用于气体测量的压电微悬臂梁力学建模与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微悬臂梁作为最简单的一种MEMS器件,最早应用于扫描探针显微镜进行微小力和表面形貌的检测。近年来,由于其结构尺寸小、灵敏度高、响应速度快和成本低等优点,微悬臂梁在微纳传感器方面得到了广泛的应用。微悬臂梁传感器有两种独立的工作模式:静态工作模式和动态工作模式,通过测量表面功能化处理的微悬臂梁的静态弯曲量或者固有频率变化,可以实现多种检测,因此本文对微悬臂梁气体传感器开展了研究。
     虽然微悬臂梁传感器因其众多的优点得到了广泛的研究和应用,但是微悬臂梁的基础研究目前还远不够深入;此外,作为目前广泛应用于微悬臂梁信号检测的光杠杆法虽然具有较高的精度,但其结构复杂,成本高,不利于系统的微型化。本文基于压电材料的压电效应,将压电材料与微悬臂梁相结合,对压电微悬臂梁气体传感器进行了研究。由于压电微悬臂梁集驱动与传感于一身,很好地解决了微悬臂梁传感系统的微型化问题。
     通过对压电微悬臂梁气体传感器进行研究,本文建立了压电微悬臂梁用于气体检测的理论模型。首先,在静力学建模过程中引入由于表面吸附应力引起的微悬臂梁中性层位置的变化,建立了压电微悬臂梁静力学弯曲模型,并以水分子吸附为例分析了压电微悬臂梁的静态弯曲特性,得到了压电微悬臂梁的静态弯曲变形量与微悬臂梁厚度、气体吸附量之间的关系。
     其次,基于拉格朗日函数和Hamilton原理建立了不考虑吸附条件和压电效应、只考虑吸附条件、只考虑压电效应以及同时考虑压电效应和吸附条件下四种压电微悬臂梁的动力学模型。研究了压电效应以及气体吸附对压电微悬臂梁固有频率的影响,利用所建立的压电微悬臂梁的动力学模型,对镀铝压电微悬臂梁湿度传感器进行了仿真分析。
     最后,搭建了一个基于DMASP系列压电微悬臂梁、安捷伦4294A阻抗分析仪和CHL-156型防潮柜的压电微悬臂梁湿度测量实验平台。利用该平台对湿度进行了测量实验,并将实验结果与动力学模型分析结果进行了比较,验证了压电微悬臂梁动力学模型的正确性。
As a kind of the simplest MEMS devices, microcantilever was firstly used in SPM as a tool to measure surface morphology or small force. Recently, microcantilever has also been widely used as micro/nano sensors due to their advantages of reduced size, high sensitivity, fast response and low costs. Microcantilever has two kinds of operational mode: static mode and dynamic mode. The microcantilever can be used to kinds of detections by detecting its static deflection or change of resonant frequency.
     Though microcantilever has been widely used and researched because of its some significant advantages, the mechanism of biological and chemical microcantilever sensor hasn’t been fully understood. Additionally, optical leverage is highly sensitive, but it is complicated and not feasible for the miniaturization of the sensing system. Base on the piezoelectric effect of piezoelectric materials, the piezoelectric microcantilever gas sensors are researched in this paper. Because the piezoelectricity can not only be used for microcantilever actuation but also for detection of microcantilever signals, it can effectively solve the problem of miniaturization of the sensing system.
     In this paper, the piezoelectric microcantilever gas sensors are studied and the theoretical models are established. First, the change of neutral layer position caused by adsorption-induced surface stress is introduced in the modeling and the static bending model of piezoelectric microcantilever gas sensors is established, and piezoelectric microcantilever adsorbed with water molecules is used to analyze the static bending performancies and investigate the relationship of static deflection of piezoelectric microcantilever gas sensor with thickness of microcantilever and adsorbed gas.
     Second, the dynamic models of piezoelectric microcantilever gas sensor without considering the piezoelectric effect and gas adsorption, only considering the adsorption,only considering the piezoelectric effect and considering both the piezoelectric effect and gas adsorption are established, then the effect of piezoelectric effect and adsorption on resonant frequency of microcantilever is analyzed.The piezoelectric microcantilever adsorbed with water molecules is also used to analyze the dynamic performancies and investigate the relationship of resonant frequency of piezoelectric microcantilever gas sensor with driven voltage and adsorbed gas. In the end, an experimental platform including Agilent 4294A impedance analyzer, DMASP piezoelectric microcantilever and CHL-156 dry box is built to detect humidity. The experimental results show that the theoretical model is in good agreement with the experimental results.
引文
[1]李凯.基于微悬臂梁的生化传感技术研究[D].安徽:中国科学技术大学学位论文,2006:1-8.
    [2]刘新,李淑娥.气体传感器的应用与发展[J].中国西部科技,2008,14:13-15.
    [3] http://baike.baidu.com/view/37086.htm.
    [4]唐洁.压电微悬臂梁传感技术的研究[D].天津:天津大学学位论文,2005:1-3.
    [5] Binning G, Quate C F, Gerber C. Atomic force microscope[J]. Phys.Rev.Lett,1986,56(9):930-933.
    [6] Anja Boisen, S?ren Dohn, Stephan Sylvest Keller, Silvan Schmid, Maria Tenje. Cantilever-like micromechanical sensors[J].Rep.Prog.Phys , 2011 , 74(3) :036101.
    [7] G.Y.Chen, T.Thundat, E.A.Wachter, R.J.Warmack. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers[J]. J.Appl.Phys,1995,7(8):3618-3622.
    [8] A Kooser, R.L.Gunter, W.D.Delinger, T.L.Porter, M.P.Eastman. Gas sensing using Embedded piezoresistive microcantilever sensors[J].Sensors and Actuators B,2004,99(2-3):474-479.
    [9] Zhou Jia,Li Po, Zhang Song et al.Zeolite-modified microcantilever gas sensors for indoor air quality control[J].Sensors and Actuators B,2003,94(3):337-342.
    [10] Li Peng, Li Xinxin.A single-sided micromachined piezoresistive SiO2 cantilever sensor for ultra-sensitive detection of gaseous chemicals[J]. J.Micromech. Microeng,2006,16(12):2539.
    [11] Ilic B, Czaplewski D, Zalalutdinov M, Craighead H G, Neuzil P, Campagnolo C and Batt C. Single cell detection with micromechanical oscillators[J].J. Vac. Sci.Technol. B,2011,19 (6):2825.
    [12] Weeks B L, Camarero J, Noy A, Miller A E, Stanker L and De Yoreo J J.A microcantilever-based pathogen detector[J]. Scanning,2003,25(6):297-299.
    [13] Ramos D, Tamayo J, Mertens J, Calleja M and Zaballos A. Origin of the response of nanomechanical resonators to bacteria adsorption[J]. J.Appl.Phys,2006,100 (10):106105.
    [14] Burg T P, Godin M, Knudsen S M, Shen W, Carlson G,Foster J S, Babcock K and Manalis S R.Weighing of biomolecules, single cells and single nanoparticles in ?uid[J]. Nature,2007,446(7139):1066-1069.
    [15] Wu Guanghua, Datar R H, Hansen K M, Thundat T, Cote R J and Majumdar A.Bioassay of prostate-speci?c antigen(PSA) using microcantilevers[J]. Nature Biotechnol,2001,19:856-860.
    [16] Zhang J, Lang H P, Huber F, Bietsch A, Grange W, Certa U,McKendry R, Guntgerodt H J, Hegner M and Gerber C. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA[J]. Nature Nanotechnol,2006,1:214-220.
    [17] Braun T, Ghatkesar M K, Backmann N, Grange W,Boulanger P, Letellier L, Lang H P, Bietsch A, Gerber C and Hegner M. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors[J]. Nature Nanotechnol.,2009,4(18):179-185.
    [18] Ndieyira J W et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance[J]. Nature Nanotechnol,2008,3:691-702.
    [19] Pinnaduwage L A, Boiadjiev V, Hawk J E and Thundat T.Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers[J].J. Phys. Lett,2008,83(7):1471-1473.
    [20] Zuo G M, Li X X, Zhang Z X, Yang T T, Wang Y L, Cheng Z X and Feng S L. Dual-SAM functionalization on integrated cantilevers for speci?c trace-explosive sensing and non-speci?c adsorption suppression[J]. Nanotechnology,2007,18(25):5501.
    [21] Yi Decheng, Greve A, Hales J H, Senesac L R, Davis Z J, Nicholson D M, Boisen A and Thundat T. Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges[J]. Appl. Phys. Lett,2008,93(15):4102-4104.
    [22] Naik A K, Hanay M S, Hiebert W K, Feng XL and Roukes M L.Towards single-molecule nanomechanical mass spectrometry[J].Nature Nanotechnol,2009,4:445-450.
    [23] G.G.Stoney. The tension of metallic films deposited by electrolysis[J]. Proc.R. Soc.Lond,1909,82:172-179.
    [24] D.W. Dareing, T. Thundat. Simulation of adsorption induced stress of a microcantilever sensor[J]. J. Appl .Phys,2005,97:043526.
    [25] G.Y. Chen, T. Thundat, E.A.Wachter, R.J.Warmack. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers[J].J.Appl. Phys,1995,77 (8):3618–3622.
    [26] P.Lu, F.Shen, S.J.O’Shea, K.H.Lee and T.Y.Ng. Analysis of surface effects on mechanical properties of microcantilevers[J]. Mater. Phys. Mech.,2001,4:51–55.
    [27] Q. Ren, Y. P. Zhao. In?uence of surface stress on frequency of microcantilever-based biosensors[J].Microsyst. Technol,2004,10(4):307–314.
    [28] X.Yi,H.L.Duan.Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors[J].Journal of the Mechanics and Physics of Solids,2009,57(8):1254-1266.
    [29] S. Nima Mahmoodi, Mana Afshari and Nader Jalili. Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing [J].Communication in Nolinear Science and Numerical Simulation,2008,13 (19):1964-1977.
    [30] S. Nima Mahmoodi, Nader Jalili. Piezoelectrically actuated microcantilevers:An experimental nonlinear vibration analysis[J]. Sensors and Actuators A:Physics, 2009,150(1):131-136.
    [31] V Kumar, JW Boley, H Ekowaluyo, JK Miller, GC Marvin, G T.-C. Chiu and JF Rhoads. Linear and nonlinear mass sensing using Piezoelectrically-actuated microcantilevers[J].Proceedings of the SEM Annual Conference,2010.
    [32] J.D. Adams, B. Rogers, L. Manning, Z.Hu, T. Thundat,H.Cavazos and S.C. Minne. Piezoelectric self-sensing of adsorption-inducedmicrocantilever bending[J]. Sensors and Actuators:A,2005,121(2):457–461.
    [33] Joseph A. Capobianco,Wei-Heng Shih, Jiann-Horng Leu, Grace Chu-Fang Lo and Wan Y. Shih. Label free detection of white spot syndrome virus using lead magnesiumniobate-lead titanate piezoelectric microcantilever sensors[J]. Biosensors and Bioelectronics,2010,26(13):964-969.
    [34] Qiang Zhao, Qing Zhu, Wan Y. Shih, Wei-Heng Shih. Array adsorbent-coated lead zirconate titanate (PZT)/stainless steel cantilevers for dimethyl methylphosphonate (DMMP) detection[J]. Sensors and Actuators:B,2006,117(1):74-79.
    [35]刘梦伟.基于双压电PZT薄膜单元的悬臂梁式微力传感器研究[D].大连:大连理工大学学位论文,2006:109-111.
    [36]姚林泉,丁睿.非线性压电效应下压电弯曲执行器的弯曲[J].计算力学学报,2006,23(1):52-57.
    [37]王伟,姚林泉,丁睿.强电场和机械载荷联合作用下压电层合梁的非线性变形[J].力学季刊,2006,27(1):103-111.
    [38]王晓东,杨洋,佘东生,王涛,王立鼎.MEMS微构件动态特性测试的激励技术和方法[J].测试技术学报,2008,22(5):377-386.
    [39] A.Maali, C.Hurth, T.Cohen-Bouhacina, G.Couturier and J.P Aimé. Improved acoustic excitation of atomic force microscope cantilevers in liquids[J]. Appl. Phys. Lett,2006,88(16):3504.
    [40] Cyril Van?ura, Jan Lichtenberg, Andreas Hierlemann, Fabien Josse. Charac- terization of magnetically actuated resonant cantilevers in viscous fluids[J]. Appl. Phys.Lett.,2005,87(16):2510.
    [41]韩建强,朱长纯,刘君华,张声良,段捷.热激励微梁谐振器的温度分布和谐振振幅[J].西安交通大学学报,2002,36(6):592-595.
    [42] Ji H-F, Hansen K M, Hu Z and Thundat T. Detection of pH variation using modi?ed microcantilever sensors[J].Sensors and Actuators:B,2001,72(3):233-238.
    [43] Kim S J, Ono T and Esashi M. Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit[J].Appl. Phys. Lett.,2006,88 (5):3116-3118.
    [44] Park S J, Doll J C and Pruitt B L.Piezoresistive cantilever performance: I. Analytical model for sensitivity[J]. J. Microelectromech. Syst,2010,19(1):137-148.
    [45]王春雷,李吉超,赵明磊.压电铁电物理[M].北京:科学出版社.2009.
    [46] S. Nima Mahmoodi, Nader Jalili, M F.Daqaq. Modeling,nonlinear, dynamics and identification of a poezoelectrically actuated microcantilever sensor[J]. IEEE/ ASME Transactions on Mechatronics,2008,13(1):58-65.
    [47] R. E. Martinez, W. M. Augustyniak and J.A. Golovchenoke. Direct measurement of crystal surface stress[J].Phys.Rev.Lett,1990,64(9),1035-1038.
    [48] Lu P, Lee H.P., Lu C and O.Shea S.J.. Surface stress effects on the resonance properties of cantilever sensors[J]. Phy.Rev.B. 2005, 72(8), 1-5.
    [49]刘笑笑,黄庆安,于虹.水分子诱致的纳米悬臂梁的弯曲模型[J].传感技术学报,2008,2(21):195-198.
    [50]黄克智等.板壳理论[M].北京:清华大学出版社.1987.
    [51] Joshi SP.Non-linear constitutive relations for piezoelectric materials[J].Smart Materials and Structures ,1992,1:80-83.
    [52]赵振国.吸附作用应用原理[M].北京:化学工业出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700