微梁力学性能尺寸效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统(Micro-electro-mechanical-systems,简写为MEMS)技术的兴起和发展,功能各异的MEMS器件和产品已经被成功研制并得到了广泛应用。根据这些MEMS器件中主要结构的特征尺寸和受力特点,可以将其简化为一些简单的结构形式,微梁就是一种在微机电系统中得到了广泛应用的典型结构形式,由于其几何尺寸的微小化以及制备工艺的特殊化,微梁的力学性能与宏观尺寸下有着很大的不同。目前,微尺度实验证实微结构的力学性能存在尺寸效应,传统力学理论的本构关系中不包含任何与尺度相关的参数,不能够描述和解释力学性能的尺寸效应现象。因此,发展和完善能够解释和描述微结构尺寸效应现象的理论和模型就显得至关重要。应变梯度理论,通过在其本构关系中引入具有长度量纲的参数来考虑应变梯度的影响,能够描述和解释微构件力学性能的尺寸效应现象。
     本文以微梁为研究对象,基于应变梯度理论(包括偶应力理论和全应变梯度弹性理论)对其力学性能的尺寸效应进行了研究,建立了相应的理论模型,并对其力学性能的变化规律进行了深入分析。研究工作的主要内容如下:
     考虑微结构力学性能的尺寸效应对微梁动态特性的影响,基于偶应力理论并利用哈密尔顿原理,建立了微梁动态性能的理论模型。该模型中除了2个传统的材料参数之外,只包含1个材料内禀特征尺寸参数。结合悬臂梁和简支梁的特征尺寸分析了微梁固有频率的变化规律,结果表明,微梁的固有频率存在尺寸效应现象,所得结论可以为微梁的结构设计和实验测试提供理论基础。
     针对细长压杆受到轴向压缩载荷时的屈曲问题,基于偶应力理论并利用能量变分法建立了细长压杆屈曲特性的理论模型。分析细长压杆屈曲特性的变化规律并给出了几种典型边界条件下细长压杆的屈曲载荷和屈曲模态的解析表达式,结果表明,细长压杆的屈曲载荷存在尺寸效应现象,而其屈曲模态与特征尺寸无关,所得结论可以为屈曲型微构件的设计和优化以及相关的实验研究提供理论依据。
     考虑微结构尺寸效应对力电耦合环境下微梁Pull-in特性的影响,基于偶应力理论建立了静电驱动微梁Pull-in特性的理论模型。考虑到静电载荷固有的非线性特性和静电驱动微梁的力电耦合特性,采用瑞恩里茨法来近似处理静电载荷,利用能量变分法给出了微梁Pull-in特性的近似解析表达式,分析了静电驱动微梁Pull-in电压和Pull-in位移的变化规律。结果表明:当微梁的厚度h等于材料内禀特征尺寸参数l时,其Pull-in电压增大2.7倍,呈现出明显的尺寸效应现象;而当微梁的厚度h远大于材料内禀特征尺寸参数l时,其Pull-in电压与传统理论值基本相等。另外,静电驱动微梁的无量纲Pull-in位移与材料内禀特征尺寸参数l无关。
     基于全应变梯度弹性理论,建立了微梁静动态弯曲特性的理论模型,给出其控制方程和边界条件。该模型中除了2个传统的材料常数之外,还包括3个分别对应于拉伸梯度张量偏斜分量、膨胀梯度张量和旋转梯度张量的材料内禀特征尺寸参数;而边界条件是由传统边界条件和高阶边界条件所组成。结合微梁的特征尺寸和边界条件,分析了微梁弯曲刚度和固有频率的变化规律。结果表明,微梁的无量纲弯曲刚度和无量纲固有频率存在尺寸效应。所建模型不仅包含了应变张量和旋转梯度张量的影响,而且还包含了拉伸梯度张量偏斜分量和膨胀梯度张量的影响,能全面地反映出微梁静动态弯曲特性的尺寸效应现象。
     本文所建立的微梁力学模型能够反映出其弯曲、动态、屈曲和在力电耦合环境下的Pull-in特性等力学性能的尺寸效应,研究结果可以为MEMS产品的结构设计和实验研究提供理论依据。
With the advances of Micro-electro-mechanical systems (MEMS), a wide range of MEMS devices and products have been fabricated. According to geometry and loaded forms of those devices and products, main structures can be simplified to be some typical structural forms. Micro-beam is one of most used structural forms in MEMS devices and products. Due to small size and special processing technology, mechanical properties of micro-beams are very different from that in the macro-scale range. Therefore, thoroughly understanding and accurate characterization of mechanical properties of micro-beams is critical for optimal design and reliability of MEMS devices and products. Nowadays, many micro-scale experiments have verified that mechanical properties of some materials at the micron scale are size dependent. No material length scale parameter is introduced into the constitutive relation of conventional theory, so it cannot characterize and interpret size effect on the mechanical properties of materials and structures at the micron scale. Strain gradient theories, which include effects of strain gradient tensor and possess material length scale parameter, can characterize and interpret size effect on the mechanical properties of micro-structures at the micron scale.
     Based on strain gradient theories (including couple stress theory and strain gradient elasticity theory), size effect on the mechanical properties of micro-beams are studied in this work. Theoretical models are established and influence of size effect on mechanical properties of micro-beams is analyzed thoroughly. Conclusions can render basic guidelines for optimal design and experimental tests of MEMS devices and products. Main contents of this work are as follows:
     In order to analyze influence of size effect of materials on the dynamic property of micro-beams, a theoretical model of dynamic property of micro-beams is established on the basis of a modified couple stress theory. It can be seen that in the new model, only one additional material length scale parameter is included besides two classical material constants. In the light of feature sizes of simply supported micro-beams and cantilever micro-beams, the governing equations of micro-beams are solved and size effect on natural frequencies of micro-beams are assessed. It is found that natural frequencies predicted by the newly established model are 2.6 and 3 times as that calculated from classical beam model when feature sizes of micro-beams (for rectangular and circular micro-beams, feature sizes are thickness and diameter, respectively) equal to material internal length scale. However, Natural frequencies predicted by the newly established model are approximate to that calculated from classical beam model when feature sizes of micro-beams are by far larger than material internal length scale parameter. Therefore, the new model can capture size effect on natural frequencies of micro-beams and can provide the theoretical basis for optimal design and experimental test of dynamic properties of MEMS products and devices.
     For buckling problems of slender columns under the action of axial compressive loads, a theoretical model for buckling characteristics of slender columns is established by a combination of the basic equations of the modified couple stress theory and the energy variational method. It can be seen that in the new model, only one additional material length scale parameter is included besides two classical material constants. Solutions of corresponding boundary value problems for buckling are presented and size effect on normalized buckling loads of slender columns with retangular and circular cross sectional shapes are analyzed. It is shown that the buckling load of slender columns predicted by the newly established model are 7 and 9 times as that calculated from classical beam model when feature sizes (for rectangular and circular micro-beams, feature sizes are thickness and diameter, respectively) of slender columns equal to material internal length scale parameter. However, the buckling load of slender columns predicted by the newly established model conforms to that calculated from classical beam model when feature sizes of micro-beams are by far larger than material internal length scale parameter. Therefore, the new model can capture size effect on buckling loads of slender columns and can provide a theoretical basis for design and control of similar buckling MEMS devices and products.
     For pull-in characteristics of electrostatically actuated micro-structures commonly used in practical engineerings, a theoretical model for pull-in characteristics of micro-beams is established based on a modified couple stress theory. It should be emphasized that, in the new model, only one additional material length scale parameter is included besides two classical material constants.Taking into account size effect on mechanical properties of materials and the inherent nonlinear property of electrostatic force, approximate analytical solutions of the pull-in voltage and pull-in displacement of electrostatically actuated micro-beams are obtained by using the Rayleigh-Ritz method. In the light of feature size of cantilever micro-beams and fixed-fixed micro-beams, size effect on pull-in characteristics of micro-beams is assessed. It is shown that the normalized pull-in voltage of the micro-beams increases by a factor on 2.7 as the thickness of microbeams equals to the material internal length scale parameter and exhibits size dependent. However, size effect is almost diminishing as the thickness of microbeams is far greater than material internal length scale parameter. Moreover, the normalized pull-in displacement of microbeams is size independence and equals to 0.448 and 0.398 for cantilever beams and clamped-clamped beams, respectively. Therefore, the new model can capture size effect on pull-in characteristics of electrically actuated micro-beams and can give a theoretical guide for optimal design and experimental tests of electrostatically actuated MEMS structures.
     The modified couple stress proposed by Yang et al. only includes the effect of strain tensor and rotation gradient tensor. Afterwards, Lam et al. presented a new strain gradient elasticity theory, which takes into account the effects of strain tensor, rotation gradient tensor and stretch gradient tensor. In order to analyze the bending behaviour of micro-beams, a bending model for micro-beams is established based on the strain gradient elasticity theory and governing equation and boundary conditions are derived. It can be seen that only 3 additional material length scale parameters are introduced besides 2 classical material constants in the new model. Moreover, boundary conditions consist of 2 classical boundary conditions and 1 additional higher-order boundary condition. In the light of geometries and boundary conditions of micro-beams, size effect on normalized bending rigidities of micro-beams and boundary layer effect are assessed. It is shown that bending rigidities of micro-beams based on strain gradient elasticity theory are about 12 times as that from classical theory model, when the thickness of retangular micro-beams become comparable to material internal length scale parameter and exhibit size dependent (h=20μm, l=17.6μm). However, bending rigidities of micro-beams based on starin gradient elasticity theory conform to that calculated from classical theory model when the feature sizes of micro-beams are far greater than material internal length scale parameters. Moreover, the higher-order boundary conditions results in boundary layer effect of deformed cantilever micro-beams at the fixed end. Therefore, the newly established model includes influences of rotation gradient tensor, deviatoric stretch gradient tensor and dilatation gradient tensor besides strain tensor, and can capture size effect on normalized bending rigidities and boundary layer effect of cantilever micro-beams at the fixed end.
     Taking into account the effect of rotation gradient tensor and stretch gradient tensor on dynamic property of micro-beams, a theoretical model for flexural micro-beams is established based on the strain gradient elasticity theory and by using Hamilton principle. Governing equation, initial conditions and boundary conditions of flexural micro-beams motion are derived. It can be seen that only 3 additional material length scale parameters are introduced in the new model besides 2 classical material constants. Moreover, boundary conditions consist of 2 classical boundary conditions and 1 additional higher-order boundary condition. In the light of geometry and boundary conditions of cantilever and simply supported micro-beams, size effect on natural frequencis of micro-beams is assessed. It is shown that natural frequencies of micro-beams based on strain gradient elasticity theory are about 12 times as that from classical theory model, as the thickness of retangular micro-beams become comparable to material internal length scale parameter and exhibit size dependent (h=20μm, l=17.6μm). However, natural frequencies of beams based on starin gradient elasticity theory conform to that calculated from classical theory model when the feature sizes of micro-beams are far greater than material internal length scale parameters. Therefore, the newly established model includes influences of rotation gradient tensor, deviatoric stretch gradient tensor and dilatation gradient tensor besides strain tensor, and can capture size effect on normalized natural frequencies of micro-beams.
     The above mechanical models can capture size effect on mechanical properties of micro-beams and conclusions can render theoretical guidelines for optimal design and experimental tests of MEMS devices.
引文
[1]高世桥,刘海鹏.微机电系统力学[M].北京:国防工业出版社,2008.
    [2]Liu C.微机电系统基础[M].北京:机械工业出版社,2007.
    [3]Sentria S D.Microsystem design[M].New York,USA:Kluwer Academic Publishers,2001.
    [4]李德胜,关佳亮,石照耀.微纳米技术及其应用[M].北京:科学出版社,2005.
    [5]徐泰然.MEMS和微系统设计与制造[M].北京:机械工业出版社,2004.
    [6]温诗铸,丁建宁.微型机械设计基础研究[J].机械工程学报.2000,36(7):39-42.
    [7]余寿文.微电子机械系统的几个力学问题[J].机械强度.2001,23(4):380-384.
    [8]余寿文.复杂微力—电系统的细微尺度力学[J].力学进展.1995,25(2):249-259.
    [9]魏悦广.机械微型化所面临的科学难题—尺度效应[J].世界科技研究与发展.2000,22(2):57-61.
    [10]魏悦广.固体尺度效应宏微观关联理论和方法的研究进展[J].中国科学基金.2000,1(4):221-224.
    [11]孟光,张文明.微机电系统动力学[M].北京:科学出版社,2008.
    [12]Busch J D,Johnson A D.Prototype micro-valve actuator[C].Micro Electro Mechanical Systems,1990.Proceedings,An Investigation of Micro Structures,Sensors,Actuators,Machines and Robots.,Napa Valley,CA,USA,1990.IEEE Xplore,1990.
    [13]Thaysen J,Yalcinkaya A D,Vestergaard R K,et al.SU-8 based piezoresistive mechanical sensor[C].Proceedings of the IEEE Micro Electro Mechanical Systems(MEMS),Las Vegas,NV,United states,2002.Institute of Electrical and Electronics Engineers Inc.,2002:320-323.
    [14]Dickinson T A,White J,Kauer J S,et al.Chemical-detecting system based on a cross-reactive optical sensor array[J].Nature.1996,382(6593):697-697.
    [15]Lee D,Solgaard O.Pull-in analysis of torsional scanners actuated by electrostatic vertical combdrives[J].Journal of Microelectromechanical Systems.2008,17(5):1228-1238.
    [16]Hernker K J,Sharpe Jr W N.Microscale characterization of mechanical properties [J].Annual Review of Materials Research.2007,37:92-126.
    [17]Buchheit T E,Glass S J,Sullivan J R,et al.Micromechanical testing of MEMS materials[J].Journal of Materials Science.2003,38(20):4081-4086.
    [18]Spearing S M.Materials issues in microelectromechanical systems(MEMS)[J].Acta Materialia.2000,48(1):179-196.
    [19]Haque M A,Saif M T A.A review of MEMS-based microscale and nanoscale tensile and bending testing[J].Experimental Mechanics.2003,43(3):248-255.
    [20]张泰华,杨业敏,赵亚溥.MEMS材料力学性能的测试技术[J].力学进展.2002,32(4):545-562.
    [21]苏才钧,吴昊,郭占社.微构件材料力学性能测试方法[J].实验力学.2005,20(3):441-447.
    [22]Sharpe Jr W N,Bagdahn J,Jackson K,et al.Tensile testing of MEMS materials-recent progress[J].Joumal of Materials Science.2003,38(20):4075-4079.
    [23]张泰华,杨业敏,赵亚溥.微型材料的拉伸测试方法研究[J].机械强度.2001,23(4):430-436.
    [24]Ogawa H,Suzuki K,Kaneko S,et al.Tensile testing of microfabricated thin films [J].Microsystem Technologies.1997,(3):117-121.
    [25]Tsuchiya T,Tabata O,Sakata J,et al.Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films[J].Journal of Microelectromechanical Systems.1998,7(1):106-113.
    [26]丁建宁,孟水钢,温诗铸.微结构和尺寸约束下多晶硅微机械构件拉伸强度的尺寸效应[J].科学通报.2001,46(5):436-440.
    [27]丁建宁,孟水钢,温诗铸.电磁驱动式微拉仲装置的研究[J].仪器仪表学报.2000,21(5):441-445.
    [28]Sharpe W N,Jr.,Yuan B,Edwards R L.New technique for measuring the mechanical properties of thin films [J]. Journal of Microelectromechanical Systems. 1997, 6(3): 193-199.
    [29] Sharpe Jr W N, Turner K T, Edwards R L. Tensile testing of polysilicon [J]. Experimental Mechanics. 1999, 39(3): 162-170.
    [30] Lawley A, Schuster S. Preparation and Tensile Testing of Thin Metal Foils of Rolled Material [J]. Review of Scientific Instruments. 1962, 33(1): 1178-1180.
    [31] Palatnik L S, Il'inski(?) A I. Mechanical properties of metallic films [J]. Physics-Uspekhi. 1969,11(4): 564-581.
    [32] Marsh D M. Micro-tensile testing machine [J]. Journal of Scientific Instruments. 1961, 38(6): 229-234.
    [33] Sharpe W N, Turner K T, Edwards R L. Tensile testing of polysilicon [J]. Experimental Mechanics. 1999, 39(3): 162-170.
    [34] Espinosa H D, Prorok B C, Peng B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension [J]. Journal of the Mechanics and Physics of Solids. 2004, 52(3): 667-689.
    [35] Read D T, Dally J W. Fatigue of Microlithographically-Patterned Free-Standing Aluminum Thin Film Under Axial Stresses [J]. Journal of Electronic Packaging. 1995, 117(1): 1-6.
    [36] Sharpe W N, Bagdahn J, Jackson K, et al. Tensile testing of MEMS materials-recent progress [J]. Journal of Materials Science. 2003, 38(20): 4075-4079.
    [37] Ando T, Shikida M, Sato K. Tensile-mode fatigue testing of silicon films as structural materials for MEMS [J]. Sensors and Actuators, A: Physical. 2001, 93(1): 70-75.
    
    [38] Brenner A, Zentner V, Jennings W. Plating [J]. 1952, 39: 865.
    [39] Sharpe Jr W N, Yuan B, Vaidyanathan R, et al. New test structures and techniques for measurement of mechanical properties of MEMS materials[C]. Proceedings of SPIE - The International Society for Optical Engineering, Austin, TX, USA, 1996.1996:78-91.
    [40] Hemker K J, Last H. Microsample tensile testing of LIGA nickel for MEMS applications [J]. Materials Science and Engineering A. 2001, 319-321: 882-886.
    [41] Tsuchiya T, Hirata M, Chiba N. Young's modulus, fracture strain, and tensile strength of sputtered titanium thin films[J].Thin Solid Films.2005,484(1-2):245-250.
    [42]叶雄英,朱俊华,吕晓青.多晶硅微构件拉伸破坏特性的测量[J].机械强度.2001,23(4):443-446.
    [43]汤忠斌,徐绯,徐武军.多晶铜微小试样的ISDG试验[J].机械科学与技术.2005,24(5):551-554.
    [44]WU H,MENG Y,SU C,et al.An apparatus for measuring mechanical properties of microstructures in tensile mode[J].中国科学G辑.2004.
    [45]Saif M T A,MacDonald N C.Micro mechanical single crystal silicon fracture studies-torsion and bending[C].Proceedings of the IEEE Micro Electro Mechanical Systems(MEMS),San Diego,CA,USA,1996.IEEE,Piscataway,NJ,USA,1996:105-109.
    [46]Namazu T,Isono Y,Tanaka T.Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM[J].Journal of Microelectromechanical Systems.2000,9(4):450-459.
    [47]Ding J N,YANG J C,Wen S Z.Size effect on the bending and tensile strength of micromachined polysilicon films for MEMS[J].Acta Mechanica Solida Sinica.2004,17(3).
    [48]Weihs T P,Hong S,Bravman J C,et al.Mechanical deflection of cantilever microbeams:A new technique for testing the mechanical properties of thin films [J].Journal of Materials Research.1988,3(5):931-942.
    [49]Christophe S,Alejandro P R,Albert R R.Test microstructures for measurement of SiC thin film mechanical properties[J].Journal of Micromechanics and Microengineering.1999,9:190-193.
    [50]Komai K,Minoshima K,Inoue S.Fracture and fatigue behavior of single crystal silicon microelements and nanoscopic AFM damage evaluation[J].Microsystem Technologies.1998,5:30-37.
    [51]de Boer M P,Tabbara M R,Dugger M T,et al.Measuring and modeling electrostatic adhesion in micromachines[C].International Conference on Solid-State Sensors and Actuators,Proceedings,Chicago,IL,USA,1997.IEEE,1997:229-232.
    [52]Jensen B D,de Boer M P,Miller S L.IMaP:interferometry for material property measurement in MEMS[C].Modeling and Simulation of Microsystems,San Juan,Puerto Rico,1999.Nano Science and Technology Institute,1999:206-209.
    [53]de Boer M P,Jensen B D,Bitsie F.Small area in-situ MEMS test structure to measure fracture strength by electrostatic probing[C].Proceedings of SPIE-The International Society for Optical Engineering,Santa Clara,CA,USA,1999.Society of Photo-Optical Instrumentation Engineers,1999:97-103.
    [54]De Boer M P,Michalske T A.Accurate method for determining adhesion of cantilever beams[J].Journal of Applied Physics.1999,86(2):817-827.
    [55]de Boer M P,Redmond J M,Michalske T A.Hinged-pad test structure for sliding friction measurement in micromachining[C].Proceedings of SPIE-The International Society for Optical Engineering,Santa Clara,CA,USA,1998.SPIE,1998:241-250.
    [56]丁建宁,孟永钢,温诗铸.纳米硬度计研究多晶硅微悬臂梁的弹性模量[J].仪器仪表学报.2001,22(2):186-189.
    [57]Ding J N,Meng Y G,Wen S Z.Specimen size effect on mechanical properties of polysilicon microcantilever beams measured by deflection using a nanoindenter [J].Materials Science and Engineering B:Solid-State Materials for Advanced Technology.2001,83(1-3):42-47.
    [58]丁建宁,孟永钢,温诗铸.纳米硬度计研究多晶硅微悬臂梁力学特性[J].清华大学学报(自然科学版).2001,41(2):21-24.
    [59]Burdess J S,Harris A J,Wood D.The structural characteristics of microengineered bridges[J].Journal of Mechanics Engineering Solid.1999,214:351-357.
    [60]陈吉安,杨春生,周勇.微桥结构镍膜的弹性模量和残余应力研究[J].微细加工技术.2003,4(3):66-71.
    [61]周勇,杨春生,陈吉安.微桥结构铜膜杨氏模量和残余应力研究[J].现代科学仪器.2003,10(4):45-48.
    [62]Zhang T Y,Su Y J,Qian C F,et al.Microbridge testing of silicon nitride thin films deposited on silicon wafers[J].Acta Materialia.2000,48(11):2843-2857.
    [63]Schiltges G,Gsell D,Dual J.Torsional tests on microstructures:two methods to determine shear-moduli[J].Microsystem Technologies.1998,5:22-29.
    [64]Fleck N A,Muller G M,Ashby M F,et al.Strain gradient plasticity:theory and experiment[J].Acta Metallurgica et Materialia.1994,42(2):475-487.
    [65]Fischer-Cripps A C.Nanoindentation[M].New York:Springer-Vertag,2004.
    [66]张泰华.微纳米力学测试技术及其应用[M].北京:机械工业出版社,2005.
    [67]Oliver W C,Pharr G M.Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research.1992,7(6):1564-1580.
    [68]Pharr G M,Oliver W C,Brotzen F R.On the generality of the relationship among contact stiffness,contact area,and elastic modulus during indentation[J].Journal of Materials Research.1992,7(3):613-617.
    [69]Li X,Bhushan B.A review of nanoindentation continuous stiffness measurement technique and its applications[J].Materials Characterization.2002,48(1):11-36.
    [70]Pharr G M,Bolshakov A.Understanding nanoindentation unloading curves[J].Journal of Materials Research.2002,17(10):2660-2671.
    [71]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展.2002,32(3):349-364.
    [72]Stelmashenko N A,Walls M G,Brown L M,et al.Microindentations on W and Mo oriented single crystals:An STM study[J].Acta Metallurgica et Materialia.1993,41(10):2855-2865.
    [73]Ma Q,Clarke D R.Size dependent hardness of silver single crystals[J].Journal of Materials Research.1995,10(4):853-863.
    [74]McElhaney K W,Vlassak J J,Nix W D.Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J].Journal of Materials Research.1998,13(5):1300-1306.
    [75]魏悦广,王学峥,武晓雷.微压痕尺度效应的理论和实验[J].中国科学A辑.2000,30(11):1025-1032.
    [76]Lam D C C,Chong A C M.Characterization and modeling of specific strain gradient modulus of epoxy[J].Journal of Materials Research.2001,16(2):558-563.
    [77]Lucas B N,Oliver W C.Indentation Power-Law creep of high-purity Indium[J].Metallurgical and Materials Transactions.1999,30(3):601-610.
    [78]Jardret V,Zahouani H,Loubet J L,et al.Understanding and quantification of elastic and plastic deformation during a scratch test[J].Wear.1998,218(1):8-14.
    [79]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用[J].现代科学仪器.2002,3(1):32-37.
    [80]Petersen K E,Guarnieri C R.Young's modulus measurements of thin films using micromechanics[J].Journal of Applied Physics.1979,50(11):6711-6766.
    [81]Putty M W,Chang S C,Howe R T.One-port active polysilicon resonant microstructures[C].IEEE micro electromechanical systems,Salt Lake City,Utah,1989.IEEE,1989:60-65.
    [82]Hok K,Gustaffson K.Vibration analysis of micromechanical elements[J].Sensors and Actuators.1985,8:235-243.
    [83]Mazza E,Abel S,Dual J.Experimental determination of mechanical properties of Ni and Ni-Fe microbars[J].Microsystem Technologies.1996,2:197-202.
    [84]John J Y G,Ngo L V,Nelson P R.Elimination of extra spring effect at the step-up anchor of surface-micromachined structure[J].Journal of Microelectromechanical Systems.1998,7(1):114-121.
    [85]Nakano S,Maedu R,Yamanaka K.Evaluation of the elastic properties of a cantilever using resonant frequencies[J].Japanese Journal of Applied Physics.1997,36:3265-3266.
    [86]Zhang L M,Uttamchandani D,Culshaw B.Measurement of the mechanical properties of silicon microresonators[J].Sensors and Actuators,A:Physical.1991,29(1):79-84.
    [87]Lam D C C,Yang F,Chong A C M,et al.Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids.2003,51(8):1477-1508.
    [88]Lloyd D J.Particle reinforced aluminium and magnesium matrix composites[J].International materials reviews.1994,39(1):1-23.
    [89]Stolken J S,Evans ACt A microbend test method for measuring the plasticity length scale[J].Acta Materialia.1998,46(14):5109-5115.
    [90]郭香华,方岱宁,李喜德.用电子散斑法对纯镍薄片弯曲变形的测量[J].力学与实践.2005,27(2):22-25.
    [91]冯秀艳,郭香华,方岱宁.微薄梁三点弯曲的尺度效应研究[J].力学学报.2007,39(4):479-485.
    [92]Wei Y,Hutchinson J W.Hardness trends in micron scale indentation[J].Journal of the Mechanics and Physics of Solids.2003,51(11-12):2037-2056.
    [93]Poole W J,Ashby M F,Fleck N A.Micro-hardness of annealed and work-hardened copper polycrystals[J].Scripta Materialia.1996,34(4):559-564.
    [94]Chong A C M,Lam D C C.Strain gradient plasticity effect in indentation hardness of polymers[J].Journal of Materials Research.1999,14(10):4103-4110.
    [95]McFarland A W,Colton J S.Role of material microstructure in plate stiffness with relevance to microcantilever sensors[J].Journal of Micromechanics and Microengineering.2005,15(5):1060-1067.
    [96]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG 理论[J].机械强度.1999,21(2):81-87.
    [97]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论[J].机械强度.1999,21(3):161-165.
    [98]陈少华,王自强.应变梯度理论进展[J].力学进展.2003,33(2):207-216.
    [99]Lam D C C,Chong A C M.Indentation model and strain gradient plasticity law for glassy polymers[J].Journal of Materials Research.1999,14(9):3784-3788.
    [100]Toupin R A.Elastic materials with couple-stresses[J].Archive for Rational Mechanics and Analysis.1962,11(1):385-414.
    [101]Mindlin R D,Tiersten H F.Effects of couple-stresses in linear elasticity.1962.p.67.
    [102]Toupin R A.Theories of elasticity with couple-stress[J].Archive for Rational Mechanics and Analysis.1964,17(2):85-112.
    [103]Ashby M F.the deformation of plastically non-homogeneous materials[J].Philosophical Magazine.1970,21(1):399-424.
    [104]Mindlin.R D.Second gradient of strain and surface-tension in linear elasticity[J].International Journal of Solids and Structures.1965,1:417-438.
    [105]Mindlin R D,Eshel N N.On first strain-gradient theories in linear elasticity[J].International Journal of Solids and Structures.1968,4(1):109-124.
    [106]Fleck N A,Hutchinson J W.Strain gradient plasticity[J].Advances in Applied Mechanics.1997,33(1):296-358.
    [107]Fleck N A,Hutchinson J W.A reformulation of strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids. 2001,49(10): 2245-2271.
    
    [108] Acharya A, Bassani J L. Lattice incompatibility and a gradient theory of crystal plasticity [J]. Journal of the Mechanics and Physics of Solids. 2000, 48(8): 1565-1595.
    [109] Bassani J L, Needleman A, Van Der Giessen E. Plastic flow in a composite: A comparison of nonlocal continuum and discrete dislocation predictions [J]. International Journal of Solids and Structures. 2001, 38(5): 833-853.
    [110] Aifantis E C. Update on a class of gradient theories [J]. Mechanics of Materials. 2003, 35(3-6): 259-280.
    [111] Aifantis E C. Gradient deformation models at nano, micro, and macro scales [J]. Journal of Engineering Materials and Technology, Transactions of the ASME. 1999,121(2): 189-202.
    [112] Aifantis E C. Strain gradient interpretation of size effects [J]. International Journal of Fracture. 1999, 95(1-4): 299-314.
    [113] Gudmundson P. A unified treatment of strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids. 2004, 52(6): 1379-1406.
    [114] Mughrabi H. On the current understanding of strain gradient plasticity [J]. Materials Science and Engineering A. 2004, 387-389(1-2): 209-213.
    [115] Aifantis E. On the role of gradients in the localization of deformation and fracture [J]. International Journal of Engineering Science. 1992, 30(10): 1279-1299.
    [116] Fleck N A, Hutchinson J W. Phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids. 1993, 41(12): 1825-1857.
    [117] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity -1. Theory [J]. Journal of the Mechanics and Physics of Solids. 1999, 47(6): 1239-1263.
    [118] Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity - II. Analysis [J]. Journal of the Mechanics and Physics of Solids. 2000, 48(1): 99-128.
    [119] Menzel A, Steinmann P. On the continuum formulation of higher gradient plasticity for single and polycrystal [J]. Journal of the Mechanics and Physics of Solids. 2000,48(8): 1777-1796.
    [120]Gurtin M E.On the plasticity of single crystals:Free energy,microforces,plastic-strain gradients[J].Journal of the Mechanics and Physics of Solids.2000,48(5):989-1036.
    [121]Gurtin M E.A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[J].Journal of the Mechanics and Physics of Solids.2002,50(1):5-32.
    [122]Chen S H,Wang T C.New hardening law for strain gradient plasticity[J].Acta Materialia.2000,48(16):3997-4005.
    [123]Cedric Xia Z,Hutchinson J W.Crack tip fields in strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids.1996,44(10):1621-1648.
    [124]Wei Y,Hutchinson J W.Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids.1997,45(8):1253-1273.
    [125]Shu J Y,Fleck N A.Prediction of a size effect in micro-indentation[J].International Journal of Solids and Structures.1998,35(13):1363-1383.
    [126]Begley M R,Hutchinson J W.Mechanics of size-dependent indentation[J].Journal of the Mechanics and Physics of Solids.1998,46(10):2049-2068.
    [127]Xue Z,Saif M T A,Huang Y.The strain gradient effect in microelectromechanical systems(MEMS)[J].Journal of Microelectromechanical Systems.2002,11(1):27-35.
    [128]Mindlin R D.Influence of couple-stresses on stress concentrations[J].Experimental Mechanics.1963,3(1):1-7.
    [129]Ellis R W,Smith C W.A thin-plate analysis and experimental evaluation of couple-stress effects[J].Experimental Mechanics.1967,7(9):372-380.
    [130]周慎杰,李兆前.微杆扭转静动态特性的尺度效应[J].山东工业大学学报.2001,31(5):401-407.
    [131]康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应[J].机械强度.2007,29(1):1-4.
    [132]Yang F,Chong A C M,Lam D C C,et al.Couple stress based strain gradient theory for elasticity[J].International Journal of Solids and Structures.2002,39(10):2731-2743.
    [133]Park S K,Gao X L.Bernoulli-Euler beam model based on a modified couple stress theory [J]. Journal of Micromechanics and Microengineering. 2006,16(11): 2355-2359.
    [134] Park S K, Gao X L. Variational formulation of a modified couple stress theory and its application to a simple shear problem [J]. Zeitschrift fur Angewandte Mathematik und Physik. 2008, 59(5): 904-917.
    [135] Ma H M, Gao X L, Reddy J N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory [J]. Journal of the Mechanics and Physics of Solids. 2008, 56(12): 3379-3391.
    [136] Eringen A C. Theory of micropolar plates [J]. Zeitschrift fur Angewandte Mathematik und Physik. 1967,18(1): 12-30.
    [137]Triantafyllidis N, Aifantis E C. A gradient approach to localization of deformation. I. Hyperelastic materials [J]. Journal of Elasticity. 1986,16(3): 225-237.
    [138] Polizzotto C. Nonlocal elasticity and related variational principles [J]. International Journal of Solids and Structures. 2001, 38(42-43): 7359-7380.
    [139] Lun F Y, Zhang P, Gao F B, et al. Design and fabrication of micro-optomechanical vibration sensor [J]. Microfabrication Technology. 2006, 120(1): 61-64.
    [140] McMahan L E, Castleman B W. Characterization of vibrating beam sensors during shock and vibration[C]. Record - IEEE PLANS, Position Location and Navigation Symposium, Monterey, CA, United States, 2004. Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004: 102-110.
    [141] Cook S M, Schaffer T E, Chynoweth K M, et al. Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants [J]. Nanotechnology. 2006,17(9): 2135-2145.
    [142] Wang W L, Hu S J. Modal response and frequency shift of the cantilever in a noncontact atomic force microscope [J]. Applied Physics Letters. 2005, 87(18): 183506.
    [143] Roy S, Furukawa S, Mehregany M. Determination of Young's modulus and residual stress of electroless nickel using test structures fabricated in a new surface micromachining process [J]. Microsystem Technologies. 1996, 2: 92-96.
    [144] 顾利忠,左铭旺,苏菲.声激励共振法测量微机械材料的杨氏模量[J].声学 技术.2000,19(4):187-189.
    [145]Zhang L M,Uttamchandani D,Culshaw B,et al.Measurement of Young's modulus and internal stress in silicon microresonators using a resonant frequency technique[J].Measurement Science and Technology.1990,1(12):1343-1346.
    [146]R.D.Mindlin.MICROSTRUCTURE IN LINEAR ELASTICITY.1963.p.70.
    [147]Mindlin R D,Tiersten H F.Effects of couple-stresses in linear elasticity[J].Archive for Rational Mechanics and Analysis.1962,11(1):415-448.
    [148]Dym C L,Shames I H.Solid Mechanics:A Variational Approach[M].Beijing:China Railway Publishing House,1984.
    [149]Petersen K E,Guamieri C R.Young's modulus measurements of thin films using micromechanics[J].Journal of Applied Physics.1979,50(11):6761-6766.
    [150]Ye X Y,Zhou Z Y,Yang Y,et al.Determination of the mechanical properties of microstructures[J].Sensors and Actuators,A:Physical.1996,54(1-3):750-754.
    [151]Tsai H C,Fang W.Determining the Poisson's ratio of thin film materials using resonant method[J].Sensors and Actuators,A:Physical.2003,103(3):377-383.
    [152]Kiesewetter L,Zhang J M,Houdeau D,et al.Determination of Young's moduli of micromechanical thin films using the resonance method[J].Sensors and Actuators,A:Physical.1992,35(2):153-159.
    [153]陈铁云,沈惠申.结构的屈曲[M].上海:上海科学技术文献出版社,1993.
    [154]赵剑,贾建援,王洪喜.屈曲式微加速度开关设计与分析[J].西安交通大学学报.2007,41(3):358-362.
    [155]McCarthy M,Tiliakos N,Modi V,et al.Thermal buckling of eccentric microfabricated nickel beams as temperature regulated nonlinear actuators for flow control[J].Sensors and Actuators,A:Physical.2007,134(1):37-46.
    [156]Seki T,Sakata M,Nakajima T,et al.Thermal buckling actuator for micro relays[C].International Conference on Solid-State Sensors and Actuators,Proceedings,Piscataway,NJ,USA,1997.IEEE,1997:1153-1156.
    [157]Chase J G,Yim M.Optimal stabilization of column buckling[J].Journal of Engineering Mechanics.1999,125(9):987-993.
    [158]Chase J G,Bhashyam S.Optimal stabilization of plate buckling[J].Smart Materials and Structures.1999,8(2):204-211.
    [159]刘鸿文.材料力学(下册)[M].北京:高等教育出版社,1993.
    [160] Papargyri-Beskou S, Tsepoura K G, Polyzos D, et al. Bending and stability analysis of gradient elastic beams [J]. International Journal of Solids and Structures. 2003,40(2): 385-400.
    [161] Papargyri-Beskou S, Beskos D E. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates [J]. Archive of Applied Mechanics. 2008, 78(8): 625-635.
    [162] Sinclair M J. A high force low area MEMS thermal actuator[C]. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2000. IEEE, 2000: 132.
    [163] Saif M T A. On a tunable bistable MEMS - theory and experiment [J]. Journal of Microelectromechanical Systems. 2000, 9(2): 157-170.
    [164] Chui B W, Stowe T D, Ju Y S, et al. Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J]. Journal of Microelectromechanical Systems. 1998, 7(1): 69-78.
    [165] Tzou H S, Tseng C I. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems. A piezoelectric finite element approach [J]. Journal of Sound and Vibration. 1990, 138(1): 17-34.
    [166] Osterberg P M, Senturia S D. M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures [J]. Journal of Microelectromechanical Systems. 1997,6(2): 107-118.
    [167] Sinclair M J. 1D and 2D scanning mirrors using thermal buckle-beam actuation[C]. The International Society for Optical Engineering, Adelaide, Australia, 2001. SPIE, 2001: 307-314.
    [168] Tilmans H A C, Fullin E, Ziad H, et al. A fully-packaged electromagnetic microrelay[C]. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Orlando, FL, USA, 1999. IEEE, 1999: 25-30.
    [169] Fargas-Marques A, Costa-Castello R, Shkel A M. Modelling the electrostatic actuation of MEMS; state of the art 2005 [J]. Technical Report. 2005.
    [170] Batra R C, Porfiri M, Spinello D. Review of modeling electrostatically actuated microelectromechanical systems [J]. Smart Materials and Structures. 2007, 16(6): 23-31.
    [171] Legtenberg R, Tilmans A C. Electrostatically driven vacuum-encapsulated polysilicon resonators part I. Design and fabrication [J]. Sensors and Actuators, A: Physical. 1994,45(1): 57-66.
    [172] Rong H, Huang Q A, Nie M, et al. An analytical model for pull-in voltage of clamped-clamped multilayer beams [J]. Sensors and Actuators, A: Physical. 2004, 116(1): 15-21.
    [173] Pamidighantam S, Puers R, Baert K, et al. Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions [J]. Journal of Micromechanics and Microengineering. 2002, 12(4): 458-464.
    [174] Wei L C, Mohammad A B, Kassim N M. Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam[C]. Semiconductor Electronics, 2002. Proceedings. ICSE 2002. IEEE International Conference on, Gurney Resort Hotel & Residences, Malay, 2002. IEEE, 2002: 233-238.
    [175] Gorthi S, Mohanty A, Chatterjee A. Cantilever beam electrostatic MEMS actuators beyond pull-in [J]. Journal of Micromechanics and Microengineering. 2006, 16(9): 1800-1810.
    [176] Gupta R K, Osterberg P M, Senturia S D. Material property measurements of micromechanical polysilicon beams[C]. Proceedings of SPIE - The International Society for Optical Engineering, Austin, TX, USA, 1996. SPIE - Int Soc for Opt Engineering, Bellingham, WA USA, 1996: 39-45.
    [177] Hu Y C, Huang P Y. Wafer-level microelectromechanical system structural material test by electrical signal before pull-in [J]. Applied Physics Letters. 2007, 90(12).
    [178] Hu Y C, Shih W P, Lee G D. A method for mechanical characterization of capacitive devices at wafer level via detecting the pull-in voltages of two test bridges with different lengths [J]. Journal of Micromechanics and Microengineering. 2007, 17(6): 1099-1106.
    [179] Zou Q, Li Z, Liu L. New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (VPI) method and long beam deflection (LBD) method [J]. Sensors and Actuators, A: Physical. 1995, 48(2): 137-143.
    [180] Papargyri - Beskou S, Polyzos D, Beskos D E. Dynamic analysis of gradient elastic flexural beams [J]. Structural Engineering and Mechanics. 2003, 15(6): 705-716.
    [181] Kitahara M. Boundary integral equation mthods in eigenvalue problems of elastodynamics and thin plates[M]. Amsterdam: Elsevier, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700