微小空间碎片撞击效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小空间碎片作为一种空间环境要素,其数量巨大,航天器在轨道运行期间将不可避免的与之发生超高速碰撞,从而对航天器的寿命和可靠性形成威胁。国外从阿波罗登月计划开始研究微流星对航天器的威胁开始,一直关注微流星与微小空间碎片对航天器的威胁,通过天基探测、地面模拟实验等手段开展了大量研究,为航天器的安全设计和风险评估提供了重要的参数。国内,对微小空间碎片的研究目前还比较少。但是,随着我国航天事业的发展,有必要对微小空间碎片进行系统的研究。论文工作是通过等离子体加速器完成的,利用该装置在国内首次实现了能够加速15km/s的超高速微粒的方法;通过地面模拟实验获得了微小碎片撞击太阳电池玻璃盖片的实验规律,建立了太阳电池表面损伤的评估方法,开展了微小空间碎片累计撞击太阳电池的地面模拟实验;首次对微小空间碎片与原子氧协同效应以及微小碎片撞击诱发放电现象进行了探索性研究。
     论文工作是在等离子体驱动微小碎片加速器上开展的,在论文主要内容开展前等离子体加速器正处于调试阶段,作为国内首台此类设备,其调试难度和工作量均很大。通过优化等离子体加速器的参数,在国内首次实现了加速微小碎片到15km/s的实验技术和方法。在等离子体加速器的调试过程中,研制出了理论相对成熟的压电测速和激光测速手段。根据超高速撞击形成等离子体的特性,创新地提出和实现了采用平面传感器收集撞击等离子体在线测量超高速微粒速度的新方法。实验表明,该新型超高速微粒速度测量方法测量精度高、时间分辨率高,而且原理简单成本低廉,是一种极有发展前途的方法。
     论文的主要工作是利用等离子体加速器开展微粒超高速撞击太阳电池玻璃盖片的单次撞击实验和建立太阳电池表面损伤评估方法,并通过微粒超高速撞击太阳电池的累计撞击实验验证了表面损伤评估方法。通过大量的单次撞击试验,独立获得了微粒超高速撞击太阳电池玻璃盖片的撞击损伤规律,并结合master2005空间碎片模式给出的空间碎片的在轨分布情况,自主建立了微小空间碎片对太阳电池表面损伤的评估方法,评估结果与国外相关结果相符合。利用该方法首次揭示了造成太阳电池表面损伤的主要是5到500微米区间的空间微小碎片。实验得到了微小碎片累计撞击引起的太阳电池功率变化,表明这种影响主要是表面撞击损伤导致的太阳光透射率变化引起的,实验还揭示了微小空间碎片对太阳电池功率的影响比较小。首次利用累计撞击实验结果对上述表面损伤评估方法进行了验证,表明二者吻合较好。
     对空间微小碎片与原子氧的协同作用以及碎片撞击诱发放电现象进行了探索性研究。利用等离子体加速器和基于潘宁离子源的原子氧模拟器进行了实验,证实了原子氧与碎片存在协同作用。结果显示碎片撞击能加剧原子氧对Kaptom材料的侵蚀作用,特别是对镀有防护涂层的Kapton材料,在考虑其抗原子氧性能时,必须考虑碎片与原子氧的协同效应。通过模拟试验,首次观测到微米级超高速微粒撞击形成的等离子体诱发放电的现象。因此必须对以上两种效应进行深入研究,确定其形成机制及可能给航天器带来的危害和风险。
In the space environment space debris has a large amount of numbers that the aircraft will invetably impact with small space debris and those impacts will be a threat to the lifetime and reliability of the aircraft. From Apollo Project the foreign countries began to research the effect of small astronautics on aircraft. A lot of research were carried out through on orbit detection ground simulation experiments and so on, which provided usful information for the security desin and risk evaluation for aircraft. The research about small space debris inboard is small. As the development of space appliance we need to study small space debris. The work presented in this paper is carried out in the plasma accelerator. On that instrument the method for accelerating small particle to 15km/s was obtained. Through ground simulation experiments the damage laws about small particle impact solar cell cover glass is obtained and on those laws the evaluation method for surface damage of solar cell cover glass is founded. The experiment about cumulative impacts on solar cell was carried out. At last the combined effect of small space debris impact and atomic oxygen and small space debris impact induced discharge was presented.
     This paper is about the study on small space debris effect on aircraft which carried out through the plasma accelerator. At the beginging of the study the plasma drag small particle accelector is under research which is very difficult as the first of this kind of accelector. On that instrument through experiments the method for accelerating small particle to 15km/s was obtained. During the research of the accelector the velocity measure of small hypervelocity particle is very important and the piezoelectricity method and laser method is developed and used in the accelector system other than that the brand new method based on hypervelocity impact plasma collection was developed. Experiment result indicates that this new method has high precision in velocity measurement, the single width is narrow and the cost is cheap so is a very good method.
     The main work of this paper is about the hypervelocity impact experiment of small particle on solar cell cover glass and cumulative impact experiment of small particles on solar cell which carried out through the plasma drag small particle accelector. During the impact experiments on solar cell cover glass, through a lot experiment results the damage laws is acquired and the transmission rate on the damage area is measured. Using the damage equation and the Master2005 space debris model the method for evaluate the surface damage of solar cell is acquired. The caculated result through this method is fit for the result of similar calculation abroad. And through the calculation we found that particles with diameters between 5um and 500um make the main contribution to the surface damage. The power decline of the solar cell after the cumulative impact experiment is fit for with the calculation through the surface damage evaluation method. Although the result indicates that the transimission decay result from surface damge is the main reason of power decline. Further more the small space debris has little effect on solar cells.
     At last the combined effect of small space debris impact and atomic oxygen and small space debris impact induced discharge was presented. Using plasma drag small particle accelector and PIG atomic oxygen instruments the experiment was carried out and the result inditacts that the combined effect is obvious and especially serious for Kapton material with defence coat,so it’s important to consider this combined effect. The first experiment about discharge induced through hypervelocity by particles with diameter in micron scale was carried out. So we should pay attention to those phenomena and to found out the essence of those phenomena and is effect to aircraft.
引文
[1].都亨,张文祥,庞宝君,刘静.空间碎片,中国宇航出版社.
    [2]张文祥,深化空间碎片减缓技术研究实现对外空环境保护的目标,第三届全国空间碎片专题研讨会论文集,2005年7月,北京.
    [3].霍玉华,姜军,满广龙,赵海涛,刘志栋,空间碎片对航天器影响初步分析,第四届全国空间碎片专题研讨会论文集,2007年11月,南京.
    [4].马晓青,韩峰.超高速碰撞动力学.国防工业出版社.1998.
    [5].张庆明.黄风雷.超高速碰撞动力学引论.科学出版社.2000.
    [6].韩建伟,张振龙,黄建国,李小银,陈赵峰,全荣辉,李宏伟,利用等离子体加速器发射超高速空间微小碎片的研究,航天器环境工程,2006年,第23卷,第4期,p205-209.
    [7].M.Lambert,Hypervelocity Impacts and Damage Laws, Advances in Space Research,1997,19(2),369-378.
    [8].袁庆智,孙越强,王世金,王晶,天基空间微小碎片探测研究,空间科学学报,2005,25(3):212-217.
    [9].何正文,吴中祥,国外空间碎片监测技术研究,第三届全国空间碎片专题研讨会论文集2005年7月北京.
    [10].Tuzzolino A. J., Economou T. E., McKibben R. B., Simpson J. A., Benzvi, S., Blackburn L., Voss H. D., Gursky H.,Final results from the space dust (SPADUS) instrument flown aboard the earth-orbiting ARGOS spacecraft,Planetary and Space Science, Volume 53, Issue 9, p. 903-923.,2005.
    [11].Drolshagen G.,Svedhem H.,Grun E., Bunte K.D.,Measurement of cosmic dust and micro-debris with the GORID impact detector in GEO,Advances in Space Research, Volume 28, Number 9, 2001, pp.1325-1333(9).
    [12].J.P.Schwanethal,N.McBride.Distinguishing the populations of natural meteoroids and space debris by GORID in geostationary orbit. Advances in Space Research.2001.28(9).1335-1339.
    [13].Eberhard Grun, Hugo Fechtig, MarthaS.Hanner, Jochen Kissel, Bertil-Anders Lindblad,Dietmar Linkert Dieter Maas, Gregor E. Morfill, and Herbert A. Zook,THE GALILEO DUST DETECTOR,Space Science Reviews 60: 317-340, 1992. Kluwer Academic Publishers. Printed in Belgium.
    [14].E. Grün, H.Fechtig, R.H. Giese, J. Kissel, D. Linkert, D. Maas, J.A.M. McDonnell, G.E. Morfill, G. Schwehm and H.A. Zook,The Ulysses dust experiment, Astron. Astrophys. Suppl. Ser: 92, 411-423 (1992).
    [15].Kuitunen J.,Drolshagen G.,McDonnell J. A. M.,Svedhem H.,Leese M.,Mannermaa H., Kaipiainen M.,Sipinen V.,DEBIE - first standard in-situ debris monitoring instrument,Proceedings of the Third European Conference on Space Debris, 19 - 21 March 2001, Darmstadt, Germany. Ed.: Huguette Sawaya-Lacoste. ESA SP-473, Vol.1, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-733-X, 2001, p. 185– 190
    [16].曹光伟,袁庆智,梁金宝,空间微小碎片采样分析技术研究,第四届全国空间碎片专题研讨会论文集2007年11月南京.
    [17].罗福山,潘厚任,林华安,庄洪春,何渝晖,张健,简便星载空间碎片探测器,第三届全国空间碎片专题研讨会论文集,2005年7月,北京.
    [18].何正文,吴中祥,向宏文,可回收式空间碎片收集器及相关技术研究,第四届全国空间碎片专题研讨会论文集2007年11月南京.
    [19].Steve R.Best,M.Frank Rose.Microparticle impacts upon Steve R. Best,M.Frank Rose.A Plasma Drag Hypervelocity Particle Accelerator,Intertional Journal of Impact Engineering,1999,V23,p67-76.
    [20].董洪建,童靖宇,王吉辉,孙刚,庞贺伟,陈必忠,黄本诚,激光驱动微小碎片技术可行性研究试验,航天器环境工程,2002 Vol.19,No.2,P.51-54.
    [21].曹燕,龚自正,代福,童靖宇,牛锦超,庞贺伟,激光驱动飞片速度的理论分析,航天器环境工程,2009,26(4),307-311.
    [22].谷卓伟,孙承纬.小型脉冲激光驱动高速飞片的实验研究,中国激光工程,2002,29(5)407-410.
    [23].Zhang Wenbing,Gong Zizheng,Yang Jiyun,Tong Jingyu,Xiang Shuhong,The laser-driven flyer system for space debris hypervelocity impact simulations 2007航天器环境工程,24,148.
    [24].王为,王翔.二级轻气炮发射过程中前冲气体的初步研究,高压物理学报,2004,18(1),94-96.
    [25].吴静,蓝强,王青松,鲜海峰,贾路峰,傅秋卫.二级轻气炮压缩级发射技术研究,高压物理学报,2006,20,445-448.
    [26].龚自正,杨继运,代福,童靖宇,向叔红,庞贺伟.CAST空间碎片超高速撞击试验研究的进展,第五届全国空间碎片专题研讨会论文集,2009年7月,烟台,166-175.
    [27].杨继运.二级轻气炮模拟空间碎片超高速碰撞试验技术,航天器环境工程,2006,23,16-22.
    [28].张德志,唐润棣,林俊德,张向荣,朱玉荣.新型气体驱动二级轻气炮研制,兵工学报,2004,1,14-18.
    [29].张伟,管公顺,庞宝君,张泽华,超高速撞击加速技术及其应用研究2005哈尔滨工业大学学报,37,1324.
    [30].杨继运,龚自正,张文兵,等.粉尘静电加速设备原理及发展现状,航天器环境工程,2007,24(3),145-147.
    [31].黄建国,韩建伟,李宏伟,蔡明辉,李小银,张振龙,陈赵峰,王龙,杨宣宗,冯春华,等离子驱动微小碎片加速器机理及运行参数,2009,科学通报,54,150.
    [1].韩建伟,张振龙,黄建国,李小银,陈赵峰,全荣辉,李宏伟,利用等离子体加速器发射超高速空间微小碎片的研究,航天器环境工程,2006年,第23卷,第4期,p205-209.
    [2].陈赵峰,等离子体微小空间碎片加速器放电特性的测量与研究,中国科学院研究生院硕士论文.
    [3].李小银,韩建伟,黄建国,张振龙,李宏伟,蔡明辉,超高速微小碎片激光测速系统研制及应用,科技导报,2009,27(5).
    [4].张振龙,韩建伟,全荣辉,李宏伟,黄建国,李小银,蔡明辉,等离子体微小碎片加速器微粒速度和尺寸诊断,第四届全国空间碎片专题研讨会论文集2007年11月南京.
    [5]. Steve R.Best,M.Frank Rose.Microparticle impacts upon Steve R. Best,M.Frank Rose.A Plasma Drag Hypervelocity Particle Accelerator,Intertional Journal of Impact Engineering,1999,V23,p67-76.
    [6].沈熊.激光多普勒测速原理与光学系统,清华大学出版社,2004,北京,p13-17.
    [1].R.Verker,E.Grossman,N.Eliaz,I.Gouzman,S.Eliezer,M.Fraenkel,S.Maman.Ground simulation of hypervelocity space debris impacts on polymers.Protection of materials and Structures from space Environment.2006.153-165.
    [2].Steve R.Best,M.Frank Rose.Microparticle impacts upon Steve R. Best,M.Frank Rose.A Plasma Drag Hypervelocity Particle Accelerator,Intertional Journal of Impact Engineering,1999,V23,p67-76.
    [3]. Gerhard Drolshagen. Impact effect from small size meteoroids and space debris; 2008 Advances in space Research .41 1123.
    [4].Frank K.Schafer,Toblas Geyer,Eberhard E.Schneider,Martin Rott,Eduard Igenbergs.Degradation and Destruction of Optical surfaces by hypervelocity Impact. International Journal of Impact Engineering.2001.683-689.
    [5].韩建伟,张振龙,黄建国,李小银,陈赵峰,全荣辉,李宏伟,利用等离子体加速器发射超高速空间微小碎片的研究,航天器环境工程,2006年,第23卷,第4期,p205-209.
    [6].张振龙,韩建伟,全荣辉,李宏伟,黄建国,李小银,蔡明辉,等离子体微小碎片加速器微粒速度和尺寸诊断,第四届全国空间碎片专题研讨会论文集2007年11月南京.
    [1].Williamp.Schonberg.Characterizing Secondary Debris Impact Ejecta. International Journal of Impact Engineering.2001.26.713-724.
    [2].M.Lambert,Hypervelocity Impacts and Damage Laws, Advances in Space Research,1997,19(2),369-378.
    [3].Mark K.Herbert,Jean-Claude Mandeville,Emma A.Taylor,J.Anthony M.Mcdonnell.Analogies and Differences Between Quasi-Static Indentation and hypervelocity impact morphologies on thin solar cells. International Journal of Impact Engineering.2001.26.321-331.
    [4].Steve R.Best,M.Frank Rose.Microparticle impacts upon Steve R. Best,M.Frank Rose.A Plasma Drag Hypervelocity Particle Accelerator,Intertional Journal of Impact Engineering,1999,V23,p67-76.
    [5].T.Harano,Y.Machida,S.Fukushige,T.Koura,S.Hosoda,M.Cho,Y.Akahoshi.Preliminary study on sustained arc due to plasma excited by hypervelocity impact of space debris on the solar array coupon. International Journal of Impact Engineering.2006.33.326-334.
    [6].David J.Gee,William G.Reinecke,Scott J.Levinson.Blast phenomena associated with high-speed impact. International Journal of Impact Engineering.2007.34.178-188.
    [7].T.Kadono,A.Fujiwara.Cavity and crater depth in hypervelocity impact. International Journal of Impact Engineering.2005.31.1309-1317.
    [8].Robert Roybal,Pawel Tlomak,Charles Stein,Headley Stokes.Simulated Space Debris Impact Experiments on Toughened Laminated thin solar cell cover glass. International Journal of Impact Engineering.1999.23.811-821.
    [9].Y.Michel,J.-M.Chevalier,C.Durin,C.Espinosa,F.Malaise,J.-J.Barrau.Hypervelocity impacts on thin brittle targets:Experimental data and SPH simulations. International Journal of Impact Engineering.2006.33.441-451.
    [10].AHudepohl,M.Rott,E.Igenbergs.Coxial plasma accelerator with compressor coil and radial gas injection. IEEE Transactions on magnetics.1989.25(6).232-237.
    [11].B.K.Wells.Cryogenic and elevated temperature hypervelocity impact facility. International Journal of Impact Engineering.2006.33.847-854.
    [12]. B.K.Wells.Hypervelocity impact tests on coated thermoplastic films at cryogenic and elevated temperature facility. International Journal of Impact Engineering.2006.33.855-861
    [13].Klaus G. Paul, Eduard B. Igenbergs,Lucinda Berthoud. Hypervelocity impacts on solar cells—observations, experiments, and empirical scaling laws. International Journal of Impact Engineering.1997.20.627-638.
    [14].Hideki Tamura,Akira B. Sawaoka.Hogher acceleration technique of microprojectiles in a magnetoplasmadynamic accelerator.Review of scientific instrument.1993.64(3).724-727.
    [15].E.Schneider,F.Schafer.Hypervelocity Impact Research–Acceleration Technology and Applications. Advances in Space Research.2001.28(9).1417-1424.
    [1].Frank K.Schafer,Toblas Geyer,Eberhard E.Schneider,Martin Rott,Eduard Igenbergs.Degradation and Destruction of Optical surfaces by hypervelocity Impact. International Journal of Impact Engineering.2001.683-689.
    [2].Klaus G. Paul, Eduard B. Igenbergs,Lucinda Berthoud. Hypervelocity impacts on solar cells—observations, experiments, and empirical scaling laws. International Journal of Impact Engineering.1997.20.627-638.
    [3].S.Ryan,F.Schaefer,R.Destefanis,M.Lambert,A Balistic Limit Equation for Hypervelocity Impacts on Composite Honey-comb Sandwich Panel SatelliteStructures. Advances in Space Research. 2007,02,032.
    [4].Gerhard Drolshagen,Tony McDonnell,Jean-Claude Mandeville,Aurelie Moussi. Impact Studies of HST solar arrays retrieved in March 2002.Acta Astronautica.2006. 58,471-477.
    [5].U.Weishaupt.Hypervelocity impact of small masses on large surfaces of piezoelectric ceramics. International Journal of Impact Engineering.1987.5.663-670.
    [6].Y.-L. Xu, M. Horstman, P.H. Krisko, J.-C.Liou, M. Matney, E.G. Stansbery, C.L. Stokely, D. Whitlock, Modeling of LEO orbital debris populations for ORDEM2008, Advances in space research 43 (2009)769-782.
    [1].G.A.Graham,N.Mcbride,A.T.Kearsley,G.Drolshagen,S.F.Green,J.A.M.MCdonnell,M.M.Grandy,I.P.Wright.The chemistry of micrometeoroid and space debris remnants captured on Hubble space telescope solar cells. International Journal of Impact Engineering.2001.26.263-274.
    [2].蔡建文,李萍萍,徐传明,黄文浩,太阳电池测试系统及其参数匹配优化研究,光学精密工程,2007,15(4)517-520.
    [3].白羽,庞贺伟,龚自正,童靖宇.空间微小碎片累计作用下材料光学性能退化预示模型适用性研究.航天器环境工程.25(4)306-309.
    [4].A.Moussi,G.Drolshagen,J.A.M.McDonnell,J.-C.Mandeville,A.T.Kearsley,H.Ludwing.Hypervelocity impacts on HST solar arrays and the debris and meteoroids population. Advances in Space Research.2005.35.1243-1253.
    [5].A.Moussi,G.Drolshagen,J.A.M.McDonnell,J.-C.Mandeville,A.T.Kearsley,H.Ludwing.Hypervelocity impacts on HST solar arrays and the debris and meteoroids population. Advances in Space Research.2005.35.1243-1253.
    [6].Gerhard Drolshagen,Tony McDonnell,Jean-Claude Mandeville,Aurelie Moussi. Impact Studies of HST solar arrays retrieved in March 2002.Acta Astronautica.2006. 58,471-477.
    [7].A.T.Kearsley,G.Drolshagen,J.A.M.McDonnell,J.-C.Mandeville,A.Moussi.Impacts on Hubble Space Telescope solar arrays:Discrimination between natural and man-made particles. Advances in Space Research.2005.35.1254-1262.
    [8].U.Weishaupt.Hypervelocity impact of small masses on large surfaces of piezoelectric ceramics. International Journal of Impact Engineering.1987.5.663-670.
    [1].蔡明辉,韩建伟,于金祥,基于负离子潘宁源的低地球轨道原子氧模拟装置,2008,核技术,31 ,265.
    [2].童靖宇,刘向鹏,张超,向树红,多树旺,李美栓,空间原子氧环境对航天器表面侵蚀效应及防护技术,2009航天器环境工程,26,1.
    [3].多树旺,李美栓,张亚明.腐蚀科学与防护技术,2002,14(3):152-156.
    [4].Bruce A.Banks,Sharon K.R.Miller,Kim K.de Groh.Atomic Oxygen effects on spacecraft materials.NASA/TM—2003-212484.
    [5].R.Verker, E. Grossman, N. Eliaz, Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen:The role of mechanical properties at elevated temperatures, Acta Materialia 57(2009)1112-1119.
    [6].Roven Verker, Eitan Grossman, Irina Gouzman, Noam Eliaz, Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen, Polymer 48(2007)19-24.
    [7].R. Verker, E. Grossman1, I. Gouzman 1, et al. Synergistic effect of simulated hypervelocity space debris and atomic oxygen on durability of poss-polyimide nanocomposite. Space Environment Group, Soreq NRC
    [8].沈志刚,赵小虎,陈军,等.航空学报,2000,21(5)425-430.
    [9].佟靖宇,刘向鹏,孙刚,等.真空科学与技术学报,2006,26(4)263-267.
    [10].童靖宇,李金洪,刘峰,一种微波等离子体原子氧模拟装置,1995,中国空间科学技术,60.
    [11].Shuwang Duo, Meishuan Li, Yaming Zhang. A simulator for producing of high flux atomic oxygen beam by using ECR plasma source 2004 J. Mater. Sci. Technol. 20 759.
    [12].沈志刚,赵小虎,王鑫.原子氧效应及其地面模拟实验.北京:国防工业出版社,2006.
    [13].李中华,王敬宜,王云飞.航天器环境工程,2005,22(1)41-49. [27].童靖宇,刘向鹏,张超,向树红,多树旺,李美栓,空间原子氧环境对航天器表面侵蚀效应及防护技术,2009航天器环境工程,26,1.
    [14].王敬宜,于志战,蔡纯,李红,张景欣,同轴源原子氧地面模拟装置及其性能,1998中国空间科学技,50.
    [1].Gerhard Drolshagen. Impact effect from small size meteoroids and space debris; 2008 Advances in space Research .41 1123.
    [2].G. Drolshagen, Hypervelocity impact effects on spacecraft, in Proc. Meteoroids Conf.,2001,535-544.
    [3].I.Katz, Mechanism for spacecraft charging initiated destruction of solar arrays in GEO, in Proc. AIAA 36th Aerosp. Sci,Meeting ,Reno, NV,1998,98.
    [4].Shinya Fukushige,Yasuhiro Akahoshi,Keiko Watanable,Toshikazu Nagasaki,Kenshou Sugawara,Takao Koura,Mengu Cho.Solar-Array Arcing Due to Plasma Created by Space-debris Impact.IEEE Transactions on Plasma Science.2008.36(5)2434-2438.
    [5].Charles Stein, Hypervelocity debris initiated spacecraft discharging.
    [6].李凯,谢二庆,王立,刘延霞,杨扬,孙彦诤,催新宇,买胜利,搞充电致高电压太阳阵持续飞弧放电的实验研究,中国科学E辑,2007,37(3)344-350.
    [7].李凯,王立,秦晓刚,柳青,孙彦诤,催新宇,地球同步轨道高压太阳电池阵充放电效应研究,航天器环境工程,2008,25(2)125-128.
    [8].贾瑞金,佟靖宇,低地球轨道等离子体环境引起的高压太阳电池阵电弧放电现象的研究,航天器环境工程,2006,23(3)150-153.
    [9].T.Harano,Y.Machida,S.Fukushige,T.Koura,S.Hosoda,M.Cho,Y.Akahoshi.Preliminary study on sustained arc due to plasma excited by hypervelocity impact of space debris on the solar array coupon. International Journal of Impact Engineering.2006.33.326-334.
    [10].Akahoshi Y,Nakamura T,Fukushige S,Furusawa N,Kusunoki S,Machida Y,Koura T,Watanabe K,Hosoda S,Fujita T,Cho M.Influence of space debris impact on solar array under power generation. International Journal of Impact Engineering. 2008,07,048.
    [11].Charles Stein.Hypervelocity debris initiated spacecraft discharging.U.S.Air Force Research Laboratory Space Vehicles Directorate.
    [12].Alexandre.E.Poswolski. Production of hot plasma by hypervelocity impact, IEEE Transaction on Plasma Science, 30(6),2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700