粉尘微粒子高速撞击光学玻璃损伤行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的不断发展,微小空间碎片和微流星体(空间粉尘)高速撞击累积损伤效应日益引起关注。本文在合理剪裁空间粉尘环境模式的基础上,利用粉尘静电加速器、扫描电镜、能谱仪和分光光度计及计算机仿真技术,分别针对三种表面镀膜光学玻璃,以微米级铝粉高速撞击光学玻璃为研究对象,考察粉尘微粒子高速撞击光学玻璃损伤行为特征,同时评价相应的损伤效应。
     Grün微流星体模型和ORDEM2000碎片模型计算结果显示,低地球轨道(LEO)上微米级空间碎片的通量较微流星体高一至两个数量级,400km轨道上直径为20mm的光学玻璃在轨运行一年可能遭受尺寸为1μm~10μm空间粉尘撞击的概率接近100%。
     扫描电镜观察结果表明,粉尘高速撞击造成三类镀膜光学玻璃的损伤形式均包括玻璃靶体破坏和粒子附着。就靶体损伤而言,镀膜K208玻璃表面的破坏形式主要是形成大小不等的撞击坑;镀膜石英玻璃表面的破坏形式主要表现在复合涂层穿孔及复合膜与玻璃基体的分离上;而镀膜非晶玻璃的表面破坏形式主要是涂层被破坏形成丝状物。就粒子附着而言,在镀膜K208玻璃和镀膜石英玻璃所产生的影响区域要远远大于其自身的尺寸;在镀膜非晶玻璃上的影响区域与其自身的尺寸大致相当。
     光学性能测试结果显示,粉尘粒子高速撞击对镀膜K208玻璃透过率的影响最大,对于镀膜石英玻璃反射率和镀膜非晶玻璃透过率的影响相对较小,而对光学性能所产生的影响在近紫外-可见光波段最为严重。
     数值模拟仿真结果表明,非线性有限元模拟软件ANSYS/LS-DYNA可用于3μm、5μm和10μm尺寸粉尘微粒子高速撞击石英玻璃过程的模拟,在遭受小尺寸粒子以较低速度撞击时,玻璃靶体表现出类似于延性材料的撞击形貌。对比发现,数值模拟结果接近空间搭载试验结果。
With the development of space technology, the cumulative hypervelocity impact damage effects of micro-size space debris and micrometeoroid (space dust) are getting more attention. In this paper, based on analyzing parameters of the space dust environment, the electrostatic accelerator for micro-particle, scanning electron microscopy, energy dispersive spectrometer, spectrophotometer as well as computer simulation technique were used to examine the damage behaviors of three types coated optical glasses impacted by hypervelocity micron-size Al powders. At the same time, the relevant damage effects were evaluated.
     The calculated results using Grün micrometeoroid and ORDEM2000 space debris models show that in low earth orbit (LEO), the average flux of micro-size space debris is 1 or 2 times higher than micrometeoroid in order of magnitude. For a an optical glass with a diameter of 20mm flying in-orbit with an altitude of 400km for one year, the probability of collision occurred by space dust with size between 1μm and 10μm is nearly 100%.
     SEM results show that two hypervelocity impact damage models, substrate damage and particles attachment, could all be found in the three coated optical glasses. For the damage of substrate, impact craters with various sizes were found on the surface of coated K208 glass, composite coating film was penetrated or delaminates from substrate for the coated fused silica, and new filaments were seen on coated amorphous glass’surface. For particle attachment, the affected region by micro-particle on surface of coated K208 glass or coated fused silica is larger than micro-particle’s size, and is nearly same for the coated amorphous glass.
     Optical property measurement results show that the hypervelocity impact mainly affected the transmission of coated K208 glass. And for the reflectivity of coated fused silica or the transmission of coated amorphous glass, the effect was relatively smaller. The optical property reduction was found to take place between Ultra-UV and Visible light region.
     Numerical simulation results show that the nonlinear finite element simulation software ANSYS/LS-DYNA can be applied to simulate impacting process of fused silica by hypervelocity micro-particles with the size of 3μm, 5μm and 10μm. The fused silica target displays some ductility material’s characteristic when impacted by small micro-particles with low velocity. The numerical simulation results accord well with the flight experiment results.
引文
1黄本诚,马有礼.航天器空间环境试验技术.国防工业出版社, 2002: 20~26
    2 B.F. James. The Nature Space Environment: Effects on Spacecraft. NASA RP 1350. 1995:15~18
    3 N.D. Samkin, L.S. Novikov, K.E.Voronov and R.A. Pomelnikov. Physical Effects during Micrometeoid Particles’High-velocity Impacts on the Metal-dielectric-metal Flim Stractures. AIP Conference Proceedings 1087. 2008:572~575
    4 S. Ryan and E.L. Christiansen. Mitigation of EMU Glove Cut Hazard by MMOD Impact Crater on Exposed ISS Hangrails. NSAS/TM-2009-000000. 2009:2~29
    5白羽,杨德庄.空间微小碎片对光学玻璃的污染效应研究.航天器环境工程. 2006, 23(5):262~264
    6 B.J. Anderson. Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Developmen. NASA TM 4527. 1994:7-1~7-16
    7 C. Palais. Meteoroid Environment Model-1969, NASA SP-8013, 1969:1~31
    8 D.E. Brownlee, F. Horz, J.F. Vedder, D.E. Gault and J.B. Hartung. Some Physical Parameters of Micrometeoroids. Proceedings of the Fourth Lunar Science Conference. 1973, 3: 3197~3212
    9. J. Jones. Meteoroid Engineering Model-Final Reprot. SEE/CR-2004-400:1~40
    10. V.A. Chobotov and A.B. Jenkin. Analysis of the Micrometeoroid and Debris Hazard Posed to an Orbiting Parabolic Mirror. Space Debris. 2002, (2):9~40
    11 Orbital Debris Quarterly News. A Publication of The NASA Orbital Debris Program Office. 2009, 13(1): 1~10
    12 N.L. Johson. History of On-orbit Satellite Fragmentation 14th Edition. NASA TM-2008-214779. 2008:1~7
    13 C.A. Belk, J.H. Robinson, M.B. Alexander, W.J. Cook, S.D. Pavelitz. Meteoroid and Orbital Debris: Effect on Spacecraft. NASA RP 1408. 1997: 1~50
    14 T. Wey and Nan-Suey Liu. Assessment of Microphysical Model in the National Combustion Code (NCC) for Aircraft Particulate Emissions: Particle Loss inSampling Lines. NASA/TM-2008-215304. 2009:1~15
    15 T. Schildknecht. Optical Surveys for Space debris. Astron Astrophys Rev. 2007, (14):41~111
    16 A.C. Steagall, A. K. Smith, C.E. Soares and R. R. Mikatarian. Induced-Contamination Predictions for the Micro-Particle Capturer and Space Environment Exposure Device. Journal of Spacecraft and Rocket. 2009, 46(1):564~643
    17 D. J. Kessler, R. C. R. and P. D. Anz-Meador. Orbital debris Environment for Spacecraft Designed to Operate in Low Earth Orbit. NASA TM 100471. 1989:1~19
    18 P. Wiegert and J. Vaubaillon. The Sporadic Meteoroid Complex and Spcecraft Risk. AIP Conference Proceedings. 1087. 2008:567~570
    19 United Nations, Technical Report on Space Debris, New York, 1999: 1~46
    20 N. Robert, G.. Shrine. Laboratory Investigation of Oblique Hypervelocity Impacts with Relevance to In situ Meteoroid and Space Debris Detectors. Doctor Paper of California Institute of Technology. 1999: 4~8
    21张庆明,黄风雷.超高速撞击动力学引论.科学出版社, 2000: 7~77
    22 M. Lambert. Hypervelocity Impacts and Damage Laws. Adv. Space Res. 1997, 19(2):369~378
    23 M. K. Herbert, Jen-Claude Mandeville, E.A. Taylor and J.A.M. Mcdonnell. Analogies and Differences between Quasi-static Indentation and Hypervelocity Impact Morphologies on Thin Solar Cells. International Journal of Impact Engineering. 2001, 26:321~331.
    24 G. J. Cloutter. Attitude Perturbation of Space Vehicles by Meteoroid Impacts. J. Spacecraft. 1966, 3(4):524~525
    25 E.A. Taylor, L. Kay and N.R.G. Shrine. Hypervelocity Impact on Brittle Materials of Semi-infinite Thickness: Fracture Morphology Related to Projectile Diameter. Adv. Space Res. 1997, 20(8):1437~1440
    26 A.A. Kozhushko, A.B. Sinani. Hypervelocity Impact for Brittle Targets. International Journal of Impact Engineering. 2003, (29):391~396
    27 D.L. Ediwards, W. Cooke, R. suggs and D.E. Moser. Analysis of Regolith Simulation Ejecta Distributions form Mormal Incident Hypervelocity Impact. AIP Conference Proceedings 1087. 2008:559~566
    28 R.E. Flaherty. Impact Characteristics in Fused Silica. AIAA paper. 1969, No.69-367: 1~17
    29 R.E. Flaherty. Impact Characteristics in Fused Silica for Various Projectile Velocities. J.Spacecarft. 1970, 7(3): 319~324
    30 A. Watts, D. Atkinson, C. Coombs, L. Crowell and M. Black. Optical Scatter Due to Impact Effects. SPIE. 1992, (1761):72~82
    31 M.J. Meshishnek, S.R. Gyetvay, K.W. Paschen, and J.M. Coggi. Long Duration Exposure Facility (LDEF) Experiment M0003 Meteoroid and Debris Survey. AIAA Paper. No.93-29361. 1993:357~358
    32韩增尧.第36届COSPAR会议空间碎片专题综述.航天器环境工程. 2007, 24(3):131~134
    33 G.A. Graham, N. Mcbride, A.T. Kearsley, G. Drolshagen, S.F. Green, J.A.M. Mcdonnell, M.M. Grady and I.P. Wright. The Chemistry of Micrometeoroid and Debris Remnants Captured on Hubble Space Telescope Solar Cells. International Journal of Impact Engineering. 2001, 26:263~274
    34 W.C. Carey. Post-Flight Impact Analysis of HST Solar Arrays-2002 Retrieval. Final Report. 2002:1~99
    35 M. Rival, J.C. Mandeville and C. Durin. Impact Phenomena on Brittle Materials: Analysis of 1μm to 1mm.Adv. Space Res. 1997, 20(8):1451~1456
    36 J. Fager. Effects of Hypervelocity Impact on Protected Solar Cell. AIAA paper, 1965, No.65-289:1~6
    37 R.B. Frauenholz, R.S. Bhat, S.R. Chesley, N. Mastrodemos. Deep Impact Navigayion System Performance. Journal of Spcecraft and Rockets. 2008, 45(1):39~55
    38 B. Dachwald and R. Kahle. Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis. AIAA/AAS Astrodynamics Specicalist Conference and Exhibit. 2008:1~20
    39 A.J. Richardson and J.W. Warren. Solar Array Degradation due to Meteoroid Impacts during Extended Planetary Missions. AIAA Paper. No.70-1139, 1970: 1~3
    40 V.A. Letin, A. B. Nadiradze and L.S. Novikov. Analysis of Solid Microparticle Influence on Spacecraft Solar Arrays. Conference Record of the Thirty first IEEE. 2005:862~865
    41杨继运,龚自正,张文兵,童靖宇.微米级空间碎片超高速撞击地面试验技术的研究进展.宇航学报. 2008, 29(4):1112~1113
    42 H. Shelton, C.D. Hendricks, JR.f and R.F. Wuerker. Electrostatic Acceleration of Microparticles to Hypervelocities. Journal of Applied Physics. 1960, 31(7):1243~1247
    43 D.E. Austin, L.K. Manning, C.L. Bailey, J.E. Fransworth, R.L. Grimm, T. J. Ahrens and J.L. Beauchamp. Hypervelocity Microparticle Impact Studies using a Novel Cosmic Dust Mass Spectrometer. Journal Geophysical Research. 2003, 108(5):1~8
    44 M.J. Burchell, M.J. Cloe, J.A. Mcdonnel and J.C. Zarnecki. Hypervelocity Impact Studies Using the 2MV Van de Graaff Accelerator and Two-stage Light Gun of the University of Kent at Canterbury. Meas. Sci. Technol. 1999, 10:41~50
    45 M. Stubig, G. Schafer, Tra-Mi Ho, R. Srama, E Grün. Laboratary Simulation Improvements for Hypervelocity Micrometeorite Impacts with a New Dust Particle Source. Plantetary and Space Science. 2001, 49:853~858
    46 L.K. Manning, J.M. Gregoire. An Upgraded High-velocity Dust Particle Accelerator at Concordia College in Moorhead, Minnesota. International Journal of Impact Engineering. 2006, 33:402~409
    47 S. Hasegawa, A. Fujiwara, H. Yano, T. Nisimura, S. Sasaki, H. Ohashi, T. Iwai, K. Kobayashi and H. Shibata. Design of Electrostatic Accelerations for the Development of Microparticle Detectors in Japan. Adv. Space Res. 1999, 23(1):119~122
    48 S. Hasegawa, Y. Hamabe, A. Fujiwara, H. Yano. Micropartcle Acceleration for Hypervelocity Experiments by a 3.75MV Van De Grraaff Acceleration and a100kV Electrostatic Acceleration in Japan. International Journal of Impact Engineering. 2001, 26:299~308
    49韩旭,杨刚,强洪夫(译).光滑粒子流体动力学一种无网格粒子法.湖南大学出版社, 2005:1~239
    50殷有泉.非线性有限元基础.北京大学出版社, 2007:30~246
    51王礼立,余同希,李永池.冲力动力学进展.中国科学技术大学出版社, 1992年:34~159
    52时党勇,李裕春,张胜民.基于ANSYS/LSDYNA8.1进行显式动力分析.清华大学出版社, 2005:1~95
    53李裕春,时党勇,赵远. ANSYS11.0 LS/DYNA基础理论与工程实践.中国水利水电出版社, 2008:1~70
    54 J.O. Hallquist. LS-DYNA Theory Manual. 2006:1.1~19.142
    55 E. Grün, H. A. Zook, H. Fechtig and R. H. Giese. Collisional Balance of the Meteoritic Complex. Icarus. 1985, 62:244~272
    56 Jer-Chyi Liou, M. J. Mantney, P.D. Anz-Meador, D. Kessler, M. Jansen and J.R. Theall. The New NASA Orbital Debris Engineering Model ORDEM2000. NASA/TP-2002-210780. 2002:1~74
    57 LS-DYNA Keyword User’s Manual. Livermore Software Technology Corporation. 2007:416~417
    58刘民东. K208玻璃基镀膜透镜质子电子辐照效应及机理研究.哈尔滨工业大学工学硕士学位论文. 2007:4~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700