无线通信中微波滤波器的比较设计法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息产业的飞速发展,无线通信已经成为21世纪最为热门的技术之一。而各种新型无线通信系统的不断涌现,例如GPS、3G、WLAN、UWB等,极大地刺激了微波有源和无源器件尤其是滤波器技术的快速发展,也对滤波器的性能提出了更高的要求。本文的内容主要围绕无线通信中微波滤波器的若干新结构及其比较设计的方法展开。针对同轴管状慢波结构、基片集成波导结构和缺陷开口谐振环结构等新型微波结构,在比较设计思想方面提炼出四种主要的研究方法,分别是曲线拟合比较法、结构映射比较法、互补单元比较法和电路映射比较法,并分别运用到相关结构的滤波器设计中。本文工作的主要贡献体现在:
     (1)提出并详细推导了端接电感、端接电容和带传输零点等三种形式管状滤波器的综合理论,采用电路与结构的曲线拟合比较法得到管状滤波器单元结构与目标电路之间的映射关系,提出了节电路思想进一步简化同轴管状滤波器的设计流程,采用特定长度同轴传输线的阻抗匹配作用解决了非邻频宽带管状滤波器的双工器设计问题;
     (2)运用结构映射比较法建立了矩形金属波导滤波器与基片集成波导滤波器之间的单元尺寸映射关系;提出一种基于已有金属波导滤波器尺寸,直接采用结构映射和目标逼近得到相应的基片集成波导滤波器尺寸的设计方法;运用该方法设计C波段感性窗口、K波段感性金属化通孔和X波段E面金属带等三种典型的基片集成波导滤波器,效果显著;
     (3)通过比较微带开口环与缺陷开口环两种互补单元的带隙特性,发现后者具有平坦的低通带和陡峭的带隙特性。采用曲线拟合法进行参数提取,分析了缺陷开口环结构尺寸与等效电路值之间的变化关系,利用容性枝节加载和单元级联等方法设计了高带外抑制度的缺陷开口环低通滤波器,并成功构造出两种带有限传输零点的缺陷开口环带通滤波器;
     (4)对比研究了微带开口环与缺陷开口环的谐振特性和耦合特性,发现后者不仅具有类似的谐振规律,而且具有相对较高的腔间耦合系数;采用公共的馈线结构设计了并联式和嵌套式两种新颖的阶梯阻抗缺陷开口环双通带滤波器;混合使用缺陷阶梯阻抗开口环和微带阶梯阻抗开口环,设计出多种结构紧凑、性能优越的平面多通带滤波器;
     (5)利用缺陷开口环的等效电路与传统复合左右手传输线等效电路的相似性,通过电路拓展分析,详细推导出缺陷开口环单元的传输特性、色散特性、折射率和阻抗特性,从理论和实验两方面证实了其带传输零点的复合左右手传输特性。研究了单元数目对其级联周期结构传输特性的影响,并初步提出了基于这种新型复合左右手传输线的超宽带和双通带滤波器设计思路。
With the phenomenal development in the communication industry, wireless communication has become one of the most popular technologies in this century. And new wireless communication systems emerge ceaselessly, such as GPS, 3G, WLAN, UWB and so on, which have spurred a tremendous advance in microwave active and passive devices especially for filter technology, also make a demand of more stringent filter characteristics. The research work presented in this dissertation focuses on several novel microwave filter structures and their comparison design methods in wireless communication. Novel structures such as coaxial tubular structure, substrate integrated waveguide structure and defected split-ring resonator structure, are applied to the microwave filter design making use of the comparison design method, which includes curve-fitting comparison, structure mapping comparison, complementary element comparison, circuit mapping comparison and so on. The primary work is concluded as follows:
     (1) The synthesis thoeries of three different types of tubular filters are presented and derived in detail. According to the curve-fitting comparison method between circuit simulation and EM simulation results, the mapping relationship between element dimension and its equivalent circuit is obtained. To simplify the design procedure of the practical tubular filter, section-circuit technology is proposed to realize the structure of tubular filter step by step. By making use of impedance matching to each tubular filtering channel with a certain length of coaxial transmission line, the design problem of non-adjacent wideband tubular deplexer is solved expediently.
     (2) The structure mapping comparison is applied to build the relationship of element dimensions between rectangular waveguide (RW) filter and substate integrated waveguide (SIW) filter. Based on the existing dimension of the rectangular waveguide filter, making use of the above mapping relation for the same design goal, we can obtain the corresponding dimension of the SIW filter directly. The proposed method has found its application in the physical realization of C-band inductive iris SIW filter, K-band inductive metal hole SIW filter and X-band E-plane metal slat SIW filter.
     (3) Through the comparison of band-gap properties between microstrip split-ring resonator and split-ring resonator defected ground structure(SRR DGS), it is found that the latter has a flat low pass-band and sharp band-gap characteristic. In virtue of the curve-fitting technology for parameter extracting, the corresponding relation between the element dimension of SRR DGS and its equivalent circuit values is analyzed carefully. In order to improve the out-of-band suppression of the SRR DGS lowpass filter, some effective methods are explored such as loading capacitive stubs on the conductor line and arranging the unit structure periodically. Furthermore, two kinds of SRR DGS bandpass filters with a finite transmission zero are well constructed utilizing the band-gap property of SRR DGS.
     (4) The resonant and coupling properties of microstrip split-ring resonator (MSRR) and defected split-ring resonator (DSRR) are studied in comparison. The DSRR element shows a similar resonant law and stronger coupling efficients with relative to the MSRR element. Making use of the common feed line structure, two novel defected stepped impedance resonator (SIR) dual-band filters, one is the parallel type and the other is the nested type, are analyzed and designed separately. Incorporating the defected SIR and the microstrip SIR, various kinds of compact and elegancy planar multi-band filters can be realized.
     (5) Considering the very similar circuit topology of the split-ring resonator defected ground structure (SRR DGS) unit in comparison with the conventional composite right/left handed (CRLH) transmission line, we make a comparing and extending to their circuit models. Then the transmission property, dispersion relation, refraction index as well as impedance characteristic of this SRR DGS unit are derived in detail. The numerical and measurement results validate that, the SRR DGS unit can be regarded as a novel CRLH transmission line unit with a transmission zero. The effect of element number on the transmission property of the periodic structure is discussed, then the design methods of an ultra-wideband filter and a dual-band filter based on such a novel CRLH transmssion line are elementary presented and studied.
引文
[1] M.Makimoto,S.Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [2] David M.Pozar,微波工程(第三版),北京:电子工业出版社,2006.
    [3] A.A.Oliner, Historical Perspectives on Microwave Field Theory, IEEE Trans. Microwave Theory and Techniques,1984, 32(9):1022-1045.
    [4]刘长军,黄卡玛,闫丽萍,射频通信电路设计,北京:科学出版社,2005.
    [5]黄金和,刘锦明,胡南山,21世纪微波无线通信技术展望,上海:全国第七届微波集成电路及工艺学术会议,1998.
    [6]樊振芳,无线通信的发展与未来,中国科技信息,2005,51:45-51.
    [7]颜永庆,移动通信发展的回顾与展望,江苏通信技术,2005,21(4):14-19.
    [8]高峻,唐晋生,微波滤波器的回顾与展望,应用与设计,2005,11:70-72.
    [9]唐建群,刘启华,电磁学与电信技术发展简述,南京工业大学学报(社会科学版),2004,2:73-78.
    [10] G.L.Matthaei, L.Young, E.M.T.Jones, Microwave filters, Impedance-matching networks and coupling structures, New York:McGraw-Hill, 1964.
    [11]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [12]熊予莹,康琳等,高温超导滤波器在现代移动通信中的应用,移动通信,2001, 1:41-45.
    [13]王传声,叶天培,王正义,LTCC技术在移动通信领域的应用,电子与封装, 2002,3:19-23.
    [14]吴群,MMIC—单片微波集成电路技术,电磁场与微波技术学科前沿动态系列讲座.哈尔滨工业大学,2003.
    [15] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
    [16]吴万春,梁昌洪,微波网络及其应用,北京:国防工业出版社,1980.
    [17]褚庆昕,微波网络讲义,西安:西安电子科技大学,1999.
    [18] S.B.Cohn, Direct Coupled Cavity Filters, Proc. IRE, 1957, 45(2): 187-196.
    [19] L. Young, Direct-coupled cavity filters for wide and narrow bandwidths, IEEE Trans. on Microwave Theory and Techniques, 1963,11(5):162-178.
    [20] R.Levy, Theory of Direct-Coupled Cavity Filters, IEEE Trans. Microw. Theory and Tech.,1967,15(6):340-348.
    [21] S.O.Scanlan and J.D.Rhodes, Microwave Networks With Constant Delay, IEEE Trans. Circuit Systems, 1967, 14(9): 280-297.
    [22] H. J. Orchard, Filter Design by Iterrated Analysis, IEEE Trans. Circuit Systems, 1985, 32(11): 1089-1096.
    [23] A.E.Atia , A.E.Williamsand R.W.Newcomb, Narrow-band multiple-coupled cavity synthesis. IEEE Trans.on Circuits and Systems, 1974,21(5): 649-655.
    [24] R.J.Cameron, General Coupling Matric Synthesis Methods for Chebyshev Filtering Function, IEEE Trans. Microw. Theory and Tech.,1999, 47(4): 433-442.
    [25]R.J.Cameron, Advanced Coupling Matrix Synthesis Techniques for Microwave Filters, IEEE Trans. Microw. Theory and Tech., 2003, 51(1):1-10.
    [26] S.Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique, IEEE Trans. Microw. Theory and Tech., 2000,48(9):1559-1564.
    [27] S. Amari, U. Rosenberg, J. Bornemann, Adaptive Synthesis and Design of Resonator Filters With Source/Load-Multiresonator Coupling, IEEE Trans. Microw. Theory and Tech., 2002,50(8): 1969-1978.
    [28] http://www.ansoft.com.
    [29] http://www.cst-china.cn.
    [30] http://www.feko.info.
    [31] http://bbs.rfeda.cn.
    [32]张秀华,雷建华,微波滤波器计算机辅助调试的发展现状及趋势,信息与电子工程,2007,5:395-399.
    [33] http://www.bscfilters.com.
    [34] http://www.klmicrowave.com.
    [35] R.R. Mansour, Filter technologies for wireless base stations, IEEE Microwave Magazine, 2004, 5(1):68-74.
    [36]森荣二(日),LC滤波器设计与制作,北京:科学出版社,2006.
    [37] K.-Y.Wong, W.-Y. Tam, Analysis of the Frequency Response of SAW Filters Using Finite-Difference Time-Domain Method, IEEE Trans. Microwave Theory Tech., 2005, 53(11):3364–3370.
    [38]钱云福,特高频通信设备中带通滤波器──螺旋谐振腔滤波器的设计与制作,常州技术师范学院学报, 1995, 1:10-14.
    [39]吴振金,六腔螺旋滤波器设计,中国有线电视,1998,4:35-37.
    [40]徐鸿飞,朱成枉,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微波学报,2004,20(2):5-8.
    [41] Nicola Coetzee, Asymmetrical S-Band Coupled Resonator Filters,Thesis for the Master degree at the University of Stellenbosch, Dec.2005.
    [42] J. Brian Thomas, Cross-Coupling in Coaxial Cavity Filters—A Tutorial Overview, IEEE Trans. Microwave Theory Tech., 2003,51(4), 1368–1376.
    [43]李彦霏,李增瑞,梳状线带通滤波器的设计与仿真,北京广播学院学报(自然科学版),2004,11(4):65-70.
    [44] S. Sun, and L. Zhu, Capacitive-Ended Interdigital Coupled Lines for UWB Bandpass Filters With Improved Out-of-Band Performances, IEEE MicrowaveWireless Compon. Lett., 2006,16(8), 440-442.
    [45] Y.-C. Zhang, K.A. Zaki, A. J. Piloto, and J. Tallo, Miniature Broadband Bandpass Filters Using Double-Layer Coupled Stripline Resonators, IEEE Trans. Microwave Theory Tech., 2006,54(8) :3370- 3377.
    [46] J.-T. Kuo, and M. Jiang, Enhanced Microstrip Filter Design With a Uniform Dielectric Overlay for Suppressing the Second Harmonic Response, IEEE MicrowaveWireless Compon. Lett., 2004,14(9): 419- 421.
    [47]喻梦霞,徐军,陈建新,新型毫米波微带带通滤波器,微波学报, 2006,22(3): 45-47.
    [48] G.I. Panaitov, R.Ott, and N.Klein, Dielectric Resonator With Discrete Electromechanical Frequency Tuning, IEEE Trans. Microwave Theory Tech., 2005,53 (11):1-7.
    [49] D. Kajfez and P. Guillon, Eds. Dedham, Dielectric Resonators, MA: Artech House, 1998.
    [50] N.Marcuvitz. Waveguide Handbook, McGraw-Hill, New York,1951.
    [51] A.Wexler, Solution of waveguide discontinuities by modal analysis, IEEE Trans. Microwave Theory Tech., 1967, 15(7):508-517.
    [52] R.Mittra, S.W.Lee, Analytic techniques in the theory of guided waves, New York:Macmillan,1971.
    [53] J. Bornemann. A new class of E-plane integrated millimeter-wave filters, IEEE MTT-S Int. Microwave Symp.,1989, 599-602.
    [54] J. Bornemann, S. Amari, J. Uher and R.Vahldieck, Analysis and design of circular ridged waveguide components, IEEE Trans. Microwave Theory Tech., 1999, 47(3):330-335.
    [55] Djuradj Budimir, Optimized E-Plane Bandpass Filters with Improved Stopband Performance, IEEE Trans. Microwave Theory Tech., 1997, 45(2): 212-220.
    [56] Marco Morelli, Ian Hunter, Richard Parry, and Vasil Postoyalko, Stopband Performance Improvement of Rectangular Waveguide Filters Using Stepped-Impedance Resonators, IEEE Trans. Microwave Theory Tech., 2002, 50(7): 1657-1664.
    [57]李胜先,傅君眉,吴须大,星载高功率微波波导低通滤波器的精确设计,西安交通大学学报,2006,40(2):195-202.
    [58]杨小明,模式匹配法在微波波导器件中的应用,西安电子科技大学硕士学位论文,2007.
    [59] R. J. Cameron, Ming Yu, and Ying Wang, Direct-Coupled Microwave Filters With Single and Dual Stopbands,IEEE Trans. Microwave Theory Tech., 2005,53(11): 3288-3297.
    [60] R.Levy, Theory of Direct-Coupled Cavity Filters. IEEE Trans.on Microwave Theory and Tech. , 1967, 15(6):40-348.
    [61] J.B.Thomas, Cross-coupling in coaxial cavity filters——A tutorial overview, IEEE Trans. Microwave Theory Tech., 2003, 51(4):1368-1376.
    [62] C. Quendo, E. Rius, and C. Person, An original topology of dual-band filter with transmission zeros, in IEEE MTT-S Int. Dig., 2003. 2, 1093-1096.
    [63] S. Bila, R.J.Cameron, P.Lenoir, V.Lunot, F.Seyfert, Chebyshev Synthesis for Multi-Band Microwave Filters, in IEEE MTT-S Int. Dig., 2006:1221-1224.
    [64] G.Macchiarella, and S. Tamiazzo, Design techniques for dualpassband filters, IEEE Trans. on Microw. Theo. and Tech., 2005, 53, 3265-3271.
    [65] X.H.Guan, Z.W.Ma, P.Cai, Y.Kobayashi, T.Anada, G.Hagiwara, Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions, IEEE Microw. Wireless Compon. Lett., 2006,16(3):110-112.
    [66] A.Saito, H.Harada and A.Nishikata, Development of band pass filter for ultra wideband (UWB) communication system, IEEE Conf. on Ultra Wideband Systems Technology, 2003,76-80.
    [67] H. Ishida and K. Araki, Design and analysis of UWB bandpass filter with ring filter, IEEE MTT-S Int. Microwave., Symp. Dig., 2004,1307-1310.
    [68] C.-L.Hsu, F.-C. Hsu and J.-T. Kuo, Microstrip bandpass filters for ultra-wideband (UWB) wireless communications, IEEE MTT-S Int. Microwave., Symp. Dig., pp., 2005,679-682.
    [69] L. Zhu and H. Wang, Ultra-wideband (UWB) bandpass filter on aperture-backed microstrip line, Electronics Letters., 2005, 41(18):1015-1016.
    [70] K.Li, D.Kurita and T.Matsui, An ultra-wideband bandpass filter using broadside-coupled microstrip- coplanar waveguide structure, IEEE MTT-S Int. Microw. Symp. Dig., 2005,675-678.
    [71] J. S. Hong and M. J. Lancaster, Realization of quasielliptic function filter using dual-mode microstrip square loop resonators, Electron.Lett., 1995, 31(11):2085–2086.
    [72] M. Matsuo, H. Yabuki, and M. Makimoto, Dual-mode steppedimpedance ring resonator for bandpass filter applications, IEEE Trans. Microw. Theory Tech., 2001, 49, (7):1235–1240.
    [73] L.-H. Hseih and K. Chang, Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap, Electron. Lett., 2000,36(9): 1626–1627.
    [74] W.-H. Tu, and Kai Chang, Miniaturized Dual-mode Bandpass Filter With Harmonic Control, IEEE Microw. Wireless Compon. Lett., 2005,15(12): 838–840.
    [75] J.-S. Hong, S.-Z.Li, Dual-Mode Microstip Triangular Patch Resonators and Filters, IEEE MTT-S Digest, 2003,1901-1904.
    [76] I. C. Hunter and J. D. Rhodes, Electronically Tunable Microwave Bandpass Filters, IEEE Trans. Microw. Theory Tech., 1982, 30(9): 1354-1360.
    [77] A. Presser,Varactor-Tunable,High-Q Microwave Filter, RCA Review, 1981, 42(12):691–705.
    [78] S. R. Chandler, I. C. Hunter and J. G. Gardiner, Active Varactor Tunable Bandpass Filters, IEEE Microwave and Guided Wave Letters, 1993, 3(3):70–71.
    [79] J. Lin, C.-Y. Chang, Y. Yamamoto, and T. Itoh, Progress of a Tunable Active Bandpass Filter, Ann. Telecommun., 1992,47(11-12):499–507.
    [80] A. R. Brown and G. M. Rebeiz, A Varactor-Tuned RF Filter, IEEE Trans. Microw. Theory Tech., 2000, 48(7): 1157-1160.
    [81] S. Sun and L. Zhu, Capacitive-ended interdigital coupled lines for uwb bandpass filters with improved out-of-band performances, IEEE Microwave And Wireless Components Letters, 2006, 16(8):440-442.
    [82] J.-X. Chen, T.Y.Yum, J-L.Li, and Q. Xue, Dual-Mode Dual-Band Bandpass Filter Using Stacked-Loop Structur, IEEE Microwave And Wireless Components Letters, 2006,16(9):502-504.
    [83] X.-Y.Zhang, Q.Xue, Novel Dual-Mode Dual-Band Filters UsingCoplanar-Waveguide-Fed Ring Resonators, IEEE Trans. Microwave Theory Tech., 2007, 55(10): 2183-2190.
    [84] J. Gao, L. Zhu, W. Menze and F. B?gelsack, Short-circuited cpw multiple-mode resonator for ultra-wideband (uwb) bandpass filter, IEEE Microwave And Wireless Components Letters, 2006,16(3):104-106.
    [85] H. Wang and L. Zhu, Aperture-backed microstrip line multiple-mode resonator for design of a novel uwb bandpass filter, IEEE MTT-S, Digest, 2005.
    [86]梁昌洪,彭加勒比较法,科学精神与方法讲义,西安电子科技大学,2005.
    [87]梁昌洪,官伯然,谢拥军,简明微波,北京:高等教育出版社,2006.
    [1] J.W.Bandler, R.M.Biernacki, S.H.Chen, et al, Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech., 1994, 42(12):2536–2544.
    [2] J.W.Bandler, Q.S.Cheng, S.A. Dakroury, et al, Space mapping: The state of the art, IEEE Trans. Microwave Theory Tech., 2004, 52(1):337–361.
    [3] M. Redhe and L. Nilsson, Using space mapping and surrogate models to optimize vehicle crashworthiness design, in Proc. 9th AIAA/ISSMO Multidisciplinary Analysis Optimization Symp., Atlanta, GA, 2002-5536, 2002.
    [4] G. Crevecoeur, L. Dupre, and R. Van de Walle, Space mapping optimization of the magnetic circuit of electrical machines including local material degradation, IEEE Trans. Magn., 2007, 43(6):2609–2611.
    [5] S. Koziel, J.W. Bandler, and K. Madsen, A space-mapping framework for engineering optimization—Theory and implementation, IEEE Trans. Microwave Theory Tech., 2006, 54(10):3721–3730.
    [6] J.C. Rautio, A space mapped model of thick, tightly coupled conductors for planar electromagnetic analysis, IEEE Microwave Magazine, 2004, 5(3):62–72.
    [7] A. Pavio, L. Zhao, R. Lucero, and J. Estes, Optimization of multilayer circuits using companion models and space mapping, presented at Workshop on Microwave Component Design Using Optimization Techniques, IEEE MTT-S Int. Microwave Symp., Philadelphia, PA, 2003.
    [8] J.E. Rayas-Sánchez and V. Gutiérrez-Ayala, EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping, IEEE Trans. Microwave Theory Tech., 2006, 54(12):4528–4537.
    [9] J.W. Bandler, Q.S.Cheng, N.K. Nikolova, and M.A. Ismail, Implicit space mapping optimization exploiting preassigned parameters, IEEE Trans. Microwave TheoryTech., 2004, 52(1):378–385.
    [10] Q.S.Cheng, J.W.Bandler, and S.Koziel, Combining Coarse and Fine Models for Optimal Design, IEEE Microwave Magazine, 2008,9(1):79-88.
    [11] Agilent Advanced Design System (ADS), ver. 2005A, Agilent Technologies, Santa Rosa, CA, 2005.
    [12] Sonnet em, ver. 11.52, Sonnet Software, North Syracuse, NY, 2007.
    [13] Ansoft High Frequency Structure Simulator (HFSS), ver. 10, Ansoft Corporation, Pittsburgh, PA, 2006.
    [14] FEKO? User’s Manual, Suite 4.2, EM Software & Systems-S.A. (Pty) Ltd, Stellenbosch, South Africa, 2004.
    [15] Q.S. Cheng and J.W. Bandler, An implicit space mapping technique for component modeling, in Proc. 36th European Microwave Conf., Manchester, UK, 458–461, 2006.
    [16] N.M. Alexandrov and R.M. Lewis, An overview of first-order model management for engineering optimization, Optimization Eng., 2001, 2(4):413–430.
    [17] A.L. Marsden, M. Wang, J.E. Dennis, and P. Moin, Optimal aeroacoustic shape design using the surrogate management framework, Optimization Eng., 2004, 5(2): 235–262.
    [18] S.E. Gano, J.E. Renaud, and B. Sanders, Variable fidelity optimization using a kriging based scaling function, in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Albany, NY, 2004-4460, 2004.
    [19] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan and P.K. Tucker, Surrogate-based analysis and optimization, Prog. Aerosp. Sci., 2005, 41(1): 1–28.
    [20] R. Achar and M.S. Nakhla, Simulation of high-speed interconnects, Proc. IEEE, 2001, 89(5): 693–728.
    [21] R. Levy, R.V. Snyder, and G. Matthaei, Design of microwave filters, IEEE Trans. Microwave Theory Tech., 2002, MTT-50: 783–793.
    [22] D.Swanson, and G. Macchiarella, Microwave Filter Design by Synthesis and Optimization, 2007, 8(2):55-69.
    [23] S.B. Cohn, Direct-coupled resonator filters, Proc. IRE, 1957,45(2):187–196.
    [24] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, New York: McGraw-Hill, 1964.
    [25] A.E. Atia, A.E. Williams, and R.W. Newcomb, Narrow-band multiple-coupled cavity synthesis, IEEE Trans. Circuits Syst., 1974, CAS-21: 649–655.
    [26] J.D. Rhodes and R.J. Cameron, General extracted pole synthesis technique withapplications to low-loss TE mode filters, IEEE Trans. Microwave Theory Tech., 1980,MTT-28(9):1018–1028.
    [27] R.J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microwave Theory Tech., 2003, 51(1): 1–10.
    [28] R.J. Cameron, General prototype network synthesis methods for microwave filters, ESA J., 1982, 6(2):193–206.
    [29] H.C.Bell, Canonical asymmetric coupled-resonator filters, IEEE Trans. Microwave Theory Tech., 1982, MTT-30(9):1335–1340.
    [30] G. Macchiarella, Accurate synthesis of in-line prototype filters using cascaded triplet and quadruplet sections, IEEE Trans. Microwave Theory Tech., 2002, 50(7): 1779–1783.
    [31] S. Tamiazzo and G. Macchiarella, An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations, IEEE Trans. Microwave Theory Tech., 2005, MTT-53(5):1693–1698.
    [32] W.A. Atia, K.A. Zaki, and A.E. Atia, Synthesis of general topology multiple coupled resonator filters by optimization, in 1998 IEEE MTT-S Int. Microwave Symp. Dig., , 2: 821–824, 1998.
    [33] R. Levy, Design of CT and CQ filters using approximation and optimization, IEEE Trans. Microwave Theory Tech., 2001, MTT-49(12): 2350–2356.
    [34] J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
    [35] O.P. Gupta, A numerical algorithm to design multivariable low-pass equiripple filters, IEEE Trans. Circuits and Systs., 1973, 20(2): 161–164.
    [36] S.B.Cohn, Generalized design of band-pass and other filters by computer optimization, IEEE MTT-S Int. Microwave Symp. Dig., 272–274,1974.
    [37] D. Budimir, Generalized Filter Design by Computer Optimization. Dedham: Artech, 1998.
    [38] Private communication with R. Wenzel and W. Erlinger, Sept. 1999.
    [39] H.L.Thal, Jr., Computer-aided filter alignment and diagnosis, IEEE Trans. Microwave Theory Tech., 1978, MTT-26(12): 958–963.
    [40] H.L. Thal, Jr., Design of microwave filters with arbitrary responses, Int. J. Microwave Millimeter-Wave CAE, 1997,7(3): 208–221.
    [41] S. Amari, Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique, IEEE Trans. Microwave Theory Tech., 2000, MTT-48(9): 1559–1564.
    [42] F. Arndt, J. Brandt, V. Catina, J. Ritter, I. Rullhusen, J. Dauelsburg, U. Hilgefort, and W. Wessel, Fast CAD and optimization of waveguide components and aperture antennas by hybrid MM/FE/MoM/FD methods-state-of-the-art and recent advances, IEEE Trans. Microw. Theory Tech., 2004, MTT-52(1): 292–305.
    [43] H. Yao, K.A. Zaki, A.E. Atia, and R. Hershtig, Full wave modeling of conducting posts in rectangular waveguides and its applications to slot coupled combline filters, IEEE Trans.Microw. Theory Tech., 1995,MTT-43(12): 60–66.
    [44] J.W. Bandler, R.M. Biernacki, S.H. Chen, D.G. Swanson, Jr., and S.Ye, Microstrip filter design using direct EM field simulation, IEEE Trans. Microwave Theory Tech., 1994, 42(7): 1353–1359.
    [45] S. Tao, H.H. Tung, K.A. Zaki, A.E. Atia, and T.G. Dolan, Full-wave design of canonical waveguide filters by optimization, IEEE Trans. Microwave Theory Tech., 2003, 51(2):504–511.
    [46] P. Kozakowski and M. Mrozowski, Automated CAD of coupled resonator filters, IEEE Microwave Wireless Compon. Lett., 2002,12(12): 470–472.
    [47] M.A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, EM based design of large-scale dielectric-resonator filters and multiplexers by space mapping, IEEE Trans. Microwave Theory Tech., 2004, 52(1):386–392.
    [48] A.G. Lamperez, S.L.Romano, M.S.Palma and T.K.Sarkar, Efficient electromagnetic optimization of microwave filters and multiplexers using rational models, IEEE Trans. Microwave Theory Tech., 2004, 52(2): 508–521.
    [49] R.Levy, Generalized rational function approximation in finite intervals using Zolotarev functions, IEEE Trans. Microw. Thoery and Tech., 1970, MTT-18(12):1052-1064.
    [50] H.C.Bell, Zolotarev bandpass filters, IEEE MTT-S Int. Microwave Symp. Dig., Phoenic, AZ.,1495-1498, 2001.
    [51] J.Lee, M.S.Uhm, and I.B.Yom, A dual-passband filter of canonical structure for satellite applications, IEEE Microw. Wireless Compon. Lett., 2004, 14(6):271-273.
    [52] S.Holme, Multiple passband filters for satellite applications, Proc.20th AIAA Int. Communications Satellite Systems Conf. and Exhibit, Montreal, QC, Canada, 1993-1996, 2002.
    [53] L.C.Tsai and C.W.Hsue, Dual-band bandpass filters using equallength coupled serial-shunted lines and Z-transform technique, IEEE Trans.Microw.Theory and Tech., 2004, 52(4):1111-1117.
    [54] R. J.Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters with singleand dual stopbands, IEEE Trans. Microw. Theory and Tech., 2005, 53(11): 3288-3279.
    [55] G.Li, B.Wu, X.-W. Dai, and C.-H. Liang, Design Techniques For Asymmetric Dual-Passband Filters, Journal of Electromagnetic Waves and Application, 2008, 22: 375-383.
    [56] R.J.Cameron, General coupling matrix synthesis methods for Chebyshev filtering functions, IEEE Trans. Microw. Theory and Tech., 1999, 47(4): 433-442.
    [57] S.Amari, Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique, IEEE Trans. Microw. Theoory and Tech., 2000, 48(9):1559-1564.
    [58] S.Tamiazzo and G. Macchiarella, An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations, IEEE Trans. Microw. Theory and Tech., 2005, 53(5):1693-1698.
    [59] R.V.Snyder, Practical Aspects of Microwave Filter Development, IEEE Microwave Magazine, 2007, 8(2):42-54.
    [1]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [2]成都电讯工程学院七系,LC滤波器和螺旋滤波器的设计,北京:人民邮电出版社,1978.
    [3] D.Swanson, Thin-film lumped-element microstrip filters, IEEE MTT-S, Digest, 1989, 671–674.
    [4] D.G.Swanson, Jr., R.Forse, and B. J. L. Nilsson, A 10 GHz thin film lumped element high temperature superconductor filter, IEEE MTT-S, Digest, 1992, 1191–1193.
    [5] T.Patzelt,B.Aschermann,H.Chaloupka,U.Jagodzinski, and B.Roas, High-temperature superconductive lumped-element microwave all-pass sections, Electronics Letters, 1993, 29(17):1578–1579.
    [6] C.W.Tang, Harmonic-Suppression LTCC Filter with the Step-Impedance Quarter-Wavelength Open Stub, IEEE Transactions on Microwave Theory and Techniques, 2004, 52 (2):617-624.
    [7] T.-S. Horng, J.-M. Wu, L.-Q. Yang, et al. A Novel Modified-T Equivalent Circuit for Modeling LTCC Embedded Inductors With a Large Bandwidth, IEEE Transactions on Microwave Theory and Techniques, 2003, 51 (12):2327-2333.
    [8] Y.-H. Jeng, S.-F. Chang and H.-K. Lin, A High Stopband-Rejection LTCC Filter with Multiple Transmission Zeros, IEEE Transactions on Microwave Theory and Techniques, 2006, 54 (2):633-638.
    [9]吴荣远,400~500MHz频段陆地移动通信螺旋滤波器的设计改进,移动通信,1986,4:41-45.
    [10]殷新社,一种新型螺旋滤波器,中国空间科学技术,1995,1:12-15.
    [11]周焱,一种用于有线电视系统的螺旋滤波器,中国有线电视,2004,24:27-29.
    [12] T. Su, B. Wu, C.-H. Liang, The Designing and Tuning Methods of Tubular Filter, The 17th Asia-Pacific Microwave Conference (APMC’2005), Suzhou, China, 2005.
    [13] B. Wu, T. Su, B. Li, C.-H. Liang, Design of Tubular Filter Based on Curve-fitting Method, Journal of Electromagnetic Waves andApplication, 2006, 20(8): 1071-1080.
    [14] B. Wu, C.-H. Liang, T. Su, and X. Lai, Wideband Coaxial Filters with Impedance Matching for VHF/UHF Diplexer Design, Journal of Electromagnetic Waves and Application, 2008, 22(1):131-142.
    [15] A. F. Sheta, K. Hettak, J. P. Coupez, C. Person, and S. Toutain, A new semi-lumped microwave filter structure, IEEE MTT-S, Digest, 1995, 383–386.
    [16] G. L. Hey-Shipton, Quasi-lumped element bandpass filters using DC isolated shunt inductors, IEEE MTT-S, Digest, 1996, 1493–1496.
    [17] Q. Huang, J.-F. Liang, D. Zhang, and G.-C. Liang, Direct synthesis of tubular bandpass filters with frequency-dependent inductors, IEEE MTT-S, Digest, 1998, 371–374.
    [18] http://www.bscfilters.com.
    [19] http://www.klmicrowave.com.
    [20] G. L. Matthaei, L.Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, New York:McGraw Hill, 1964.
    [21] J. L. Haine and J. D. Rhodes, Direct design formulas for asymmetric bandpass channel diplexer, IEEE Trans. Microw. Theory Tech., 1977, MTT-25(10): 807–814.
    [22] J. D. Rhodes and R. Levy, A generalized multiplexer theory, IEEE Trans. Microw. Theory Tech., 1979, MTT-27(2):99–111.
    [23] J.D.Rhodes, R.Levy, Design of general manifold multiplexer, IEEE Trans. Microw. Theory Tech., 1979, MTT-27(2):111–123.
    [24] R. Levy, Synthesis of non-contiguous diplexers using broadband matching theory, in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, 543–546, 1991.
    [25] A. Morini and T. Rozzi, Constrains to the optimum performance and bandwidth limitations of diplexers employing symmetric three-port junctions, IEEE Trans. Microw. Theory Tech., 1996, 44(2): 242–248.
    [26] H.-W. Yao, A. E. Abdelmonem, J.-F. Liang, X.-P. Liang, and K. A. Zaki, Wide-bandwaveguide and ridge waveguide T-junctions for diplexer applications, IEEE Trans. Microw. Theory Tech., 1993, 41(12): 2166–2173.
    [27] Y. Rong, H.-W. Yao, K. A. Zaki, and T. Dolan, Millimeter-wave Ka-band H-plane diplexers and multiplexers, IEEE Trans. Microw. Theory Tech., 1999, 47(12): 2325–2330.
    [28] G. Macchiarella and S. Tamiazzo, Synthesis of diplexers based on the evaluation of suitable characteristic polynomials, in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, 111–114, 2006.
    [29] A. Morini, T. Rozzi, M. Farina, and G. Venanzoni, A new look at the practical design of compact diplexers, IEEE Trans. Microw. Theory Tech., 2006, 54(9): 3515–3520.
    [1] H.Furuyama, JP Patent, Application no.H4-220881, July 1992.
    [2] M.Yamamoto and K.Itoh, Slot-coupled microstrip antenna with a triplate line feed where paralledl-plate mode is suppressed, Electron.Lett., 1997, 33(6): 631-634.
    [3] H.Uchinura, T.Takenoshit, and M.Fuji, Development of a laminated waveguide, IEEE Trans.Microw.Theory Tech, 1998, 46(12): 2438-2443.
    [4] D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE MicrowaveWireless Compon. Lett., 2001, 11(2): 68–70.
    [5] Y.Cassivi,L.Perregrini,P.Bressan,K.Wu, and G.Conciauro, Dispersion Characteristics of Substrate Integrated Rectangular Waveguide, IEEE MicrowaveWireless Compon. Lett., 2002, 12(9): 333–335.
    [6] D.Dealandes, and K.Wu, Single-substrate integration techniques for planar circuits and waveguide filters, IEEE Trans. Microwave Theory Tech., 2003, 51(2): 593-596.
    [7] Y. L.Zhang, W.Hong, F.Xu, K.Wu and T.J.Cui, Analysis of Guidedwave Problems in Substrate Integrated Waveguides-numerical simulations and Experimental Results, IEEE MTT-S International Microwave Symposium Digest, 2049-2052, 2003.
    [8] L.Hao, W. Hong, Propagation Characteristics of Substrate Integrated Waveguide based on LTCC. IEEE MTT-S International Microwave Symposium Digest, 2049-2052, 2003.
    [9] F.Xu,Y.L.Zhang,W. Hong, K.Wu, and T. J. Cui, Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide, IEEE Trans. Microw. Theory Tech., 2003, 51(11): 2221–2227.
    [10] L Yan,W.Hong, K.Wu, T.J.Cui, Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines, IEEProceedings: Microwaves, Antennas and Propagation, 2005,152(1):35-42.
    [11]李皓,洪伟等,基片集成波导定向耦合器的仿真与实验研究,微波学报,2004,4:54-56.
    [12] B.Lin, W.Hong, Z.-C. Hao, K.Wu, Substrate Integrated Waveguide 180-degree Narrow-wall Directional Coupler, IEEE APMC 2005 Proceedings, Suzhou, China, 559–561,2005.
    [13] S. T. Choi, K. S. Yang, K. Tokuda, and Y. H. Kim, A V-band planar narrow bandpass filter using a new type integrated waveguide transition, IEEE Microw. Wireless Compon. Lett., 2004, 14(12):1-3.
    [14] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui, Multilayered substrate integrated waveguide (MSIW) elliptic filter, IEEE Microw. Wireless Compon. Lett., 2005, 15(2): 95-97.
    [15] X. Chen, W. Hong, T. Cui, Z. Hao, K. Wu, Substrate integrated waveguide (SIW) elliptic filter with transmission line inserted inverter, Electron. Lett., 2005, 41(15):851- 852.
    [16] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu, Compact Super-Wide Bandpass Substrate Integrated Waveguide (SIW) Filters, IEEE Trans. on MTT, 2005, 53(9): 2968-2977.
    [17] Y. L. Zhang, W. Hong, K. Wu, J. X. Chen, and H. J. Tang, Novel substrate integrated waveguide cavity filter with defected ground structure, IEEE Trans. on MTT, 2005, 53(4):1280-1287.
    [18]李皓,华光等,基片集成波导微带转换器的理论与实验研究,电子学报, 2003,31(12A):2002-2004.
    [19] K.Wu, D.Deslandes and Y.Cassivi, The substrate integrated circuits - a new concept for high-frequency electronics and optoelectronics, Telecommunications in Modern Satellite, Cable and Broadcasting Service, TELSIKS, 1:1-3,2003.
    [20] S.Germain, D.Deslandes, K.Wu, Development of substrate integrated waveguide power dividers, IEEE CCECE 2003 Canadian Conference on Electrical and Computer Engineering, 1921-1924, 2003.
    [21] Z. C. Hao, W. Hong et al, Multi-Way Broadband Substrate Integrated Waveguide (SIW) Power Divider, IEEE Int. Symposium on Antennas and Propagation Washington, DC, USA, 2005.
    [22] K. Song, Y. Fan, Y.-H.Zhang, Radial cavity power divider based on substrate integrated waveguide technology, IEE Electonics Letters, 2006, 42(19): 1100-1101.
    [23] L. Yan, W. Hong, G. Hua, J. X. Chen, K. Wu, and T. J. Cui, Simulation andexperiment on SIW slot array antennas, IEEE Microwave and Wireless Components Letters, 2004,14(9): 446-448.
    [24] D.Stephens, P.R.Young, and I.D.Robertson, W-band substrate integrated waveguide slot antenna, Electonics Letters, 2005, 41(4): 165-167.
    [25] L.Yan, W.Hong, and K.Wu, Substrate Integrated Waveguide Monopulse Antenna, IEEE Int. Symposium on Antenna and Propagation, USA, 2005.
    [26] G. Q. Luo, Wei Hong et al, Theory and Experiment of Novel Frequency Selective Surface Based on Substrate Integrated Waveguide Technology, IEEE Trans. on AP, 2005, 53(12): 4035-4043.
    [27] C.-H.Tseng, and T.-H. chu, Measurement of Frequency-Dependent Equivalent Width of Substrate Integrated Waveguide, IEEE Trans. Microw. Theory Tech., 2006, 54(4):1431–1438.
    [28]李皓,基片集成波导不连续性问题的研究,东南大学博士论文,2005.
    [29]张玉林,基片集成波导传播特性及滤波器的理论与实验研究,东南大学博士论文,2005.
    [30]颜力,基片集成波导传输特性及阵列天线的理论与实验研究,东南大学博士论文,2005.
    [31]郝张成,基片集成波导技术的研究,东南大学博士论文,2005.
    [1] E.Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face centered cubic case employing nonspherical atoms, Physical Review Letters, 1991, 67(17): 2295-2298.
    [2] J. I. Park, C. S. Kim, J. Kim, et al, Modeling of a photonic bandgap and its application for the low-pass filter design, Singapore: Asia Pacific Microwave Conference,1999.
    [3] C. S.Kim, J. I. Park, A. Dal, et al, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., 2000,10(4): 131–133.
    [4] J. B.Pendry, A. J. Holden, D.J. Robbins, et al, Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Trans. Microwave Theory Tech., 1999, 47(11):2075-2084.
    [5] P.Gay-Balmaz, O. J. F. Martin, Electromagnetic resonances in individual and coupled split-ring resonators, Journal of Applied Physics, 2002, 92(5): 2929-2936.
    [6] P.Markos, C.M. Soukoulis, Numerical studies of left-handed materials and arrays of split ring resonators, Physical Review E., 2002, 65, 036622-1~036622-8.
    [7] H.Y.Yao,L.W.Li, Q. Wu , et al, Macroscopic performance analysis of metamaterialssynthesized from macroscopic 2-D isotropic cross split-ring resonator array, Progress in Electromagnetics Research, 2005, PIER 51, 197–217.
    [8] J.Bonache, F. Martin, F. Falcone, et al, Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology, Microwave and Optical Technology Letters, 2005,46(5): 508–512.
    [9] D.Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure, IEEE Trans. Microwave Theory Tech., 1999, 49(1): 86–93.
    [10] J.-S. Lim, C.-S. Kim, D. Ahn, et al, Design of Low-Pass Filters Using Defected Ground Structure, IEEE Trans. Microwave Theory Tech., 2005, 53(8): 2539-2545.
    [11] H.-W. Liu, Z.-F. Li, X.-W. Sun, and J.-F. Mao, An Improved 1-D Periodic Defected Ground Structure for Microstrip Line, IEEE Microwave and Wireless Components Letters, 2004,14(4):180-182.
    [12] J.-S. Park, J.-S. Yun, and D. Ahn, A Design of the Novel Coupled-Line Bandpass Filter Using Defected Ground Structure With Wide Stopband Performance, IEEE Trans. Microwave Theory Tech., 2002, 50(9):2037-2043.
    [13] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar, Compact Stub Type Microstrip Bandpass Filter Using Defected Ground Plane, IEEE Microwave and Wireless Components Letters, 2004, 14(4):136-138.
    [14] Y.-C. Jeong, and J.-S. Lim, A Novel Frequency Doubler Using Feedforward Technique and Defected Ground Structure, IEEE Microwave and Wireless Coponents Letters, 2004, 14(12): 557-559.
    [15] J.-S. Lim, H.-S. Kim, J.-S. Park, D. Ahn, and S. Nam, A Power Amplifier with Efficiency Improved Using Defected Ground Structure, IEEE Microwave and Wireless Coponents Letters, 2001, 11(4):170–172.
    [1] A. E. Atia, A. E. William and R. W. Newcomb, Narrow-band multi-coupled cavity synthesis, IEEE Trans. Circuits and Systems, 1974, 21(9): 649–655.
    [2] R. J. Cameron, General coupling matrix synthesis methods for Chebyshev filtering functions, IEEE Trans. Microwave Theory Tech., 1999, 47(4): 433–442.
    [3] J.-S. Hong and M. J. Lancaster, Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans. Microwave Theory Tech., 1996, 44(11):2099–2109.
    [4] M. Makimoto, Microstripline split-ring resonators and their application to bandpass filters, Electronics and Communication in Japan, 1989, 12(5):104-112.
    [5] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    [6] C. S. Kim, J. I. Park, A. Dal, et al, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., 2000, 10(4):131–133.
    [7] P.Gay-Balmaz, O. J. F. Martin, Electromagnetic resonances in individual and coupled split-ring resonators, Journal of Applied Physics, 2002, 92(5): 2929-2936.
    [8] D. Ahn, J.S. Park, C.S. Kim, J. Kim, Y. Qian and T. Itoh, A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microwave Theory Tech., 2001, 49(1): 86-93.
    [9] B.Wu, B. Li, C. H. Liang, Design of Lowpass Filter Using a Novel Split-ring Resonator Defected Ground Structure, Microwave and Optical Technology Letters,2007, 49(2): 288-291.
    [10] A. Abdel-Rahman, A. K. Verma, A. Boutejdar and A. S. Omar, Control of Band Stop Response of Hi-Low Microstrip Lowpass Filter Using Slot in Ground Plane, IEEE Trans. Microwave Theory Tech., 2004, 52(3):1008-1013.
    [11] J. S. Yun, G. Y. Kim, J.S. Park, D. Ahn, K. W. Kang and J. B. Lim, A design of the novel coupled line bandpass filter using defected ground structure, IEEE Microwave Theory Tech. Symposium, 2000,1:327-330.
    [12] A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, Compact bandpass filters using defected ground structure (DGS) coupled resonators, in IEEE MTT-S Int. Dig., 2005, 1479–1482.
    [13] J. S. Hong and M. J. Lancaster, Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans. Microwave Theory Tech., 1996, 44(12):2099-2109.
    [14] S. Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradiant-Based Optimization Technique, IEEE Trans. Microwave Theory Tech., 2000, 48(9): 1559-1564.
    [15] A. B. Jayyousi and M. J. Lancaster, A gradient-Based Optimization Technique Employing Determinants for the Synthesis of Microwave Coupled Filters, IEEE, MTT-S 2004, 1369-1372.
    [16] J.-S. Hong and M. J. Lancaster, Microstrip cross-coupled trisection bandpass filters with asymmetric frequency characteristics, IEE Proc.-Microw. Antennas Propag., 1999, 146(1): 84–90.
    [17] L.-C. Tsai and C.-W. Huse, Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform techniques, IEEE Trans. Microw.Theory Tech., 2004, 52(4):1111-1117.
    [18] C. Y. Chen, C. Y. Hsu, and H. R. Chuang, Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators, IEEE Microw. Wireless Compon.Lett., 2006, 16(12): 669-671.
    [19] C.-Y. Chen and C.-Y. Hsu, A simple and effective method for microstrip dual-band filters design, IEEE Microw. Wireless Compon. Lett., 2006,16(3):246-248.
    [20] J.-X. Chen, T. Y. Yum, J.-L. Li, and Q. Xue, Dual-mode dual-band bandpass filter using stacked-loop structure, IEEE Microw. Wireless Compon.Lett., 2006,16(9): 502-504.
    [21] T.-H. Huang, H.-J. Chen, C.-S. Chang, L.-S. Chen, Y.-H. Wang, and M.-P. Houng, A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,IEEE Microw. Wireless Compon. Lett., 2006, 16(6):360-362.
    [22] S. Sun and L. Zhu, Compact dual-band microstrip bandpass filter without external feeds, IEEE Microw. Wireless Compon. Lett., 2005, 15(10): 644-646.
    [23] S.-F Chang, Y.-H. Jeng, and J.-L.Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, Electron. Lett., 2004, 40(1):38-39.
    [24] J.Wang, Y.-X.Guo, B.-Z.Wang, L.C.Ong, and S.Xiao, High-selectivity dual-band stepped-impedance bandpass filter, Electron. Lett., 2006, 42(7):538-539.
    [25] S.Wu and B.Razavi, A 900-MHz/1.8-GHz CMOS receiver for dualband applications, IEEE J. Solid-State Circuits, 1998, 33(12): 2178–2185.
    [26] J.Ryyn?nen, K.Kivek?s, J.Jussila, A.P?rssinen, and K.A.I.Halonen, A dual-band RF front-end for WCDMA and GSM applications, IEEE J. Solid-State Circuits, 2001, 36(8):1198–1204.
    [1] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of epsilon and mu, Sov. Phys. Usp., 1968,10, 504-514.
    [2] C. Caloz, T. Itoh, Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip‘LH line’, APS. IEEE, 2002, 2:16-21.
    [3] C. Caloz, T. Itoh, Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line, IEEE Trans. Antennas Propag., 2004, 52(5):1159–1166.
    [4] A. Grbic, G. V. Eleftheriades, Experiment verification of backwardwave radiation from a negative refractive index metamaterial, J. Appl. Phys., 2002, 92, 5930–5935.
    [5] G. V. Eleftheriades, A. K. Iyer, P. C. Kremer, Planar negative refractive indexmedia using periodically L–C loaded transmission lines, IEEE Trans. Microw. Theory Tech., 2002, 51(12): 2297–2305.
    [6] C. S. Kim, J. I. Park, A. Dal, et al, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., 2000, 10(4): 131–133.
    [7] L. Zhu, H. Bu and K. Wu, Broadband and compact multi-pole microstrip bandpass filters using ground plane aperture Technique, IEE Proc.-Microw. Antennu Propag., 2002, 149(1): 71-77.
    [8] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar, Compact Stub Type Microstrip Bandpass Filter Using Defected Ground Plane, IEEE Microwave and Wireless Components Letters, 2004, 14(4): 136-138.
    [9] J.Bonache, F. Martín, I.Gil, J.García-García, R. Marqués and M. Sorolla, Ultra Wide Band Pass Filters (UWBPF) Based on Complementary Split Rings Resonators, Microwave and Optical Technology Letters, 2005,46(3): 283-286.
    [10] J. Bonache, F. Martin, F. Falcone, et al. Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology, Microwave and Optical Technology Letters, 2005,46(5):508–512.
    [11] J. Bonache, F. Martin, I. Gil, J. Garcia-Garcia, Novel microstrip filters based on complementary split rings resonators, IEEE Trans. Microw. Theory Tech., 2006, 54, (1): 265–271.
    [12] C. Caloz, A. Sanada, and T. Itoh, A novel composite right/lefthanded coupled-line directional coupler with arbitrary coupling level and broad bandwidth, IEEE Trans. Microwave Theory Tech., 2004,52(3): 980–992.
    [13] C.Tsai,C.W.Hsue, Dual-band bandpass filters using equal-length coupled serial-shunted lines and Z-transform techniques, IEEE Trans. Microw. Theory Tech., 2004, 52(4): 1111-1117.
    [14] S. F. Chang, Y. H. Jeng, and J. L. Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, Electron. Lett., 2004, 40(1):38-39.
    [15] J.T.Kuo and H.S.Cheng, Design of quasielliptic function filters with a dual-passband response, IEEE Microw. Compon. Lett., 2004, 14(10):472-474.
    [16] P.Markos, C.M. Soukoulis, Numerical studies of left-handed materials and arrays of split ring resonators, Physical Review E., 2002, 65, 036622-1~036622-8.
    [17] J.Bonache, I.Gil, J.Garcia-Garcia, F.Martin, Novel Microstrip Bandpass Filters Based on Complementary Split-Ring Resonators, IEEE Trans. Microw. Theory Tech., 2006, 54(1): 265 - 271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700