天基照相跟踪空间碎片轨道确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间碎片严重地威胁着在轨运行航天器的安全,是一个亟待解决的难题,引起了国际上的高度重视。天基照相跟踪具有能耗低、精度高以及易于小型化实现等方面的优势,是观测中小尺寸危险空间碎片的有效手段。本文分析了天基照相跟踪的特点和基本原理,对天基照相跟踪空间碎片初始轨道确定和精密轨道确定相关理论和方法进行了深入分析和研究。论文主要工作如下:
     考虑到空间碎片的特点和轨道确定研究的需要,定义了常用的坐标系统,分析了空间碎片所受的摄动力情况。
     总结讨论了天基照相跟踪的特点,考虑地球遮挡、地影及跟踪太阳角等因素的影响,推导出了跟踪卫星对空间碎片的可观测条件;从底片归算原理出发,建立了天基照相跟踪的观测模型。
     在没有任何空间碎片初始状态信息的情况下,为满足精密轨道对初始轨道的精度要求,提出了基于天基照相跟踪的广义Laplace初始轨道确定方法,并与数学意义上的初始轨道确定方法进行了仿真比较分析。
     基于天基照相的观测模型和空间碎片的运动方程,研究了批处理精密确定空间碎片轨道的方法;为了能实时地确定空间碎片的轨道,研究了扩展Kalman滤波精密确定空间碎片轨道的方法;针对低轨道和地球同步轨道空间碎片,仿真分析了这两种方法在单个跟踪弧段和多个跟踪弧段下的定轨精度。
Space debris is an urgent problem to be solved, which has been badly threatening the security of operating spacecraft and has been attracting great emphases from international. The space-based camera tracking is an effective technique to observe dangerous space debris at a middle or small size for its advantages of lower power consuming, higher precision and easier realizing. This dissertation analyzed the characteristics and fundamental of space-based camera tracking. The correlative theories and methods were discussed and researched particularly, including initial orbit determination and precise orbit determination with space-based camera tracking data. The main contributions of this dissertation are demonstrated as follows:
     In view of the characteristics of space debris and the demand of orbit determination research, some commonly used reference frames were defined and the perturbative forces acting on space debris were analyzed.
     The characteristics of space-based camera tracking were generalized and discussed. Considering the influence of the shelter from the earth, the earth shadow and the angle of sunlight when tracking, the observable conditions of space debris from tracking satellite were deduced. Based on the principle of negative reduction, the observation models based on space-based camera tracking were built.
     Without any space debris initial status information, the generalized Laplace method for initial orbit determination based on space-based camera tracking was put forward to meet the precision of initial orbit determination for the demand of precise orbit. Moreover, this method was compared with the means of mathematics by the way of simulation analysis.
     According to the observation models based on space-based camera tracking and the kinetic equations, the batch process for space debris precise orbit determination was studied. The Extended Kalman Filtering method was used to compute the real-time orbit of space debris. For both low earth orbit space debris and geosynchronous orbit space debris, the precisions of these methods were simulated and analyzed using one tracking arc or several tracking arcs.
引文
[1]霍江涛,秦大国,祁先锋.空间碎片概况研究[J].装备指挥技术学院学报. 2007.5, 18(5).
    [2]谭莹.天基空间目标探测技术探讨[J].空间电子技术. 2006.
    [3]薛富兴,杨晓燕.空间碎片研究概述[J].国际太空. 2004.5.
    [4]马志昊.天基空间监视雷达星座设计与任务规划研究.国防科学技术大学博士学位论文. 2007.
    [5]都亨,张文祥,庞宝君,刘静.空间碎片,中国宇航出版社, 2007.4.
    [6] http://www.mcgill.ca/files/iasl/Session_1_Fernand_Alby.
    [7]童国梁.空间碎片问题的现状和未来[J].现代物理知识. 20(2):36-41.
    [8] A. A. Tolkachev, I. I. Zolotarev, V. I. Loukiaschenko, G. G. Raikunov and A. I.Yaremenko Space Based Radar to Observe Space Debris. http://www.sdl.usu.edu/conferences/small-sat/proceedings/12/ssc98/12/sscx113.pdf.
    [9] A.Houpert. A Space Based Radar on a Micro-Satellite for In-situ Detection of Small Orbital Debris[J]. Acta Astronautica. 1999, 44:313-321.
    [10] R.H.W.Graves. Conceptual Design For an Orbiting Debris Detection Radar. IEEE AES Systems Magazine. 1995(12):19-24.
    [11] Kai Chang, M.A.Pollock and M.K.Skrehot. Space-based Millimeter-wave Debris Tracking Radar. Proc.SPIE. 1991:257-266.
    [12] J.R.Carl, B.A.Bourgeois and I.Paz. Space-borne radar detection of orbital debris. IEEE GlobeCom-93 Conference. 1993:939-943.
    [13] G.D.Arndt, B.A.Bourgeois, J.R.Carl and I.Paz. Signal Processing Requirement For a Space-borne Radar for Detecting Orbital Debris. Proc.SPIE. Vol.2214:102-110.
    [14] I.Paz, J.R.Carl, R.W.Shaw and J.K. Kovitz. Design of an Orbital Debris Radar Ground Demonstration. IEEE Aerospace Applications Conference. 1989.
    [15] I.Paz, E.G.Stansbery, K.McIntyre and L.B.Hock. Simulation of Orbital Debris Radar Operation Using ALCOR. NASA/JSC publication. 1992.
    [16] A.R.Hildebrand, K.A.Carroll, D.D.Balam, J.M.Matthews, R.Kuschnig, P.G.Brown and E. F. Tedesco. The Near-Earth Space Surveillance (NESS) Mission:Discovery, Tracking and Characterization of Asteroids, Comets and Artificial Satellites With a Miscrosatellite. Space Resources RoundtableⅡ. 2000.
    [17] I.Paz, etc. Debris Radar Project: The Ground Test and Demonstration System. NASA/JSC publication. 1992.
    [18]吕洁.空间探测若干前沿技术研究——空基空间碎片探测、空间虚拟遥感技术、隐形飞行目标探测技术的研究.中国科学院空间科学与应用研究中心博士后学位论文. 2003.
    [19]吕洁,吴季,孙波.天基雷达观测空间碎片的研究现状及关键技术分析[J].航天返回与遥感. 2003, 24(4):28-33.
    [20]李骏.空间目标天基光学监视跟踪关键技术研究.国防科学技术大学博士学位论文. 2009.
    [21]唐轶峻,姜晓军,魏建彦,裘予雷,胡景耀.高轨空间碎片光电观测技术综述[J].宇航学报. 2008, 29(4):1094-1098.
    [22] Huntsville, AL and L. DeSandre (1993). Precision Tracking and Imaging of Orbital Debris. In AIAA Space Programs and Technologies Conference and Exhibit (Washington, D.C).
    [23] Michael Oswald, Carsten Wiedemann, Peter Wegener (2003.9). Space-Based Radars for the Observation of Orbital Debris in GEO. In AIAA (California).
    [24]韩增尧.第36届COSPAR会议空间碎片专题综述[J].航天器环境工程. 2007.6, 24(3):5.
    [25] Vallado, D.A. Accurate Orbit Determination from Short-Arc Dense Observational Data[J]. Journal of the Astronautical Sciences. 1998, 46(2):195-213.
    [26] Flohrer, T., Schildknecht, T. Performance Estimation for GEO Space Surveillance[J]. Advances in Space Research. 2005, (35):1226-1235.
    [27]杨远贵,冯和生,郭锐,张云成.高轨空间碎片的观测模拟[J].天文研究和技术(国家天文台台刊). 2004.3, 1(1):6.
    [28]李语强,熊耀恒.空间碎片观测精度分析[J].天文研究与技术(国家天文台台刊). 2006.3, 3(1):7.
    [29]袁庆智,孙越强,王世金,王晶.天基微小空间碎片[J].空间科学学报. 2005, 25(3):6.
    [30]祁先锋,郑娟.空间碎片观测技术研究[J].空间电子技术. 2006,增刊:5.
    [31]薛富兴,杨晓燕.空间碎片研究概述[J].国际太空. 2004.5:6.
    [32] Gehrels, T. (1992). Surveying with Charge Coupled Devices (Arizona Univ.,Tucson).
    [33] Kostishack, Daniel F. Burke, Barry E (1981). Continuous-Scan Charge-Coupled Device (CCD) Sensor System with Moving Target Indicator (MTI) for Satellite Surveillance (Massachusetts Inst. of Tech.,Lexington. Lincoln Lab).
    [34]张坤.国外星用CCD图像传感器的研制现状[J].中国电子科学研究院学报. 2007.6, 2(3):324~328.
    [35] Vasile, Massimiliano (2002.8). Deep Space Autonomous Orbit Determination Using CCD. In AIAA/AAS Astrodynamic Specialist Conference (Monterey,Clifornia,USA).
    [36]胡敏,曾国强.一种序列CCD星图中运动目标识别的稳健算法[J].装备指挥技术学院学报. 2007.10, 18(5):69~72.
    [37]王兆魁,张育林.一种CCD星图星点快速定位算法[J].空间科学学报. 2006, 26(3):209~215.
    [38]袁庆智,孙越强,王世金,王晶.天基微小空间碎片探测研究[J].空间科学学报. 2005, 25(3):6.
    [39] J.G.Bradley,etal. The Cosmic Dust Analyzer for Cassini. 1996.
    [40]刘林,王海红,胡松杰.卫星定轨综述[J].飞行器测控学报. 2005, 20(2):28-34.
    [41] W, James R. Optimal Orbit Determination. Analytical Graphics. Inc.Technicalreport. 2002.
    [42]韩蕾.低轨空间监视的天地协同轨道确定与误差分析.国防科技大学博士学位论文. 2008.
    [43]刘林,王建峰.关于初轨计算[J].飞行器测控学报. 2004, 23(3):41-45.
    [44]刘林.航天器轨道理论,国防工业出版社, 2000.
    [45]张玉祥.人造卫星测轨方法,国防工业出版社, 2007.
    [46] M.Ju.Sokolaskaya. On the Laplacian Orbit Determination of Asteroids[J]. Planet Space Sci. 1998, 45(12):1575-1580.
    [47]贾沛璋,吴连大.初轨计算的参考矢量法[J].天文学报. 1997, 38(4):3535-3358.
    [48]贾沛璋,吴连大.初轨的稳健估计算法[J].天文学报. 2000, 41(2):123-128.
    [49]余建慧,苏增立,谭谦.空间目标天基光学观测模式分析[J].量子电子学报. 2006, 23(6):772-776.
    [50]张科科,周峰,傅丹鹰.天基空间目标监视可见光遥感器研究[J].航天返回与遥感. 2005, 26(4):10-14.
    [51] C.P.DYJAK,D.C.Harrison. Space-Based Visible Surveillance Experiment[J]. SPIE Surveillance Technologies. 1991, 1479:42-56.
    [52] A.Milani,G.F.Gronchi. Orbit Determination with Very Short Arcs I.Admissible Regions[J]. Celest Mech Dyn Astron. 2004:59-87.
    [53] A.Milani,G.F.Gronchi. Orbit Determination with Very Short Arcs II.Identifications[J]. Icarus. 2005:350-374.
    [54]李骏,安玮,周一宇. SBV对GEO短弧初轨确定误差分析[J].航天控制. 2008, 26(4):21-25.
    [55] A.Milani,etc. The Asteroid Identification Problem:III Proposing Identification[J]. Icarus. 2000:39-53.
    [56] A.Milani,etc. The Asteroid Identification Problem: IV Attributionss[J]. Icarus. 2001:150-159.
    [57] A.Milani,G.F.Gronchi. The Asteroid Identification Problem I. Recovery of Lost Asteroids[J]. Icarus. 1999:269-292.
    [58] A.Milani,Giovanni,Valsecchi. The Asteroid Identification Problem:II Target Plan Confidence Boundaries[J]. Icarus. 1999:408-422.
    [59] A.Milani,M.E.Sansaturio,etc. Multiple Solutions for Asteroid Orbits:Computational Procedure and Applications[J]. Astron Astrophys. 2005:729-746.
    [60]李强,郭福成,周一宇.单星对卫星的仅测角被动定轨跟踪方法研究[J].国防科技大学学报. 2007, 29(2):70-75.
    [61] J.Sharma. Orbit Determination Applications with the Space-Based Visible Space Surveillance Sensor. 10th AAS/AIAA Space Flight Mechanics Mtg. Fla., 2000:275-286.
    [62] Grant Stokes, Ronald Sayer. Space-Based Space Surveillance: Thoughts on the Next Step. Proceedings of the 1998 Space Control Conference. Massachusetts, 1998:119-127.
    [63]文援兰.航天器精密轨道抗差估计理论与应用的研究.国防科技大学博士学位论文. 2001.
    [64]刘福声,罗鹏飞.统计信号处理,国防科技大学出版社, 1999.
    [65] Byron D. Tapley, Bob E. Schutz, George H.Born. Statistical Orbit Determination, Elsevier Academic Press, 2004.
    [66]李济生.人造卫星精密轨道确定,解放军出版社, 1995.
    [67] Marshall. Least Squares Solutions in Statistical Orbit Determination Using Singular Value Decomposition. Naval Postgraduate School. 1999.
    [68] Bucy R S, Joseph, Peter. Filtering for Stochastic Processes with Applications to Guidance, Interscience Publishers, 1968.
    [69] Kalman. New Methods in Wiener Filtering Theory. Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability. New York, 1963.
    [70]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术,国防工业出版社, 2005.
    [71]贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报. 2001, 20(3):45-50.
    [72]李强,郭福成,周一宇.基于角度和频率信息的单星对卫星被动定轨方法研究[J].系统工程与电子技术. 2007, 29(3):353-356.
    [73] Li Q., Guo F. C., Li J. Research of Satellite-to-Satellite Passive Tracking Using Bearings-Only Measurements in J2000 ECI Frame. 2006 CIE International Conference on Radar. Shanghai, 2006:41-44.
    [74] Matthew A., Hausman. Orbit Determination Techniques of A Conceptual Space Based Observatory System for the Detection and Monitoring of Near-Earth Objects. University of Colorado. 2004.
    [75] Paul Vergez, Luke Sauter, Scott Dahlke. An Improved Kalman Filter for Satellite Orbit Prediction[J]. The Journal of the Astronautical Science. 2004, 52(3):1-22.
    [76]薛申芳,金声震,宁书年等.卫星轨道估计中广义卡尔曼滤波算法改进[J].计算机工程与应用. 2004:203-206.
    [77]房建成,宁晓琳,田玉龙.航天器自主天文导航原理与方法,国防工业出版社, 2005.
    [78]杨争斌.对机动目标的单站无源定位跟踪关键技术研究.国防科技大学博士学位论文. 2007.
    [79] Sanjeev M., etc. A Tutorial on Particle Filter for Online Nonlinear Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing. 2002, 50(2):174-188.
    [80]万丽,刘焰春,皮亦鸣. EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术. 2007, 5(1):13-16.
    [81] Julier S., Uhlmann J. K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE. 2004, 92(3):401-422.
    [82] Sitz A., Schwarz U., Kurths J. The Unsented Kalman Filter, A Powerful Tool for Data Analysis[J]. International Journal of Bifurcation and Chaos. 2004, 14(6):2093-2105.
    [83]潘泉,杨峰,叶亮等.一类非线性滤波器-UKF综述[J].控制与决策. 2005, 20(5):481-489.
    [84]文援兰等.卫星导航系统分析与仿真技术,宇航出版社, 2008.
    [85]刘林.人造地球卫星轨道力学,高等教育出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700