环三磷腈衍生物制备与自组装行为及其药物负载应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷腈,由磷、氮单双键交替形成的一种无机大分子骨架,磷原子上易于发生亲核取代反应。由于结构设计的灵活性,性能的多样性、可调性,材料的稳定性、生物可降解性等诸多特性,磷腈在诸多领域具有深入研究开发价值和广阔的应用前景。尤其是磷腈侧臂上引入不同结构和比例的取代基可有效地调节聚合物的水解性能、生物相容性能、生物降解性能,这使得它在控制药物释放、组织工程等生物医学领域成为极具开发潜力的材料。
     本论文以环三磷腈为研究对象,设计合成了两种类型的环三磷腈,一种是疏水性环三磷腈,即六色氨酸乙酯苯氧基环三磷腈(HEPCP)和六甘氨酸甲酯苯氧基环三磷腈(HGPCP);另一种是两亲环三磷腈:MMPCP,侧链分别为疏水端甘氨酸甲酯和亲水段聚乙二醇单甲醚(Mw=5000); EMPCP,侧链为疏水端色氨酸乙酯和亲水段聚乙二醇单甲醚(Mw=1000)。采用FT-IR、GPC、MS、NMR等手段对结构进行了表征;采用DSC、TGA、UV、LS、CLSM等方法分析了产物的结晶形态、热稳定性、水解性能和荧光特性;采用透析法、乳化法和反相溶剂技术研究了不同结构的环三磷腈在溶液中的自组装行为;并通过自组装制备了两亲环三磷腈负载抗肿瘤药物姜黄素的体系,构建了多功能载药平台。
     通过UV和TGA分析发现,四种环三磷腈衍生物都是热稳定性良好的可降解的生物友好材料;DSC和XRD实验表明HEPCP和HGPCP是无定形态的,而MMPCP和EMPCP由于MPEG链段的有序排列而具有一定的结晶形态;LS和CLSM观察表明HEPCP和HGPCP都有荧光特性,而且可进行细胞成像;细胞毒性试验显示MMPCP和EMPCP的细胞毒性具有浓度依赖性,在浓度较低时毒性较小,荧光显微镜观察MMPCP和EMPCP都分布在除细胞核外的细胞质和其他细胞器中。
     疏水性环三磷腈HEPCP和HGPCP通过反相溶剂技术可以获得自组装纳米粒子。所制备纳米粒子的形貌采用SEM和TEM进行观察,并分析了影响组装体形貌的因素;纳米粒子的粒径分布和尺寸稳定性分析用动态光散射仪(DLS)测定;实验结果表明:两种自组装纳米粒子都是表面光滑的规则球形结构,荧光特性较组装前都明显增强,纳米粒子在溶液中储存都可以发生二次组装,因此适合冻干保存。
     疏水性环三磷腈的自组装过程可通过临界水含量(cwc)实验分析,其自组装机制采用结构模拟和理论计算并结合实验现象加以阐明。HEPCP自组装纳米粒子的热稳定性增强,cwc值在临界溶液浓度以上,与溶液浓度无关。其自组装过程可阐述如下:由于HEPCP在水中不溶,当溶液中的水含量达到临界值时,体系中形成的微小的W/O空间内,在某一临界浓度以上,每个微小空间内HEPCP分子间距离达足够小,分子间通过疏水的分子间作用力驱动实现有序堆积的自组装过程。然而HGPCP自组装纳米粒子的热稳定性下降,cwc值与溶液浓度相关,且在极稀的溶液中可以实现自组装。HGPCP自组装过程的可能机制是在水分子的参与下,HGPCP分子在分子间氢键的诱导下的有序堆积。
     两亲环三磷腈MMPCP,由于MPEG链段较长,甘氨酸甲酯和环三磷腈短臂的酰胺键与水之间形成氢键作用,在水中溶解性良好,通过乳化技术在油水界面可以成功包载疏水性的抗肿瘤药物姜黄素,实现姜黄素的增溶、EPR靶向、缓释的功能。EMPCP通过透析法自组装形成球形纳米粒子,也可以和姜黄素通过分子间作用组装成纳米载药微球,载药微球的粒径变小,尺寸分布较窄。
     多元醇法制备的四氧化三铁纳米粒子具有良好的水溶性,胶体稳定性,磁共振成像(MRI)优异性能。TEM和磁性能实验证明两亲环三磷腈成功地将磁性纳米粒子和姜黄素包载,可构建具有磁靶向、磁共振成像、EPR效应、荧光示踪功能的多功能载药平台。
Polyphosphazenes, macromolecules with an alternative phosphorus and nitrogen backone, provide an ideal background and open the door to a wide range of useful materials for advanced technology, which are among the most versatile of all polymers. This is a consequence of the unique properties of the phosphorus-nitrogen backbone and the ease with which a wide range of different side groups can be introduced mainly by macromolecular substitution and secondary substitutions. This field has reached a stage where the fundamental chemistry now allows the design and synthesis of a broad range of new materials that are valuable for fine-tune properties through different side groups or combinations of groups that led to the development of numerous biomedical initiatives.
     In this thesis, two types of cyclotriphosphazenes have been synthesized. One type is the hydrophobic cyclotriphosphazenes, such as hexa-[p-(carbonyl tryptophan ethyl ester) phenoxy)] grafted cyclotriphosphazene (HEPCP) and hexa-[p-(carbonyl glycin methyl ester) phenoxy)] substituted cyclotriphosphazene (HGPCP). Another type is the amphiphilic cyclotriphosphazenes, which is grafted with hydrophobic glycin methyl ester and hydrophilic MPEG5000chain with ratio of4:2(MMPCP) and inarched with hydrophobic tryptophan ethyl ester and hydrophilic MPEG1000chain with ration of3:3(EMPCP). The structures of such four products are confirmed by FT-IR、GPC、MS、NMR, and the thermal stability, hydrolysis and fluorescent properties are further researched by DSC、TGA、UV、LS、 CLSM. The self-assembly of cyclotriphosphazenes with different structure has been achieved by dialysis, emulsification and desolvation methods, respectively. Also, the multi-functional drug-loaded platform is fabricated by self-assembly of amphiphilic cyclotriphosphazenes, curcumin and magetic nanoparticles of Fe3O4.
     It is shown by UV and TGA analysis that the synthesized cyclotriphosphazenes are thermal stability and biodegradable. It is also illustrated by DSC and XRD results that both the hydrophobic HGPCP and HEPCP are amorphous structure, and the amphiphilic cyclotirphosphazenes of MMPCP and EMPCP are partially crystalline due to the substitution of MPEG chain. The fluorescent property of hydrophobic cyclotriphosphazenes is explored by LS and both HGPCP and HEPCP exhibit strong fluorescent emission which is easily observed by CLSM. The cell toxicity is also examined for amphiphilic cyclotriphosphazenes, and the results show that the cell toxicity are depended on the concentration of MMPCP and EMPCP, which are distributed in cytoplasm and organelle.
     The nanoparticles have been fabricated through self-assembly of hydrophobic cyclotriphosphazenes such as HGPCP and HEPCP by desolvation method. The morphology of the nanoparticles is observed by SEM and TEM, and the influence of reaction conditions on the self-assembly process is also explored. The particle size distribution and stability are studied by DLS. All the experimental results show that the self-assembly aggregations from hydrophobic cyclotriphosphazenes are uniform and spherical nanoparticles with smooth surface, exhibiting strong fluorescent emission. It has been found that the nanoparticles in solution could lead to secondary assembly to form nanoparticles monolayer which is indicative of lyophilization for the nanoparticles.
     The self-assembly process of hydrophobic cyclotriphosphazenes is explored by critical water content (cwc) experiments, and the mechanism is clarified based upon the experimental results with connection of the theoretical and structure simulation. The thermal stability of HEPCP nanoparticles is increased, and the cwc value for self-assembly of HEPCP should be above the solution concentration while which is independent with solution concentration. The self-assembly mechanism of HEPCP is proposed as follows:when the water content is reached to cwc, numerous micro-W/O-system are formed due to the HEPCP molecule is not dissolved in water which is shortened the distance between HEPCP molecule. As the water content is increased up to cwc, the molecular distance was shortened enough to lead to the HEPCP aggregation induced by intermolecular noncovalent interactions. While the thermal stability of the HGPCP nanoparticles is decreased, and the the cwc value for self-assembly of HGPCP is also related to the solution concentration. The self-assembly of HGPCP could be processed even though at diluted solution, which is indicated that the self-assembly of HGPCP molecules to nanoparticles was driven by the intermolecular hydrogen bonds with participation of water molecule.
     The hydrophobic anti-cancer curcumin can be encapsulated by amphiphilic cyclotirphosphazenes of MMPCP through emulsification because the formation of hydrogen bonds between the amide bonds on the glycinmethylester and cyclotirphosphazene arm and water molecule. Such technique could be fabricated the multi-functional drug-carriers such as dissolution improvement, EPR-targeting and drug-release. The nanoparticles have been also self-assemblied from EMPCP through dialysis method, which is further interacted with curcumin to form drug-loaded nanoparticles. The particle size of EMPCP drug-loading nanoparticles is decreased with narrow size distribution.
     The magnetic nanoparticles of Fe3O4synthesized by polyol process can easily be dispersed in water media with excellent colloid stability and MRI enhancement effect. It is confirmed by TEM and magnetic measurement that the magnetic nanoparticles and curcumin can be simultaneously capped by amphiphilic cyclotirphosphazenes. Thus, a multi-functional drug-loading platform, with guided delivery by outside magnetic field, MRI imaging, EPR effect, fluorescent tracing, is constructed by interaction between MPEG in amphiphilic cyclotriphosphazene and polyol on the surface of Fe3O4.
引文
[1]H. R. Allcock, R. L. Kugel. Synthesis of High Polymeric Alkoxy-and Aryloxyphosphonitriles. J Am Chem Soc.1965,87:4216-4217
    [2]H. R. Allcock, R. L. Kugel, K. J. Valan. Phosphonitrilic Compounds. VI. High Molecular Weight Poly (alkoxy and aryloxy phosphazenes). Inorg Chem.1966,5(10):1709-1715
    [3]H. R. Allcock, R. L. Kugel. Highmolecular Weight Poly (diaminophosphazenes). Inorg chem.1966,5(10):1716-1718
    [4]J. C. Van De Grampel. Phosphazenes. Organophosphorus Chemistry.2000,30:255-290
    [5]H. R. Allcock. Chemistry and Applications of Polyphosphazenes. Wiley Interscience. 2003:725
    [6]H. R. Allcock. Ring-opening Polymerization in Phosphaene Chemistry, Ring-Opening Polymerization, Mechanism, Catalysis, Structure, Unility. Edited by Daniel J Brunelle. 1993:217
    [7]J. C. Van De Grampel. Phosphazenes. Organophosphorus Chemistry.1999,29:269-299
    [8]C. H. Honeyman, I. Manners, C. T. Morrissey, H. R. Allcock. Ambient Temperature Synthesis of Poly(Dichlorophosphazene) with Molecular Weight Control. J Am Chem Soc. 1995,117:7035-7036
    [9]Z. Yun, K. Huynh, I. Manners, C. A. Reed. Ambient Temperature Ring-opening Polymerisation (ROP) of Cyclic Chlorophosphazene Trimer [N3P3CI6] Catalyzed by Silylium Ions. Chem Commun.2008,494-496
    [10]H. R. Allcock, S.D.Reeves, C.R. de Denus, C. A. Crane. Influence of Reaction Parameters on the Living Cationic Polymerization of Phosphoranimines to Polyphosphazenes. Macromolecules.2001,34:748-754
    [11]G. D. Halluin, R. D. Jaeger, J. P. Chambrette, P. Potin. Synthesis of Poly(Dichlorophosphazenes) from Cl3P:NP(O)Cl2.1. Kinetics and Reaction Mechanism. Macromolecules.1992,25:1254-1258
    [12]Y. Tajima, P. H. Geil. Spinning of a Random Copolypeptide Composed of y-benzyl-L-glutamate and L-alanine. Biomaterials, Medical Device, and Artifical Organs.1980,8(2):95-101
    [13]A. K. Burkoth, J. Burdich, K. S. Anseth. Surface and Bulk Modifications to Photocrosslinked Polyanhydrides to Control Degradation Behavior. Journal of Biomedical Materials Research.2000,51:352-359
    [14]J. Lee, C. W. Macosko, D. W. Urry. Elastomeric Polypentapeptides Cross-Linked into Matrixes and Fibers. Biomacromolecules.2001,2:170-179
    [15]J. P. Anderson. J. Cappello, D. C. Martin. Morphology and Primary Structure of A Silk Like Protein Polymer Synthesized by Genetically Engineered Escherichia Coli. Biopolymers.1994; 34:1049-1057
    [16]M. Yokoyama, T. Nakahashi, T. Nishimura, et al. Adhesion Behavior of Rat Lymphocytes To Poly(Ether)-Poly(Amino Acid) Block and Graft Copolymers. Journal of Biomedical Materials Research.1986,20(7):867-878
    [17]A. Merkli, C. Tabatabay, R. Gurny, J. Heller. Biodegrable Polymers for the Controlled Release of Ocular Drugs. Progress in Polymer Science.1998,23:563-580
    [18]A. Nagarsekar, J. Crissman, M. Crissman, F. Ferrari, J. Cappello, H. Ghandehari. Genetic Engineering of Stimuli-Sensitive Silkeastin-like Protein Block Copolymers. Biomacromoleculars.2003,4:602-607
    [19]邮柏春.六对甲酰胺乙酸甲酯苯氧基环三磷腈的合成与性能.东北林业大学硕士学位论文.2004:5
    [20]H. R. Allcock, W. R. Laredo, C. R. de Denus, J. P. Taylor. Ring-opening Metathesis Polymerization of Phosphazene-Functionalized Norbornenes. Macromolecules.1999. 32:7719-7725
    [21]H. R.Allcock, W. R. Laredo, E. C. Kellam, R.V. Morford. Polynorbornenesbearing Pendent Cyclotriphosphazenes with Oligoethyleneoxy Side Groups:Behavior as Solid Polymer Electrolytes. Macromolecules.2001,34:787-794
    [22]H. R. Allcock, W. R. Laredo, R. V. Morford. Polymer Electrolytes Derived from Polynorbornenes with Pendent Cyclophosphazenes:Poly(Ethylene Glycol) Methyl Ether Derivatives. Solid State Ionics.2001,139:27-36.
    [23]H. R. Allcock, C. R. De Denus, R. Prange, W. R. Laredo. Synthesis of Norbornenyl Telechelic Polyphosphazenes and Ring-Opening Metathesis Polymerization of (ROMP) Reaction. Macromolecules.2001,34:2757-2765
    [24]H. R. Allcock, J. D. Bender, R. V. Morford, E. B. Berda. Synthesis and Characterization of Novel Solid Polymer Electrolytes Based on Poly(7-Oxanonorbornenes) with Pendent Oligoethyleneoxy)-Functionalized Cyclotriphosphazenes. Macromolecules.2003,36:3563-3569
    [25]D. A. Stone, D. T. Welna, H. R. Allcock. Synthesis of Amphiphilic Copolymers Containing Pendent Substituted Cyclotriphosphazene via Ring-Opening Metathesis Polymerization. Polym Prepr (Am Chem Soc Div Polym Chem).2004,45:696-697
    [26]D. T. Welna, D. A. Stone, H. R. Allcock. Synthesis of Cyclotriphosphazene Functionalized Polyoctenamers via Ring Opening Metathesis Polymerization of Hydrophilic and Hydrophobic Monomers. Polym Prepr.2005,46(2):1055-1056
    [27]D. T. Welna, X. Wei, J. D. Bender, N. R. Krogman. L. G. Sneddon, H. R. Allcock. Electrostatic Spinning, Pyrolysis and Characterization of Boron Carbide Nanofibers Prepared from Poly(Norbornenyldecacarborane)-a Polymerization Ceramic Precursor. Mater Res Soc Symp.2005.848:FF 6.13.1-6
    [28]H. R. Allcock, D. T. Welna. D. A. Stone. Synthesis of Pendent Functionalized-Cyclotriphosphazene Polyoctenamers:Amphiphilic Lithium-Ion Conductive Materials. Macromolecules.2005,38:10406-10412
    [29]D. A. Stone, H. R. Allcock. A New Polymeric Intermediate for The Synthesis Of Hybrid Inorganic-Organic Polymers. Macromolecules.2006,39:4935-4937
    [30]D. T. Welna, D. A. Stone, H. R. Allcock. Lithium Ion Conductive Polymers as Prospective Membranes in Lithium-Seawater Batteries. Chem Mater.2006,18:4486-4492
    [31]D. A. Stone, D. T. Welna, H. R. Allcock. Synthesis and Characterization of Lithium Ion Conductive Membranes with Low Water Permeation. Chem Mater.2007,19:2473-2482
    [32]H. R. Allcock, M. B. McIntosh, T. J. Hartle. Azido Phosphazenes as Functionalized Intermediates. Inorg Chem.1999,38:5535-5544
    [33]T. J. Hartle, N. J. Sunderland, M. B. McIntosh, H. R. Allcock. Phosphinimine Modifiation of Organic Polymers. Macromoleules.2000,33:4307-4309
    [34]H. R. Allcock. T. J. Hartle, J. P. Taylor, N. J. Sunderland. Organic Polymers with Cyclophosphazene Side Groups:Influence of the Phosphazene on Physical Properties and Thermolysis. Macromolecules.2001,34:3896-3904
    [35]H. R. Allcock, E. C. Kellam. Incorporation of Cyclic Phosphazene Trimers into Saturated and Unsaturated Ethylene-Like Polymer Backbones. Macromolecules.2002,35:40-47
    [36]E. C. Kellam, M. A. Hofmann, H. R. Allcock. Synthesis of Well-Defined Cyclolinear Phosphazene-Containing Polymers via ADMET Polymerization. Macromolecules. 2001,34:5140-5146
    [37]H. R. Allcock, Y. Chang, D. A. Stone. Control of the Conjugation Length and Solubility in Electroluminescent Polymers. J Polym Sci.2006,44:69-76
    [38]J. K. Kim, U. Toti, R. Song. Y. S. Sohn. A Mcromolecular Prodrug of Doxorubicin Conjugated to a Biodegradable Cyclotriphosphazene Bearing a Tetrapeptide. Bioorganic & Medicinal Chemistry Letters.2005,15:3576-3579
    [39]U. Tunca, A. Erdogmus, G. Hizal. Synthesis and Characterization of Aromatic Cyclolinear Phosphazene Polyetherketones Containing Bis-Spiro-Substituted Cyclotriphosphazene Unit. Journal of Polymer Science:Part A:Polymer Chemistry.2001,39(17),2993-2997
    [40]H. R. Allcock, R. L. Kugel. Phosphonitrilic Compounds. V Cyclized Products from the Reactions of Hexachlorocyclotriphosphazene (Phosphnitrilic Chloride Trimer) with Aromatic Dihydroxy, Dithiol And Diamino Compounds. Inorganic Chemistry.1966,5:1016- 1020
    [41]D. Mathew, C. P. Reghunadhan Nair, K. N. Ninan. Phosphazene-Triazine Cyclomatrix Network Polymers:Some Aspects of Synthesis, Thermal and Flame-Retardant Characteristics. Polym Int.2000,49:48-56
    [42]G. Facchin, L. Guarino, M. Modesti, F. Minto, M. Gleria. Poly(organophosphazene)s and the Sol-Gel Technique. Journal of Inorganic and Organometallic Polymers.1999,13(5):339-351
    [43]T. Zhang, Q. Cai, D. Wu, R. Jin. Phosphazene Cyclomatrix Network Polymers:Some Aspects of the Synthesis, Characterization and Flame-Retardant Mechanisms Of Polymer. Journal of Applied Polymer Science.2005,95:880-889
    [44]L. Zhu, Y. Xu, W. Yuan, J. Xi, X. Huang, X. Tang, S. Zheng. One-pot Synthesis of Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) Nanotubes via in situ Template Approach. Advanced Materials.2006,18:2997-3000
    [45]L. Zhu, W. Yuan, Y. Pan, X. Tang. X. Huang. Preparation and Characterization of Novel Poly(cyclotriphosphazene-co-sulfonyldiphenol)nanofiber-matrices. Polymer International. 2006,55:1357-1360
    [46]L. Zhu, X. Huang, X. Tang. One-pot Synthesis of Novel Poly(cyclotriphosphazene-co-sulfonyldiphenol)Microtubes without External Templates. Macromolecular Materials & Engineering.2006,291:714-719
    [47]L. Zhu, Y Zhu, Y Pan, Y Huang, X. Huang, X. Tang. Fully Crosslinked Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)Microspheres via Precipitation Polymerization and Their Superior Thermal Properties. Macromolecular Reaction & Engineering.2007,1:45-52
    [48]J. Fu, X. Huang, Y. Zhu, Y. Huang, L. Zhu, X. Tang. Rapid Fabrication and Formation Mechanism of Cyclotriphosphazene-Containing Polymer Nanofibers. European Polymer Journal.2008,44:3466-3472
    [49]J. M. Nelson, H. R. Allcock. Synthesis of Triarmed Star Polyphosphazenes via the "Living" Cationic Polymerization of Phosphoranimines at Ambient Temperatures. Macromolecules.1997,30:1854-1856
    [50]S. Y. Cho, H. R. Allcock. Dendrimers Derived from Polyphosphazene-Poly(Propyleneimine Systems:Encapsulation and Triggered Release of Hydrophobic Guest Molecules. Macromolecules.2007,40:3115-3121
    [51]H. R. Allcock, S. D. Reeves, J. M. Nelson, C. A. Crane, I. Manners. Polyphosphazene Block Copolymers via the "Living" Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules.1997,30:2213-2215
    [52]R. Prange, H. R. Allcock. Telechelic Syntheses of the First Phosphazene Siloxane Block Copolymers. Macromolecules.1999,32:6390-6392
    [53]H. R. Allcock, S. D. Reeves, J. M. Nelson, I. Manners. Synthesis and Characterization of Phosphazene Di-And Tri-Block Copolymers via the Controlled Cationic, Ambient Temperature Polymerzation of Phosphornimines. Macromolecules.2000,33:3999-4007.
    [54]H. R. Allcock. Ambient Temperature Cationic Condensation of Polyphosphazenes. In: Gleria M, De Jaeger R, Editors. Polyphosphazenes:A Worldwide Insight. NOVA Science Publishers.2004:49-67
    [55]Y. Chang, R. Prange, H. R. Allcock, S. C. Lee, C. Kim. Amphiphilic Poly[Bis(Trifluoroethoxy)Phosphazene]-Poly(Ethylene Oxide) Block Copolymers: Synthesis and Micellar Characteristics. Macromolecules.2002,35:8556-8559
    [56]Y. Chang, E. S. Powell, H. R. Allcock. Environmentally-Responsive Micelles from Polystyrene-Poly[Bis(Potassium Carboxylatophenoxy) Phosphazene] Block Copolymers. J Polym Sci.2005,43:2912-2920
    [57]H. R. Allcock, S. Y. Cho, L. B. Steely. New Amphiphilic Poly[Bis(2,2,2-Trifluoroethoxy)Phosphazene]/Poly(Propylene-Glycol) Triblock Copolymers:Synthesis and Micellar Characteristics. Macromolecules.2006,39:8334-8338
    [58]Y. Chang, S. C. Lee, C. Kim, S. D. Reeves, H. R. Allcock. Synthesis and Micellar Characterization of an Amphiphilic Diblock Copolyphosphazene. Macromolecules. 2001,34:269-274
    [59]R. Prange, S. D. Reeves, H. R. Allcock. Polyphosphazene-polystyrene Copolymers:Block and Graft Copolymers from Polyphosphazene and Polystyrene Macromonomers. Macromolecules.2000,33:5763-5765
    [60]H. R. Allcock, R. Prange, T. J. Hartle. Poly(Phosphazene-Ethylene Oxide) Di-And Triblock Copolymers as Solid Polymer Electrolytes. Macromolecules.2001,34:5463-5470
    [61]H. R. Allcock, R. Prange. Properties of Poly(Phosphazene-Siloxane) Block Copolymers Synthesized via Telechelic Polyphosphazenes and Polysiloxanes. Macromolecules. 2001,34:6858-6865
    [62]Y. Chang, E. Powell, H. R. Allcock, S. M. Park, C. Kim. Temperature Dependent Self-Organization Of Phosphazene Block Copolymers. ACS Div. Polym Chem.2003,44:922-923
    [63]H. R. Allcock, E. S. Powell, A. E. Maher, E. B. Berda. Poly(Methyl Methacrylate)-Graft-Poly[Bis(Trifluoroethoxy)Phosphazene] Copolymers:Synthesis, Characterization, and Effects of Polyphosphazene Incorporation. Macromolecules.2004,37:5824-5829
    [64]H. R. Allcock, E. S. Powell, Y. Chang, C. Kim. Synthesis and Micellar Behavior of Amphiphilic Polystyrene-Poly[Bis(Methoxyethoxyethoxy) Phosphazene] Block Copolymers. Macromolecules.2004,37:7163-7167
    [65]Y Chang, J. D. Bender, M. V. B. Phelps, H. R. Allcock. Synthesis and Self Association Behavior of Biodegradable Amphiphilic Poly[Bis(Ethyl Glycinat-N-Y)Phosphazene]-PEO Block Copolymers. Biomacromolecules.2002,3:1364-1369
    [66]Y. Chang, E. S. Powell, H. R. Allcock, S. M. Park, C. Kim. Thermosensitive Behavior of Poly[Bis(Methoxyethoxyethoxy)-Phosphazene]-Poly(Ethylene Oxide) Block Copolymers. Macromolecules.2003,36:2568-2570
    [67]H. R. Allcock, W. I. Cook, D. P. Mack. High Molecular Weight Poly[Bis(Amino)-Phosphazene] and Mixed Substituent Poly(Aminophosphazenes). Inorg. Chem. 1972,11:2584-2590
    [68]H. R. Allcock. Chemistry and Applications of Polyphosphazenes. Wiley-Interscience, Hoboken, NJ,2003
    [69]H. R. Allcock. Perspective of Polyphosphazene Reseach. J. Inorg. Organomet. Polym. Mater.2006,16(4):277-294
    [70]H. R. Allcock, Y. B. Kim. Synthesis, Characterication, and Modification of Poly(Organophosphazenes) that Bear both 2,2,2-Trifluoroethoxy and Phenoxy Groups. Macromolecules.1994,6:516-524
    [71]H. R. Allcock, D. C. Ngo. Synthesis of Poly(Bis-Phosphazo)Phosphazenes Bearing Aryloxy and Alkyl Side Groups. Macromolecules.1992,25:2802-2810
    [72]R. E. Singler, G. Hagnauer, N. S. Schneider, B. R. LaLiberte, R. E. Sacher, R. W. Matton. Synthesis and Characterication of Polyaryloxyphosphazenes. J. Polym. Sci.1974,12:433-444
    [73]H. R. Allcock, P. E. Austin, T. X. Neenan, J. T. Sisko, P. M. Blonsky, D. F. Shriver. Polyphosphazenes with Etheric Side Groups:Prospective Biomedical and Solid Electrolyte Polymers. Macromolecules.1986,19:1508-1512
    [74]A. E. Maher, H. R. Allcock. Influence of N-Hexoxy Group on the Properties of Fluoroalkoxyphosphazene Polymers. Macromolecules.2005,38:641-642
    [75]H. R. Allcock, G. Y. Moore. Polymerization and Copolymerization of Phenyl-Halgencyclotriphosphazenes. Macromolecules.1975,8:377-382
    [76]H. R. Allcock, D. B. Patterson. Ring-ring and Ring-Chain Equilibration of Dimethylphosphazenes:Relationship to Phosphazene Polymerization. Inorg. Chem. 1977,16:197-200
    [77]H. R. Allcock, J. L. Schmutz, K. M. Kosydar. A New Route for Poly(Organophosphazene) Synthesis:Polymerizaition, Copolymerization, and Ring-Ring Equilibration of Trifluoroethoxy- and Chloro-Subtituted Cyclotriphosphazenes. Macromolecules. 1978,11:179-186
    [78]H. R. Allcock, D. B. Patterson, T. L. Evans. Synthesis of Arkyl and Aryl Phosphazene High Polymers. J. Am. Chem. Soc.1977,99:6095-6096
    [79]H. R. Allcock, R. J. Ritchie, P. J. Harris. Synthesis of Alkylphosphazene High Polymers via the Polymerization of Monoalkylpentachlorocyclotriphosphazenes, N3P3C15R. Macromolecules.1980,13:1332-1338
    [80]H. R. Allcock. M. S. Connolly. Polymerization and Halogen Scrambing Behaviour of Phenyl-Substituted Cyclotriphosphazenes. Macromolecules.1985,18:1330-1340
    [81]H. R. Allcock, G. H. Riding, K. D. Lavin. Polymerization of New Metallocenylphosphazenes. Macromolecules.1987,20:6-10
    [82]H. R. Allcock, D. J. Brennan, J. M. Graaskamp. Ring-opening Polymerization of Methylsilane-and Methylsiloxane-Substituted Cyclotriphosphazenes. Macromolecules. 1988,21:1-10
    [83]H. R. Allcock, J. A. Dodge, I. Manners, G. H. Rinding. Strain-Induced Ring-Opening Polymerization of Ferrocenylorganocyclotriphosphazenes:A New Synthetic Route to Poly(Organophosphazenes). J. Am. Chem. Soc.1991,113:9596-9603
    [84]P. Wisian-Neilson, R. H. Neilson. Poly(dimethylphosphazene),(MePN)n. J. Am. Chem. Soc.1980,102:2848-2849
    [85]R. H. Neilson, P. Wisian-Neilson. Poly(alkyl/arylphosphazene) and their Precursors. Chem. Rev.1988,88:541-562
    [86]P. Wisian-Neilson, G. E. Xu, T. Wang. Fluorinated Polyphosphazenes Derived from Poly(Methylphenylphosphazene) and Fluorinated Aldehydes and Ketones. Macromolecules. 1995,28:8657-8661
    [87]P. Wisian-Neilson. Poly(alkyl/arylphosphazene) and their Derivatives. In De Jaeger, R., Gleria, M., eds., Phophazenes:A Worldwide Insight, Nova Science, Hauppauge, NY,2002, chap.5.
    [88]E. P. Flindt, H. Rose. Trivalent-pentavalente Phosphorverbindungen/Phosphazene: I.Eine neue Methode zur Darstellung von Poly[bis(trifluorathoxy)phosphazene]. Z. Anorg. Allgem. Chem.1977,428:204-208
    [89]R. A. Montague, K. Matyjaszewski. Synthesis of Poly[bis(trifluorathoxy)phosphazene] under Mild Conditions Using A Fluoride Initiator. J. Am. Chem. Soc.1990,112:6721-6723
    [90]K. Matyjaszewski, M. M. Moore, M. L. White. Synthesis of Polyphosphazene Block Copolymers Bearing Alkoxyethyoxy and Trifluorathoxy Groups. Macromolecules. 1993,26:6741-6748
    [91]R. De Jeager, M. Helioui, E. Puscaric. Novel polychlorophosphazenes and Process for their Preparation. U. S. patent 4,377,558,1983
    [92]R. De Jeager, P. Potin. In Gleria, M., De Jeager R., eds. Synthesis and Characterization of Poly(organophosphazenes). Nova Science, Hauppauge, NY,2004:25-48
    [93]E. S. Peterson, T. A. Luther, M. K. Harrup. et al. The One-Point Synthesis of Linear Polyphosphazenes. J. Inorg. Organomet. Polym. Mater.,2007,17:361-366
    [94]H. R. Allcock, C. A. Crane. C. T. Morrissey, J. M. Nelson, S. D. Reeves, C. H. Honeyman, I. Manners. "Living" Cationic Polymerization of Phosphoranimines as an Ambient Temperature Route to Polyphosphazenes with Controlled Molecular Weights. Macromolecules.1996,29:7740-7747
    [95]H. R. Allcock, J. M. Nelson, S. D. Reeves, C. H. Honeyman, I. Manners. Ambient Temperature Direct Synthesis of Poly(Organophosphazenes) via the "Living" Cationic Polymerization of Organo-Substituted Phosphoranimines. Macromolecules.1997,30:50-56
    [96]H. R. Allcock, S. D. Reeves, J. M. Nelson, C. A. Crane, I. Manners. Polyphosphazene Block Copolymers via the "Living" Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules.1997,30:2213-2215
    [97]H. R. Allcock, J. M. Nelson, R. Prange, C. A. Crane, C. R. de Denus. Synthesis of Telechelic Polyphosphazenes via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines. Macromolecules.1999,32:5736-5743
    [98]R. Prange, H. R. Allcock. Telechelic Syntheses of the First Phosphazene Siloxane Block Copolymers. Macromolecules.1999,32:6390-6392
    [99]H. R. Allcock, R. J. Fitzpatrick. Sulfonation of Aryloxy-and Arylamino-Phosphazenes: Small-Molecule Compounds, Polymers, and Surfaces. Chemi. Mater.1991,3:1120-1132
    [100]H. R. Allcock, D. E. Smith, Y. B. Kim, J. J. Fitzgerald. Poly(organophosphazenes) Containing Allyl Side Groups:Cross-Linking by Hydrosilylation. Macromolecules. 1994,27:5206-5215
    [101]H. R. Allcock, M. A. Hofmann, C. M. Ambler, R. V. Morford. Phenylphophonic Acid Functionalized Poly[Aryloxyphosphazenes]. Macromolecules.2002,35:3483-3489
    [102]H. R. Allcock, P. E. Austin. Schiff's-base Couping of Cyclic and High Polymeric Phosphazene to Aldehydes and Amines:Chemotherapeutic Models. Macromolecules. 1981.14:1616-1622
    [103]H. R. Allcock, A. G. Scopelianos. Synthesis of Suger-Substituted Cyclic and Polymeric Phosphazenes, and Their Oxidation, Reduction, and Acetylation Reactions. Macromolecules. 1983,16:715-719
    [104]H. R. Allcock, W. C. Hymer, P. E. Austin. Diazo Couping of Catecholamines with Poly(Organophosphazenes). Macromolecules.1983,16:1401-1406
    [105]S. V. Levchik, G. Camino, M. P. Luda, L. Costa, A. Lindsay, D. Stevenson. Thermal Decomposition of Cyclotriphosphazenes. I. Alkyl-Aminoaryl Ethers. Journal of Applied Polymer Science.1998,67:461-472
    [106]M. A. Olshavsky, H. R. Allcock. Polyphosphazenes with High Refractive Indices: Synthesis, Characterization, and Optical Properties. Macromolecules.1995,28(18):6188- 6197
    [107]H. R. Allcock, A. A. Dembek, C. Kim, R. L. S. Devine, Y. Shi, W. H. Steier, C. W. Spangler. Second-order Nonlinear Optical Poly(Organophosphazenes):Synthesis and Nonlinear Optical Characterization. Macromolecules.1991,24:1000-1010
    [108]R. E. Singler, R. A. Willingham. Liquid Crystalline Side Chain Phosphazenes. Macromolecules.1987,20:1727-1728
    [109]H. R. Allcock, C. Kim. Photochromic Polyphosphazenes with Spiropyran Units. Macromolecules.1991,24:2846-2851
    [110]S. C. Song, S. B. Lee, B. H. Lee, H. W. Ha, K. T. Lee, Y. S. Sohn. Synthesis and Antitum or Activity of Novel Thermosensitive Platinum(II)-cyclotriphosphazene Conjugates. J Controlled Release.2003,90(3):303-311
    [111]A. K. Andrianov, L. G. Payne, K. B. Visscher, H. R. Allcock, R. Langer. Hydrolytic Degradation of Ionically Cross-linked Polyphosphazene Microspheres. J Appl Polym Sci. 1994,53(2):1573-1578
    [112]J. Luten, J. H. V. Steenis, R. V. Someren, J. Kemmink, N. M. E. Schuurmans-Nieuwenbroek, G. A. Koning, D. J. A. Crommelin, C. F. V. Nostrum, W. E. Hennink. Water-soluble Biodegradable Cationic Polyphosphazenes for Gene Delivery. J Controlled Release. 2003,89(3):483-497
    [113]N. Launay, A. M. Caminade, J. P. Majoral. Synthesis of Bowl-shaped Dendrimers form Generation 1 to 8. J Organometallic Chem.1997,529 (1-2):51-58
    [114]A. Singh, L. Steely, H. R. Allcock. Electrospinning of Poly[Bis(2,2.2-Trifluoroethoxy)Phosphazene] Superhydrophobic Nanofibers. Langmuir.2005,21:11604-11607
    [115]S. H. Rose. Synthesis of Phosphonitrilic Fluoroelastomers. J. Polym. Sci. B. 1968,6(12):837-839
    [116]C. H. Kolich, W. D. Klobucar, J. T. Books. Process for Surface Treating Phosphonitrilic Fluoroelastomers. U. S. patent 4,945,139,1990
    [117]L. Gettleman, C. L. Farris, R. H. Rawls, R. J. Lebouef. Soft and Firm Denture Liner for a Composite Denture and Method for Fabricating. U. S. patent 45,43,379,1985
    [118]L. B. Steely, Q. Li, J. V. Badding, H. R. Allcock. Foam Formation from Fluorinated Polyphosphazenes by Liquid CO2 Processing. Polym. Sci. Eng.2008,48:683-686
    [119]H. R. Allcock. Design of new Biomedical Materials with Targeted Properties. Abstracts of Papers,232nd. ACS National Meeting; 2006,10-14
    [120]M. Heyde, E. Schacht. Biodegradable Polyphosphazenes for Biomedical Applications. In Gleria, M., De Jaeger, R., eds., Applicative Aspects of Poly(organophosphazenes). Nova Science, Hauppauge, NY,2004:1-32
    [121]C. T. Laurencin, A. M. Ambrosio. Biodegradable Polyphosphazenes for Biomedical Applications, in Arshady, R., Eds., Biodegradable Polymers. PBM Series,London,2003:153-173
    [122]H. R. Allcock, T. J. Fuller, D. P. Mack, K. Matsumura, K. M. Smeltz. Synthesis of Poly[(amino acid alkyl ester)phosphazenes]. Macromolecules.1977,10:824-830
    [123]Y. Lemmouchi, E. Schacht, S. Dejardin. Biodegradable Poly[(Amino Acid Ester)Phosphazenes] for Biomedical Applications. J. Bioact. Polym.1998,13:4-18
    [124]F. M. Veronese, F. Marsilio, S. Lora, P. Caliceti, P. Passi, P. Orsolini. Polyphosphazene Membranes and Microspheres in Periodontal Diseases and Implant Surgery. Biomaterials. 1999,20(1):91-98
    [125]H. R. Allcock, A. Singh, A. M. A. Ambrosio, W. R. Laredo. Tyrosine-bearing Polyphosphazenes. Biomacromolecules.2003,4:1646-1653
    [126]H. R. Allcock, S. R. Pucher, A. G. Scopelianos. Poly[(amino acid ester)phosphazenes]: Synthesis, Crystallinity, and Hydrolytic Sensitivity in Solution and the Solid State. Macromolecules.1994,27:1071-1075
    [127]H. R. Allcock, S. R. Pucher, A. G. Scopelianos. Poly[(amino acid ester)phosphazenes] as Substrates for the Controlled Release of Small Molecules. Biomaterials.1994,15:563-569
    [128]S. Lakshmi, D. Lee, J. D.Bender, E. W. Barrett, Y. E. Greish, P. W. Brown, H. R. Allcock, C. T. Laurencin. Systhesis, Characterization and in Vitro Osteocompatibility Evaluation of Novel Alanine-Based Polyphosphazenes. J. Biomater. Res.2006,76a:206-213
    [129]M. Deng, L. S. Nair, S. P. Nukavarapu, S. G. Kumbar, T. Jiang, N. R. Krogman, A. Singh, H. R. Allcock, C. T. Laurencin. Miscibility and in vitro Osteocompatibility of Biodegradable Blends of Poly[(Ethyl Alanato)(P-Phenyl Phenoxy)-Phosphazene] and Poly(lactic acid-glycolic acid). Biomaterials,2007,29(3):337-349
    [130]S. F. El-Amin, M. S. Kwon, T. Starns, H. R. Allcock, C. T. Laurencin. The Biocompatibiliry of Biodegradable Glycine Containing Polyphosphazenes:A Comparative Study In Bone. J. Inorg. Organomet. Polym. Mater.2006,16(4):387-396
    [131]Y. E. Greish, P. W. Brown, J. D. Bender, H. R. Allcock, S. Lakshmi, C. T. Laurencin. Hydroxyapatite-polyphosphazene Composites Prepared at Low Temperatures. J. Am. Ceram. Soc.2007,90(9):2728-2734
    [132]N. R. Krogman, L. Steely, M. D. Hindenlang, L. S. Nair, C. T. Laurencin, H. R. Allcock. Systhesis and Characterization of Polyphosphazene-Block-Polyester and Polyphosphazene-Block-Polycarbonates. Macromolecules.2008,41:1126-1130
    [133]S. Bhattacharyya, L. S. Nair, A. Singh, N. R. Krogman, Y. E. Greish, P. W. Brown, H. R. Allcock, C. T. Laurencin. Electrospinning of Poly[Bis(Ethyl Alanato)Phosphazene] Nanofibers. J. Biomed. Nanotechnol.2006,2(1):36-45
    [134]S. Bhattacharyya, L. S. Nair, A. Singh, N. R. Krogman, J. Bender, Y. E. Greish, P. W. Brown, H. R. Allcock, C. T. Laurencin. Development of Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers via Electrospinning. Mater. Res. Soci. Symp. Proc.2005,845:91-96
    [135]N. R. Krogman, D. stone, H. R. Allcock. Bioerodible Shape Memory Polymers Derived from Poly(Amino Acid Ester Polyphosphazenes). In Alexander K. Andrianov eds., Polyphosphazenes for Biomedical Applications. A John Wiley & Sons, Inc.2009:15-36
    [136]H. R. Allcock, M. Gebura, S. Kwon, T. X. Neenan. Amphiphilic Polyphosphazenes as Membrane Materials:Influence of Side Group on Radiation Crosslinking, Semipermeability, and Surface Morphology. Biomaterials,1988,19:500-508
    [137]J. L. Bennett, A. A. Dembek, H. R. Allcock, B. J. Heyen, D. F. Shriver. Radiation Crossling of Poly[Bis(2-(2-Methoxyethoxy)Ethoxy)]Phosphazene:Effect on Solid State Ionic Conductivity. Chem. Mater.1989,1:14-16
    [138]C. J. Nelson, W. D. Coggio, H. R. Allcock. Ultraviolet Radiation-Induced Crosslinking of Poly[Bis(2-(2-Methoxyethoxy)Ethoxy)]Phosphazene. Chem. Mater.1991,3:786-787
    [139]H. R. Allcock, S. Kwon. An Ionically-Crosslinkable Polyphosphazene: Poly[Di(Carboxylatophenoxy-Phosphazene)] and its Hydrogels and Membranes. Macromolecules.1989,22:75-79
    [140]A. Andrianov, S. Cohen, R. Langer, K. B. Visscher, H. R. Allcock. Controlled Release using Ionotropic Polyphosphazene Hydrogels. J. Control. Release,1993,27:69-77
    [141]H. R. Allcock, A. M. A. Ambrosio. Synthesis and Characterization of Ph-Senstitive Poly(Organophosphazene) Hydrogels. Biomaterials.1996,17:2295-2302
    [142]E. W. Barrett, M. V. B. Phelps, R. J. Silva, R. P. Gaumond, H. R. Allcock. Patterning Poly(Organophosphazenes) for Selective Cell Adhesion Applictions. Biomacromolecules. 2005,6:1689-1698
    [143]S. T. Fei, M. V. B. Phelps, Y. Wang, E. W. Barrett, F. Grandhi, H. R. Allcock. A redox Responsive Gel Based on Ionic Crosslinkling. Soft Matter.2006,2:397-401
    [144]A. K. Andrianov, J. R. Sargent, S. S. Sule, M. P. Golvan, A. L. Woods. S. A. Jenkins, L. G. Payne. Synthesis, Physico-Chemical Properties and Immunoadjuvant Activity of Water-Soluble Phosphazene Polyacids. J Bioact Compat. Polym.1998,13(4):243-246
    [145]A. K. Andrianov, A. Marin, B. E. Roberts. Polyphosphazene Polyeletrolytes:A Link Between the Information of Noncovalent Complex with Antigenic Proteins and Immunostimulating Activity. Biomacromolecules,2005,6(3):1375-1379
    [146]A. K. Andrianov, A. Marin, J. Chen. Synthesis, Properties, and Biological Activity of Poly[Di(Sodium Carboxylatoetheylphenoxy) Phosphazene]. Biomacromolecules, 2006,7(1):394-399
    [147]G. Mutwiri, P. Benjamin, H. Soita, H. Townsend, R. Yost, B. Roberts, A. K. Andrianov, L. K. Babiuk. Poly[Di(Sodium Carboxylatoethylphenoxy)Phosphazene](Pcep) is A Potent Enhancer of Mixed Thl/Th2 Immune Responses in Mice Immunized with Influenza Virus Antigens. Vaccine,2007,25(7):1204-1213
    [148]H. R. Allcock, T. J. Fuller. Phosphazene High Polymers with Steroidal Side Groups. Macromolecules.1980,13:8103-8107
    [149]H. R. Allcock, R. W. Allen, J. P. O'Brien. Synthesis of Platinum Derivatives of Polymeric and Cyclic Phosphazenes. J. Am. Chem. Soc.1977,99:3984-3987
    [150]H. G. Baek, Y. H. Cho, C. O. Lee, Y. S. Sohn. Synthesis and Antitumar Activity of Cyclotriphosphazene-(Diamine)Platinum (Ⅱ) Conjugates. Anti-Cancer Drugs.2000,11:715-725
    [151]Y. J. Jun, J. I. Kim, M. J. Jun, Y. S. Sohn. Selective Tumor Targeting by Enhanced Permeability and Retention Effect:Synthesis and Antitumor Activity of Cyclotriphosphazene-Platinum (Ⅱ) Conjugates. J. Inorg. Biochem.2005,99:1593-1601
    [152]R. Song, Y. J. Jun, J. I. Kim, C. B. Jin, Y. S. Sohn. Synthesis, Characterization, and Tumor Selectivity of A Polyphosphazene-Platinum (Ⅱ) Conjugate. J. Control. Release. 2005,105:142-150
    [153]Y. J. Yu, Y. J. Jun, S. H. Jang, H. J. Lee, Y. S. Sohn. Nanoparticulate Platinum (Ⅱ) Antitumor Drug:Synthesis and Characterization of Amphiphilic Cyclotriphosphazene-Platinum (Ⅱ) Conjugates. J. Inorg. Biochem.2007,101:1931-1936
    [154]C. Kim, Y. Chang, S. C. Lee, H. R. Allcock, S. D. Reeves. An Amphiphilic Deblock Copolyphosphazene:Synthesis and Micellar Characteristics in the Aqueous Phase. Polym. Prepr. ACS Div. Polym. Chem.2000,41:609-610
    [155]J. X. Zhang, L. Y. Qiu, Y. Jin, K. J. Zhu. Thermally Responsive Polymeric Micelles Self-Assembled by Amphiphilic Polyphosphazene with Poly(N-Isopropylacrylamide) and Ethyl Glycinate as Side Groups:Polymer Synthesis, Characterization and in vitro Drug Release Study. J. Biomed. Mater. Res. A.2005,76A:773-780
    [156]J. X. Zhang, X. J. Li, J. X. Zhang, X. H. Li, M. Q. Yan, Y. Jin, K. J. Zhu. Indomethacin-Loaded Polymeric Nanocarriers Based on Amphiphilic Polyphosphazenes with Poly(N-Isopropylacrylamide) and Ethyl Tryptophan as Side Groups:Preparation, in Vitro and in vivo Evaluation. J. Control. Release.2006,116:322-329
    [157]J. X. Zhang, M. Q.Yan, X. H. Li, L. Y. Qiu, X. D. Li, X. J. Li, Y. Jin, K. J. Zhu. Local Delivery of Indomethacin to Arthritis-Bearing Rats through Polymeric Micelles Based on Amphiphilic Polyphosphazenes. Pharmaceutical Research.2007,24(10):1944-1953
    [158]C. Zheng, L. Y. Qiu, X. P. Yao, K. J. Zhu. Novel Micelles from Graft Polyphosphazenes as Potential Anti-Cancer Drug Delivery Systems:Drug Encapsulation and in Vitro Evaluation. International Journal of Pharmaceutics.2009,373(1-2):133-140
    [159]C. Zheng, L. Y. Qiu, K. J. Zhu. Novel Polymersomes Based on Amphiphilic Graft Polyphosphazenes and their Encapsulation of Water-Soluble Anti-Cancer Drug. Polymer. 2009.50(5):1173-1177
    [160]L. Y. Qiu, C. Zheng, Y. Jin, K. J. Zhu. Polymeric Micelles as Nanocarriers for Drug Delivery. Expert Opinion on Therapeutic Patents,2007.17(7):819-830
    [161]J. X. Zhang, L. Y. Qiu, K. J. Zhu, Y. Jin. Thermosensitive Micelles Self-Assembled by Novel N-Isopropylacrylamide Oligomer Grafted Polyphosphazene. Macromol. Rapid Commun.2004,25:1563-1567
    [162]J. X. Zhang, J. X. Zhang, Y. Jin, K. J. Zhu. Physicochemical Characterization of Polymeric Micelles Constructed from Novel Amphiphilic Polyphosphazene with Poly(N-Isopropylacrylamide) and Ethyl 4-Aminobenzoate as Side Groups.Colloids And Surfaces B: Biointerfaces.2005,43:123-130
    [163]J. X. Zhang, L. Y. Qiu, Y. Jin, K. J. Zhu. Multimorphological Self-Assemblies of Amphiphilic Graft Polyphosphazenes with Oligopoly(N-Isopropylacrylamide) and Ethyl 4-Aminobenzoate as Side Groups. Macromolecules.2006,39:451-455
    [164]Y. J. Jun, M. K. Park, V. B. Jadhav, J. H. Song, S. W. Chae, H. J. Lee, K. S. Park, B. Jeong, J. H. Choy, Y. S. Sohn. Tripodal Amphiphiles Tunable for Self-Assembly To Polymersoms. J. Control. Release.2010,142:132-137
    [165]Y. J. Jun, U. S. Toti, H. Y. Kim, J. Y. Yu, B. Jeong, M. J. Jun, Y. S. Sohn. Thermoresponsive Micelles from Oligopeptide-Grafted Cyclotriphosphazenes. Angew. Chem. Int. Ed.2006,45:6173-6176
    [166]T. Itaya, N. Azuma, K. Inoue. Polymeric Hydrogen-Bonded Supermolecules by Self-Assembling of Hexakis(4-Pyridylcarbinoxy) Cyclotriphosphazene and Dicarboxylic Acids. Supermolecular Chemistry.1997,9:121-126
    [167]K. Inoue, T. Itaya. Self-assembly through Hydrogen Bonding of Cyclotriphosphazenes. Formation of Cylindrical Structures. Supramolecular Science.1998,5:163-166
    [168]王文云,代晓梅,王英娟,张天乐.六(4-羧基苯氧基)环三磷腈氢键超分子自组装.西北大学学报(自然科学版).2011,41(2):239-242
    [169]J. Barbera, M. Bardaji, J. Jimenez, A. Laguna, M. P. Martinez, L. Oriol, J. Luis Serrano, I. Zaragozano. Columnar Mesomorphic Organizations in Cyclotriphosphazenes J. AM. CHEM. SOC.2005,127:8994-9002
    [170]J. Barbera, J. Jimenez, A. Laguna, L. Oriol, S. Perez, J. L. Serrano. Cyclotriphosphazene as a Dendritic Core for the Preparation of Columnar Supermolecular Liquid Crystals. Chem. Mater.2006,18:5437-5445
    [171]J. Ding, L. Wang, H. Yu, J. Huo, Q. Liu, A. Xiao. Controllable Formation of Nanorods through Electrostatic-Assisted Assembly of Star Poly(methacrylic acid) Induced by Surfactants. J. Phys. Chem. C.2009,113:3471-3477
    [172]J. Ding, L. Wang, H. Yu, J. Huo, Q. Liu. A. Xiao. Well-Controlled Formation of Nanofibers and Double Wall Vesicles through the Electrostatic-Assisted Assembly of a Couple of Star Polyelectrolytes-Complementary. J. Phys. Chem. C.2009.113:5126-5132
    [173]R. Bertani, F. Chaux, M. Gleria, P. Metrangolo, R. Milani, T. Pilati, G. Resnati, M. Sansotera, A. Venzo. Supramolecular Rods via Halogen Bonding-Based Self-Assembly of Fluorinated Phosphazene Nanopillars. Inorganica Chimica Acta.2007,360:1191-1199
    [174]E. Ainscough, A. Brodie, C. Depree, G. Jameson, and C. Otter. Polymer Building Blocks: Self-Assembly of Silver(I) Cyclotriphosphazene Cationic Columns. Inorg. Chem.2005, 44:7325-7327
    [175]T. Itaya, K. Inoue. Construction of Hairy-Rod Coordination Polymers with Lamellar Structure by Self-Assembling of Hexakis(4-Pyridylmethoxy)Cyclotriphosphazene and Silver Alkylsulfonates. Polyhedron.2002,21:1573-1578
    [176]E. Ainscough, A. Brodie, G. Jameson. C. Otter. Copper Complexes with 1,10-Phenanthrolines Tethered to A Cyclotriphosphazene Platform. Polyhedron.2007,26:460-471
    [177]C. Diaz, V. Lavayen, C. O'Dwyer. Single-Crystal Micro/Nanostructures and Thin Films of Lamellar Molybdenum Oxide by Solid-State Pyrolysis of Organometallic Derivatives of A Cyclotriphosphazene. Journal of Solid State Chemistry.2010,183:1595-1603
    [178]S. Liu, X. Wu, A. Zhang, J. Qiu, C. Liu 1D Nano-and Microbelts Self-Assembled from the Organic-Inorganic Hybrid Molecules:Oxadiazole-Containing Cyclotriphosphazene. Langmuir.2011,27(7):3892-3990
    [179]B. Cosut, F. Hacivelioglu, M. Durmus, A. Kilic, S. Yesilot. The Synthesis, Thermal and Photophysical Properties of Phenoxycyclotriphosphazenyl-Substituted Cyclic and Polymeric Phosphazenes. Polyhedron.2009,28:2510-2516
    [180]邴柏春,李斌,贾贺,杨明非.六对羧基苯氧基环三磷腈的合成及其热性能.应用化学.2009,26(7):753-756
    [181]H. R. Allcock, H. J. Fuller, K. Matsumera. Hydrolysis Pathways for Aminophosphazenes. Inorg Chem.1982,21(2):515-521
    [182]夏玉宇.化验员实用手册.化学工业出版社.北京.2005:695
    [183]F. Wurthner. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun.2004:1564-1579
    [184]F. Leo. A. Holroyd, T. Mourik. Insufficient Description of Dispersion in B3LYP and Large Basis Set Superposition Errors in MP2 Calculations Can Hide Peptide Conformers. Chemical Physics Letters,2007,442:42-46
    [185]V. L. Furer, A. E. Vandyukov, J. P. Majoral. A. M. Caminade. V. I. Kovalenko, DFT Calculation of Molecular Structure and Vibrational Spectra of the Phosphorus-Containing G01 Generation Dendrimer with Terminal Aldehyde Groups. Chem. Phys.2006,326:417-424
    [186]S. Tsuzuki, T. Uchimaru, M. Mikami. Magnitude and Nature of Carbohydrate-Aromatic Interactions in Fucose-Phenol and Fucose-Indole Complexes:CCSD(T) Level Interaction Energy Calculations. J. Phys. Chem. A.2011,115(41),11256-11262
    [187]L. F. Holroyd. T. Mourik. Insufficient Description of Dispersion in B3LYP and Large Basis Set Superposition Errors in MP2 Calculations Can Hide Peptide Conformers. Chemical Physcs Letters.2007,442(1-3):42-46
    [188]J. G. Hill, J. A. Platts, H. Werner. Calculation of Intermolecular Interactions in the Benzene Dimer using Coupled-Cluster and Local Electron Correlation Methods. Phys. Chem. Chem. Phys.2006,8(35):4072-4078
    [189]M. Nishio, M. Hirota. CH/π interaction:Implications in Organic Chemistry. Tetrahedron. 1989,45(23):7201-7245
    [190]Y. Umezawaa, M. Nishio. CH/n Interactions as Demonstrated in the Crystal Structure of Guanine-Nucleotide Binding Proteins, Src Homology-2 Domains and Human Growth Hormone in Complex with their Specific Ligands. Bioorg Med Chem.1998,6:493-504
    [191]M. Brandl, M. S. Weiss, A. Jabs, J. Suhnel, R. Hilgenfeld. C-H…π Interactions in Proteins. J Mol Biol.2001,307(1):357-377
    [192]P. Chakrabarti, U. Samanta. CH/π interaction in the packing of the adenine ring in protein structures. J Mol Biol.1995,251,9-14
    [193]M. M. Gromiha. Distinct Roles of Conventional Non-covalent and Cation-pi Interactions in Protein Stability. Polymer.2005,46:983-990
    [194]S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe. The Magnitude of the CH/π Interaction between Benzene and Some Model Hydrocarbons. J. Am. Chem. Soc. 2000,122(15):3746-3753
    [195]R. S. Prajapati, M. Sirajuddin, V. Durani, S. Sreeramulu, R. Varadarajan. Contribution of Cation-π Interactions to Protein Stability. Biochemistry.2006,45(50):15000-15010
    [196]Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe. Effects of the higher Electron Correlation Correction on the Calculated Intermolecular Interaction Energies of Benzene and Naphthalene Dimers:Comparison Between MP2 And CCSD(T) Calculations. Chemical Physcs Letters.2000,319:547-554
    [197]A. Robert, J. DiStasio, H. Gert von, P. Ryan, A. Steele, H. Martin. On the T-shaped Structures of the Benzene Dimmer. Chemical Physics Letters.2007,437:277-283
    [198]S. Tsuzuki, T. Uchimaru, M. Mikami. Magnitude and Nature of Carbohydrate-Aromatic Interactions in Fucose-Phenol and Fucose-Indole Complexes:CCSD(T) Level Interaction Energy Calculations. J. Phys. Chem. A 2011,115:11256-11262
    [199]N. Mohan, K. P. Vijayalakshmi, N. Koga, C. H. Suresh. Comparison of Aromatic NH-π, OH-π, and CH-π Interactions of Alanine Using MP2, CCSD, and DFT Methods.Journal of Computational Chemistry.2010,31(16):2874-2882
    [200]邴柏春,李斌.一种新星型大分子——六对甲酰胺乙酸甲酯苯氧基环三磷腈的合成及其热性能、水解性能的表征.中国科学B辑:化学.2009,39(12):1610-1619
    [201]L. M. Liz-Marzan, M. Giersig. Low-Dimensional Systems:Theory, Preparation, and Some Applications. Kluwer Academic Publishers. Dordeecht.2003:163-172
    [202]A. B. Chaplin, J. A. Harrison, P. J. Dyson. Revisiting the Electronic Structure of Phosphazenes. Inorg. Chem.2005,44(23):8407-8417
    [203]J. F. Bickley, R. B. Law, G. T. Lawson, P. I. Richards, F. Rivals, A. Stainer, S. Zacchini. Supramolecular Variations on A Molecular Theme:the Structural Diversity of Phosphazenes (RNH)6P3N3 in the Solid State. Dalton Trans.2003:1235-1244
    [204]L. Zang, Y. Che, J. S. Moore, One-Dimensional Self-Assembly of Planar π-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. Accounts of chemical research.2008,41(12):1596-1608
    [205]S. Xiao, J. Tang, T. Beetz, X. Guo, N. Tremblay, T. Siegtist, Y. Zhu, M. Steigerwald, C Nuckolls. Transferring Self-Assembled, Nanoscale Cables into Electrical Devices. J. Am. Chem. Soc.2006,128(33):10700-10701
    [206]J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, T. Aida. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube. Science.2004(5676),304:1481-1483
    [207]P. Yan, A. Chowdhury, M. W. Holman, D. M. Adams. Self-Organized Perylene Diimide Nanofibers. J. Phys. Chem. B.2005,109:724-730
    [208]F. Wurthner. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun.2004,1564-1579
    [209]C. R. Newman, C. D. Frisbie, D. A. S. Filho, J. L. Bredas, P. C. Ewbank, K. R. Mann. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater.2004,16:4436-4451
    [210]Y Che, A. Datar, K. Balakrishnan, L. Zang. Ultralong Nanobelts Self-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide. J. Am. Chem. Soc.2007,129(23):7234-7235
    [211]K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. J. Am. Chem. Soc.2006,128:7390-7398
    [212]K. Balakrishnan, A. Datar. R. Oitker, H. Chen, J. Zuo, L. Zang. Nanobelt Self-Assembly Froman Organic N-Type Semiconductor:Propoxyethyl-PTCDI. J. Am. Chem. Soc. 2005,127:10496-10497
    [213]S. Karak, S. K. Ray, A. Dhar. Photoinduced Charge Transfer and Photovoltaic Energy Conversion in Self-Assembled N,N-dioctyl-3,4,9,10-Perylenedicarboximide Nanoribbons. Appl. Phys. Lett.2010,97:043306-043311
    [214]K. Balakrishnan, A. Datar, W. Zhang, X. Yang, T. Naddo, J. Huang, J. Zuo, M. Yen. J. S. Moore, L. Zang. Nanofibril Self-Assembly of an Arylene Ethynylene Macrocycle. J. Am. Chem. Soc.2006,128:6576-6577
    [215]T. Steiner. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed.,2002,41:48-76
    [216]S. Han, C. Kim, D. Kwon. Thermal Degradation of Poly(Ethyleneglycol). Polymer Degradation and Stability.1995,47(2):203-208
    [217]K. J. Voorhees, S. F. Baugh, D. N. Stevenson. An Investigation of the Thermal Degradation of Poly(ethylene glycol). Journal of Analytical and Applied Pyrolysis. 1994,30(1):47-57
    [218]刘凤岐,汤心颐.高分子物理,第二版.高等教育出版社.2004:96-139
    [219]C. Cheng, H. Wei, J. Zhu, C. Chang, H. Cheng, C. Li, S. Cheng, X. Zhang, R. Zhuo. Functionalized Thermoresponsive Micelles Self-Assembled from Biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for Tumor Cell Target. Bioconjugate Chem.2008,19, 1194-1201
    [220]汪昆华,罗传秋,周啸.聚合物近代仪器分析.第二版.清华大学出版社.2000
    [221]F. Li, X. Li, B. Li. Preparation of Magnetic Polylactic Acid Microspheres and Investigation of its Releasing Property for Loading Curcumin. J. Magn. Magn. Mater. 2011,323:2770-2775
    [222]G. Sledge, K. Miller. Exploiting the Hallmarks of Cancer:the Future Concept of Breast Cancer. Eur J Cancer.2003,39(12):1668-1675
    [223]B. A. Teicher. Molecular Targets and Cancer Therapeutics:Discovery, Development and Clinical Validation. Drug Resist Update.2000,3(2):67-73
    [224]H. S. Yoo, E. A. Lee, T. G. Park. Doxrubicin-conjugated Biodegradable Polymeric Micells Having Acid-Cleavable Linkage. J Controlled Release.2002,82(1):17-27
    [225]万家齐.纳米Fe304粒子及其复合材料的合成与结构和性能.哈尔滨工业大学,2008
    [226]J. Wan, W. Cai, X. Meng, E. Liu. Monodisperse Water-soluble Magnetite Nanoparticles Prepared by Polyol Process for High-performance Magnetic Resonance Imaging. Chemical Communications.2007,5004-5006
    [227]R. H. Kodama. Magnetic Nanoparticles. Journal of Magnetism and Magnetic Materials. 1999,200:359-372
    [228]M. Blanco-Manteco, H. K. O'Grady. Grain size and Blocking Distributions in Fine Particles Iron Oxide nanoparticles. Journal of Magnetism and Magnetic Materials. 1999,203:50-53
    [229]M. F. Hansen, S. Morup. Estimation of Blocking Temperatures from ZFC-FC Curves. Magnetism and Magnetic Materials.1999,203:214-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700