539-48.
    42. Munn DH, Zhou M, Attwood JT et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191 _3.
    43. Szekeres-Bartho J, Faust Z, Varga P et al. The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. Am J Reprod Immunol 1996;35:348-51.
    44. Marchant A, Goldman M. Tcell-mediated immune responses in human newborns: ready to learn? Clin Exp Immunol 2005;141:10 -8.
    45. Marodi L. Down-regulation of Th1 responses in human neonates. Clin Exp Immunol 2002;128:1-2.
    46. Guller S, LaChapelle L. The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces. Semin Reprod Endocrinol 1999;17:39 -44.
    47. Ribeiro-do-Couto LM, Boeije LC, Kroon JS et al. High IL-13 production by human neonatal T cells: neonate immune system regulator? Eur J Immunol 2001;31: 3394-402.
    48. White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells. J Immunol 2002;168:2820 -7.
    49. Goriely S, Van Lint C, Dadkhah R et al. A defect in nucleosome remodeling prevents IL-12(p35) gene transcription in neonatal dendritic cells. J Exp Med 2004;199:1011-6.
    50. Goriely S, Vincart B, Stordeur P et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 2001;166:2141 -6.
    51. Langrish CL, Buddle JC, Thrasher AJ, Goldblatt D. Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin Exp Immunol 2002;128: 118-23.
    52. Klein AK, Patel DD, Gooding ME et al. T-cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant 2001;7:454 -66.
    53. Moretta A, Maccario R, Fagioli F et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol 2001;29:371-9.
    54. Brahmi Z, Hommel-Berrey G, Smith F, Thomson B. NK cells recover early and mediate cytotoxicity via perforin/granzyme and Fas/FasL pathways in umbilical cord blood recipients. Hum Immunol 2001;62:782 -90.
    55. Niehues T, Rocha V, Filipovich AH et al. Factors affecting lymphocyte subset reconstitution after either related or unrelated cord blood transplantation in children: a Eurocord analysis. Br J Haematol 2001;114:42-8.
    56. Thomson BG, Robertson KA, Gowan D et al. Analysis of engraftment, graft-versus- host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000;96:2703 -11.
    57. Parkman RCG, Carter SL, Weinberg K et al. Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant 2006;12:919 -27.
    58. Szabolcs P, Niedzwiecki D, Chao N, Kurtzberg J. Multivariate analysis of patient and graft specific factors among 330 recipients of unrelated cord blood transplant (UCBT) to predict risk of death from opportunistic infections in the first 6 months after UCBT. Blood 2006;108:2860a.
    59. Szabolcs P, Park KD, Marti L et al. The impact of immune reconstitution in the early post grafting period on the development of opportunistic infections after unrelated cord blood transplantation: a multivariate analysis of host, graft, and day _50 immune profile. Biol Blood Marrow Transplant 2004;10 Suppl 1:48.
    60. Szabolcs P, Park KD, Reese M et al. Absolute values of dendritic cell subsets in bone marrow, cord blood, and peripheral blood enumerated by a novel method. Stem Cells 2003;21:296-303.
    61. Szabolcs P, Park KD, Marti L et al. Superior depletion of alloreactive T cells from peripheral blood stem cell and umbilical cord blood grafts by the combined use of trimetrexate and interleukin-2 immunotoxin. Biol Blood Marrow Transplant 2004;10:772-83.
    62. Hamann D, Baars PA, Rep MH et al. Phenotypic and functional separation of memory and effector human CD8-T cells. J Exp Med 1997;186:1407-18.
    63. Hamann D, Kostense S, Wolthers KC et al. Evidence that human CD8_CD45RA_ CD27-cells are induced by antigen and evolve through extensive rounds of division. Int Immunol 1999;11:1027-33.
    64. Hakim FT, Memon SA, Cepeda R et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 2005;115:930-9.
    65. Szabolcs P, Lee YA, Reese M et al. Rapid in vivo acquisition of effector Tc1 phenotype prior to myeloid engraftment predicts opportunistic infections in unrelated cord blood transplant recipients. Biol Blood Marrow Transplant 2006;12:Supp1:23-8.
    1. Peggs KS. Immune reconstitution following stem cell transplantation. Leukemia Lymphoma. 2004;45:1093-1101.
    2. Storek J, Gooley T, Witherspoon RP, Sullivan KM, Storb R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol. 1997;54:131-138.
    3. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent,hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med. 2000;6:1278-1281.
    4. Dallas MH, Varnum-Finney B, Delaney C, Kato K, Bernstein ID. Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. J Exp Med. 2005;201:1361-1366.
    5. Ohishi K, Varnum-Finney B, Bernstein ID. Delta-1 enhances marrow and thymus repopulating ability of human CD34CD38 cord blood cells. J Clin Invest. 2002;110:1165-1174.
    6. Varnum-Finney B, Brashem-Stein C, Bernstein ID. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood. 2003;101:1784-1789.
    7. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood. 2005;106:2693-2699.
    8. Dallas MH, Varnum-Finney B, Martin PJ, Bernstein ID. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood. 2007; 109:3579-3587.
    9. Alpdogan O. van den Brink MR. IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol. 2005;26:56-64.
    10. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T B NK severe combined immunodeficiency. Nat Genet. 1998;20:394-397.
    11. Alpdogan O, Schmaltz C, Muriglan SJ, et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft- versus-host disease. Blood. 2001;98:2256-2265.
    12. Gendelman M, Hecht T, Logan B, Vodanovic-Jankovic S, Komorowski R, Drobyski WR. Host conditioning is a primary determinant in modulating the effect of IL-7 on murine graft-versus-host disease. J Immunol. 2004;172:3328-3336.
    13. Sinha ML, Fry TJ, Fowler DH, Miller G, Mackall CL. Interleukin-7 worsensgraft-versus-host disease. Blood. 2002;100:2642-2649.
    14. Rosenberg SA, Sportes C, Ahmadzadeh M, et al. IL-7 administration to humans leads to expansion of CD8 and CD4cells but a relative decrease of CD4 T-regulatory cells. J Immunother. 2006;29:313-319.
    15. Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res. 2004;91:69-136.
    16. Gray DH, Tull D, Ueno T. A unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J Immunol. 2007;178:4956-4965.
    17. Erickson M, Morkowski S, Lehar S, et al. Regulation of thymic epithelium by Keratinocyte growth factor. Blood. 2002;100:3269-3278.
    18. Rossi S, Blazar BR, Farrell CL, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood. 2007;100:682-691.
    19. Alpdogan O, Hubbard VM, Smith OM, et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regenera- tion. Blood. 2006;107:2453-2460.
    20. Min D, Taylor PA, Panoskaltsis-Mortari A, et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood. 2002;99:4592-4600.
    21. Seggewiss R, Lore K, Guenaga FJ, et al. Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood. 2007;110:441-449.
    22. Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol.2004;5:247-253.
    23. Schmitt TM, Zuniga-Pflucker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002;17:749-756.
    24. Zakrzewski JL, Kochman AA, Lu SX, et al. Adoptive transfer of T-cell precursorsenhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med. 2006;12:1039-1047.
    25. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL. Effects of castration on thymocyte development in two different models of thymic involution. J Immunol. 2005;175:2982-2993.
    26. Gray DH, Seach N, Ueno T, et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006;108:3777-3785.
    27. Sutherland JS, Goldberg GL, Hammett MV, et al. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol. 2005;175:2741-2753.
    28. Goldberg GL, Sutherland JS, Hammet MV, et al. Sex steroid ab-lation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation. 2005;80:1604-1613.
    29. Goldberg GL, Alpdogan O, Muriglan SJ, et al. Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol. 2007;178:7473-7484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700