光—机械式非制冷红外成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外成像技术是军事、医学、气象、农业、工业等领域的一项关键技术,光—机械式非制冷红外成像技术成本低、理论极限温度分辨率高,因而是近年来研究的一个热点。然而原有关于光—机械式非制冷红外成像技术的热转换效率H、热机械响应率ST的理论模型对无基底FPA不再适用;并且原有光学读出响应率(?)的理论与实验也有很大偏差。本文针对这些问题建立了新的、完全适用的理论模型,并根据理论分析结果对无基底FPA和光学滤波技术进行了优化和改进。
     有限元法虽然能精确计算出无基底FPA受辐射时温度场的分布,但是由于FPA一般具有数十万个像素,使得计算量非常大,时间周期长,不利于无基底FPA的优化设计,因此需要一个快捷方便的解析近似公式。本文在考虑框架热阻的基础上建立了无基底FPA的热阻模型。经合理简化,推导出无基底FPA的热转换效率H和热机械响应率ST的理论表达式。与有限元分析结果相比, H和ST偏保守,且误差在10%以内。推导出无基底FPA响应时间的理论表达式,为验证这个表达式,制作了拥有四个不同设计参数区域的无基底FPA,这四个区域响应时间的实验值与理论值相符。深入分析了大气环境中无基底FPA的红外成像性能,指出有基底理论无法解释无基底FPA在大气环境下也能实现室温物体红外成像的现象,建立了大气环境下无基底FPA的热阻模型,使这个现象得到圆满的解释。
     原有光学读出响应率O理论与实验偏差的根源在于没有考虑反光板的残余变形,因此本文建立了变形反光板的光学读出响应率模型。理论分析和实验都表明反光板弯曲变形将严重降低光学读出响应率。为提高FPA的光学读出响应率,本文设计和制作了三种不同的结构(即:即薄金结构、加强筋结构和双层结构)来提高反光板平整度。实验证明:薄金结构使180μm反光板的曲率半径从5.3mm增加到25mm,光学读出响应率提高5.2倍;加强筋结构使反光板曲率半径提高4倍,光学读出响应率也相应提高15%;双层结构使反光板类似于工字梁,从而改善了反光板的平整度。为了减少工艺的盲目性、避免不必要的损失,本文对长度为L的反光板定义了其临界变形曲率半径Rc,当其曲率半径大于Rc时,则不需要提高其平整度。由于工艺的限制,在每个阶段反光板一般有一个确定的变形曲率半径,在这个一定曲率半径下,研究表明反光板相应地具有一个使光学读出响应率达到极大的最佳长度,根据这个结果,设计和制作了一种优化了反光板长度的无基底FPA,其性能测试结果与理论预测相符。
     由于实际使用的可见光光源是非单色的扩展光源,本文分析了光源的非单色性和扩展宽度对光学读出响应率的影响。分析表明,LED光源非单色性的影响可以忽略;光学读出响应率随光源的增宽迅速减小,对长度为L的反光板定义了相应的临界半高宽Hc,当光源半高宽H≤Hc时,分析时可近似认为光源为单色点光源。
     在光强不超过CCD满量程的约束条件下,研究了刀口滤波位置对光学读出响应率的影响,建立了无量纲形式的理论模型。理论分析指出,对于完全平整的反光板刀口挡住3/4衍射谱时光学读出响应率达到最大;对于变形反光板,刀口的最佳滤波位置与变形曲率半径有关。与刀口衍射谱中心滤波法相比,通过改进刀口的滤波位置,对于平整反光板,光学读出响应率可以提高80%;而对于长55μm、曲率半径为6mm的反光板,理论和实验证明光学读出响应率可提高33%。
     对光学滤波读出技术首次建立了统一的读出响应率理论模型,该模型为以后优化设计性能更高的光学滤波器提供了理论基础。具体分析了刀口、狭缝、方孔和圆孔滤波法,并对这四种滤波方法的光源能量利用率、空间分辨率、动态响应范围进行了具体的讨论。结果表明:狭缝滤波法优于圆孔、方孔滤波法;狭缝滤波法与刀口滤波法相比,狭缝滤波法具有高的探测灵敏度,刀口中心滤波法具有高光源能量利用率、高分辨率、高动态响应范围,刀口最佳位置滤波法的性能处于这两者之间。
     最后,实验测定了不同滤波方法和不同CCD背景光强下的系统噪声,证明了增大CCD背景光强和改进滤波方法不仅能提系统的高光学读出响应率,而且能够有效降低系统的NETD。
Infrared (IR) imaging technique plays a critical role in military, medical, meteorologic, agricultural, and industrial applications. Opto-mechanical uncooled infrared imging technique becomes a hotspot of research because of its attractive features like low cost and high theoretical temperature resolution. However, the traditional theoretical models of IR energy conversion efficiency H and thermo-mechanical sensitivity ST are not suitable for substarte-free FPA, and the traditional theory of the optical responsivity (?) does not agree with experiments. To solve these problems, new and absolutely suitable theoretical models are established in this dissertation. Based on the models, substrate-free FPA and optical filtering readout technique are optimized and improved.
     When substrate-free FPA is radiated by IR radiation, the accurate temperature distribution of substrate-free FPA can be calculated by finite element method (FEM). However, FPA usually contains more than 100,000 pixels, so the calculation will be very large and the calculation time will be very long. Apparently FEM is unsuitable for optimization design of substrate-free FPA. So a theoretical approximate formula is needed. A thermal resistance model of substrate-free FPA is established in this dissertation considering the supporting framework's thermal resisitance. After reasonably simplifying the model, the theoretical expressions of H and ST are derived. Compared to FEM results, the error of the model is less than 10%. The theoretical expression of the thermal response time of substrate-free FPA is also obtained. To validate the expression, a substrate-free FPA contained four imaging areas (the design parameters of the areas are different) is fabricated. The experimental results of the thermal response time well match the theoretical results. The imaging performance of the substate-free FPA situated in atmosphere is deeply analyzed. Analysis shows that the traditional theory can not explain the phenomenon that substrate-free FPA can obtain the thermal image at room temperature even satiated in atmosphere. To explain this phenomenon, a thermal resistance model of the substrate-free FPA situated in atmosphere is established.
     The error of the traditional optical responsivity theory results from not considering the morror's undesired deformation. In this dissertation, a theoretical optical responsivity model related to deformed mirror is established. Theoretical analysis and experiment both show that the bending deformation will seriously degrade the optical responsivity. To reduce the deformation of mirror, three kinds of structures, namely thin-metal-film structure, enhanced-beams structure and two-layers structure, are designed and fabricated. Experiments demonstrate that:For 180-μm mirror, thin-metal-film structure increases its deformation radius from 5.3mm to 25mm, the optical responsivity correspondingly increases 5.2 times. Enhanced-beams structure makes the deformation radius of the mirror increase 4 times, the optical responsivity increases 15%. The two-layers structure makes the mirror like an I beam, so the deformation of the mirror will be very little. To reduce blindness of production process and avoid unnecessary loses, for the mirror with length L, a critical deformation radius Rc is given. If its deformation radius is bigger than Rc, the deformation of the mirror doesn't need reducing. Theoretical analysis shows that there exists an optimal mirror length which makes the optical responsivity achieve its maximum under a certain mirror deformation. Based on the results, a substrate-free FPA with optimal mirror length is designed and fabricated. The experimental results of the performance of the FPA agree with the theoretical results.
     The visible light source usually is not an ideal point, and is nonmonochromatic. The influences of the spectral width and the spatial width of the light source on the optical responsivity are discussed. Analysis shows that the influence of the spectral width of LED can be ignored. The optical responsivity rapidly decreases with increasing the spatial width of the light source. However, for the mirror with length L, when the half width of the light source is less than Hc (Hc is defined as the critical half width of the source), the light source can be considered to be a monochromatic point light source.
     Under the constraint condition that the light intensity must not exceed CCD's full scale, the influence of the filtering location of knife-edge on the optical responsivity is researched. Then a dimensionless theoretical model is established. Analysis shows that:For plane mirror, when knife-edge blocks three quarters of the diffraction spectrum, the optical responsivity reaches its maximum; for deformed mirror, the optimal filtering location of knife-edge relates to the deformation radius. Compared to traditional knife-edge central filtering location, through optimizing the filtering location of knife-edge, for plane mirror, the optical responsivity can increase 80%; for 55-μm deformed mirror (deformation radius 6mm), theoretical analysis and experiment both demonstrate that the optical responsivity can increase 33%.
     For optical filtering readout technique, a general opitcial responsivity model is established for the first time. The model offers a theoretical basis for optimization design of optical filter. A detailed analysis is carried out for four filters, such as knife-edge, silt, rectangular hole and circular hole. The light utilization efficiency (LUE), optical resolution and dynamic range of the four filters are detailedly dicussed. The analysis results show:slit filtering mechod is always better than rectangular and circular hole; Compare slit filtering mechod with knife-edge filtering mechod, slit filtering mechod has the highest optical responsivity, knife-edge central filtering mechod has the highest LUE, optical resolution and dynamic range, and the performance of knife-edge optimum filtering mechod is between the two filtering methods.
     Under different filtering methods and different CCD background intensity, the system noise is measured by experiment. It's demonstrated that increaing the background intensity of CCD and improving optical filtering method not only can increase the optical responsivity, but also can decrease NETD efficiently.
引文
[1]孙家抦,遥感原理与应用,武汉:武汉大学出版社,2003。
    [2]W. Herschel, Experiments on the refrangibility of the invisible rays of the Sun, Philosophical Transaction on Royal Society of London,1800,90:284-292.。
    [3]杨世铭,陶文铨,传热学,北京:高等教育出版社,1998。
    [4]吴宗凡,柳美琳,张绍举等,红外与微光技术,北京:国防工业出版社,1998
    [5]周书铨,红外辐射测量基础,上海:上海交通大学出版社,1991。
    [6]Zhao Y., Optomechanical uncooled infrared imaging system, Dissertation of U.C. Berkeley, 2002.
    [7]P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology, New York:Wiley,1962.
    [8]T. W. Case, Notes on the Change of Resistance of Certain Substances in Light, Phys. Rev. 1917,9(4):305-310.
    [9]R. J. Cashman, Film-type infrared photoconductors, Proc. IRE,1959,47:1471-1475.
    [10]F. Shepherd, A. Yang, Silicon Schottky retinas for infrared imaging, IEDM Technology Digist, 1973,310-313.
    [11]W.D. Lawson, S. Nielson, E.H. Putley, A.S. Young, Preparation andproperties of HgTe and mixed crystals of HgTe-CdTe, Journal of Physics and Chemistry of Solids,1959,9(3-4): 325-329.
    [12]M.J.E. Golay, A pneumatic infraredd etector, Review of Scientific Instruments,1947, 18:357-362.
    [13]E.M. Wormser, Properties of thermistor infraredd etectors, Journal of Optics Society of America,1953,43:15-21.
    [14]P.R. Norton, Infrared detectors in the next millennium, Proc. SPIE,1999,3698:652-665.
    [15]Antoni Rogalski, Infrared detectors:status and trends, Progress in Quantum Electronics,2003, 27:59-210
    [16]A. Rogalski, J. Antoszewski and L. Faraone, Third-generation infrared photodetector arrays, Journal of Applied Physics,2009,105(9):091101-1-091101-44
    [17]Kruse, P.W., A comparison of the limits to the performance of thermal and photon detector imaging arrays. Infrared Physics & Technology,1995.36(5):869-882.
    [18]Kruse, P.W. Uncooled IR focal plane arrays in Infrared Technology XXI. Proceedings of the SPIE,1995.
    [19]Frank Niklaus, Christian Vieider and Henrik Jakobsen, MEMS-Based Uncooled Infrared Bolometer Arrays-A Review, Proc. SPIE,2007,6836:68360D.
    [20]Kruse P. W., Principle of uncooled infrared focal plane array, Semiconductors and Semimetals,1997,47:17-42.
    [21]C. Li, G.D. Skidmore, C. Howard, C.J. Han, L. Wood, D. Peysha, E. Williams, C. Trujillo, J. Emmett, G. Robas, D. Jardine, C.-F. Wan, E. Clarke, Recent development of ultra small pixel uncooled focal plane array at DRS, Proc. SPIE 2007,6542:1Y.1-1Y.12.
    [22]S. Wissmar, L. Hoglund, J. Andersson, C. Vieider, S. Susan, P. Ericsson, High signal to noise ratio quantum well bolometermaterials, Proc. SPIE 2006,6401:64010N.
    [23]L. D., R. F. Y., L. T. L., Monolithic dielectric BST infrared sensor arrays using a novel silicon-ferroelectric integration scheme based on improved porous silicon micromachining, 17th IEEE International Conference on MEMS,2004,576-579.
    [24]Afanasjev V. P., Graul J., Pankrashkin A.V., Pronin P., Tarakanov E.A., Piroelectric detectors of infrared radiation based on thin PZT films, Proceedings of IWRFRI,2000
    [25]V. Fuflyigin, E. Salley, P. Vakhutinsky, A. Osinsky, J. Zhao, I. Gergis and K. Whiteaker, Free-standing films of PbSc0.5Ta0.5O3 for uncooled infrared detectors, Applied Physics Letters, 2001,78:365-367.
    [26]D.Denison, M. Knottsa, M.McConneyb, and V. Tsukrukb, Experimental characterization of mm-wave detection by a micro-array of Golay cells ,Proc. SPIE,2009,7309:73090J.
    [27]K. Toshio, S. Minoru, M. Shouhe, U. Makoto, T. Nanao,T. Akio, I. Shigeyuki, N. Akihiro, E. Tsutomu, T. Shigeru, Y.Yuuichi, M. Susumu,F. Nahoya, T. Nobukazu, Uncooled infrared focal plane array having 128x128 thermopile detector elements, Proceedings of SPIE,1994,2269: 450-459.
    [28]M. Ueno, Y. Kosasayama, T. Sugino, Y. Nakaki, Y. Fujii, H. Inoue, K. Kama, T. Seto, M. Takeda and M. Kimata,640×480 pixel uncooled infrared FPA with SOI diode detectors, Proceedings of SPIE,5783:566-577.
    [29]Gimzewski J K, Gerber C, Meyer E, et al. Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett.1994,217(5-6):589-594
    [30]Barnes J R, Stephenson S J, Welland M E, et al. Photothermal spectroscopy with femtojoule sensitive using a micromechanical device. Nature,1994,372:79-82
    [31]P.D. Datskos, S. Rajic, I. Datskos, C.M. Eger, Novel photon detection based electronically inducedstress in silicon, Proceedings of SPIE 1998,3379:173-181.
    [32]K. Robinson, Cantilever thermal detector challenge microbolometer, Photonics Spectra,50, March1998.
    [33]P.D. Datskos, Micromechanical uncooled photon detectors, Proceedings of SPIE,2000,3948:
    80-93.
    [34]Wachter E A, Thundat T, Oden P I, et al. Remote optical detection using microcantilevers, Rev. Sci. Instrum.1996,67(10):3434-3439.
    [35]Datskos P G, Oden P I, Thundat T, et al. Remote infrared radiation detection using piezoresistive microcantilevers,Appl. Phys. Lett.1996,69(20):2986-2988.
    [36]Datskos P G, Lavrik N V, Rajic S, et al. Performance of uncooled microcantilever thermal detectors. Rev. Sci. Instrum.2004,75(4):1314-1148
    [37]Amantea R, Goodman L A, Pantuso F, et al. Progress towards an uncooled IR imager with 5 mK NETD. Proc. of SPIE,1998,3436:647-650.
    [38]S. Hunter, R. Amanteab, L. Goodmana, D. Kharasa, S. Gershteinb, J. Mateyb, S. Pernab, Y. Yub, N. Maleyb and L. White,High Sensitivity Uncooled Microcantilever Infrared Imaging Arrays, Proceedings of SPIE,2003,5074:469-480.
    [39]Hunter, S. R., Maurer, G., Jiang, L. and Simelgor, G. High Sensitivity Uncooled Microcantilever Infrared Imaging Arrays, Proc. ofSPIE.2006,6206:60261J-1.
    [40]Hunter, S., Maurer, G., Simelgor, G., Radhakrishnan, S., and Gray, J., High Sensitivity 25 μm and 50μm Pitch Microcantilever IR Imaging Arrays, Proc. of SPIE,2007,6542:65421F-1.
    [41]S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, J. Gray, K. Bachir, T. Pennell, M. Bauer, U. Jagadish,Development and optimization of microcantilever based IR imaging arrays, Proc. of SPIE,2008,6940:694013.
    [42]Panos G. Datskos, Slobodan Rajic, Irene Datskou, Photoinduced and thermal stress in silicon microcantilevers,Appl. Phys. Lett.,1998,73(16):2319-2321.
    [43]J. Varesi, J. Lai, T. Perazzo, et al., Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors, Appl. Phys. Lett.,1997,71(3):306-308.
    [44]H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, Ch. Gerber, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, Sequential position readout from arrays of micromechanical cantilever sensors, Appl. Phys. Lett.1996,70:3311-3313
    [45]L.R. Senesac, J.L. Corbeil, S. Rajic, N.V. Lavrik, P.G. Datskos, IR imaging using uncooled microcantilever detectors, Ultramicroscopy,2003,97:451-458.
    [46]Perazzo T., Mao M., Kwon O., et al, Infrared vision uncooled microoptomechanical camera,Applied Physics Letters,1999,74(23):3567-3569.
    [47]Mao M., Perazzo T., Kwon O., et al, Infrared vision using an uncooledthermo-opto-mechanical camera:design, microfabrication, and performance, Proceedings of IEEE MEMS Conference,1999,100-105.
    [48]Norton P., Mao M., Perazzo T., et al, Micro-optomechanical infrared receiver with optical readout-MIRROR, Proceedings of SPIE,2000,4028:72-78.
    [49]Mao. M, Perazzo T., O. Kwon, et al, Direct-view Uncooled micro-optomechanical infrared camera, Proceeding of IEEE MEMS Conference,1999,100-105.
    [50]Zhao Y., Mao M., and Majumdar A., Application of Fourier optics for detecting deflection ofinfrared-sensing microcantilever arrays, Microscale Thermophysical Engineering,1999, 3:249-251.
    [51]Zhao Y., Mao. M., Horowitz R., et al, Optomechanical uncooled infrared imaging system:design, microfabrication, and performance, Journal of MEMS,2002,11(2):136-146.
    [52]Ishizuya T., Suzuki J., Akagawa K., et al, Optically readable bi-material infrared detector, Journal of Institute of Image Information & Television Engineers,2001,55:304-309.
    [53]Ishizuya T., Suzuki J., Akagawa K., et al,160 multiplied by 120 pixels optically readable bi-material infrared detector, Proceeding Of IEEE MEMS Conference,2002,578-581.
    [54]Ishizuya T., et al., US Patent,6,080,988,2000.
    [55]Ishizuya T., et al., US Patent,6,339,219 B1.
    [56]Suzuki, et al., US Patent,6,469,301 B1.
    [57]J. Zhao, High Sensitivity Photomechanical MW-LWIR Imaging using an Uncooled MEMS Microcantilever Array and Optical Readout, Proc. SPIE,2005,5783,506-513.
    [58]J. Salerno, High Frame Rate Imaging Using Uncooled Optical Readout Photomechanical IR Sensor, Proc. SPIE 2007,6542:654245.
    [59]M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, Optical readout photomechanical imager:from design to implementation, Proc. of SPIE, 2009,7298:729801.
    [60]D. Grbovic, N. V. Lavrik, And P. G. Datskos, D. Forrai, E. Nelson, J. Devitt and B. Mclntyre, Uncooled infrared imaging using bimaterial microcantilever arrays, Applied Physics Letters, 2006,89:073118-1-3.
    [61]N. V. Lavrik, D. Grbovic, S. Rajic, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B.McIntyre, Uncooled infrared imaging using bimaterial microcantilever arrays, Proceeding of SPIE,2006,6206:62061k.
    [62]N. Lavrik, R. Archibald., D. Grbovic, S. Rajic, and P. Datskos, Uncooled MEMS IR Imagers with Optical Readout and Image Processing, Proc. of SPIE,2007,6542:65421E.
    [63]D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos,Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors, Journal of Applied Physics, 2008,104(5):054508.
    [64]D. Grbovic and G. Karunasiri, Fabrication of Bi-material MEMS detector arrays for THz
    imaging, Proc. of SPIE.,2009,7311:731108-1.
    [65]C.D.W. Jones, C.A. Bolle, R. Ryf, M.E. Simon et al, MEMS thermal imager with optical readout,Sensors and Actuators A,2009,155:47-57.
    [66]Manalis S. R., Minne S. C., Quate C. F., et al, Two-dimensional micromechanical bimorph arrays for detection of thermal radiation, Applied Physics Letters,1997,70(24):3311-3313.
    [67]M. Wu, J. Cook, R. DeVito, J. Li, E. Ma, R. Murano, N. Nemchuk, M. Tabasky, M. Wagner, Novel Low-Cost Uncooled Infrared Camera, Proc. of SPIE,2005,5783:496-505.
    [68]Matthias Wagner, Eugene Ma, John Heanue, and Shuyun Wu, Solid state optical thermal imagers, Proc. of SPIE,2007,6542:65421P.
    [69]Matthias Wagner,Solid state optical thermal imaging:performance update,Proc. SPIE,2008, 6940:694016.
    [70]Website of Redshift Systems Corp. http://redshiftsystems.com/site/
    [71]Dereniak, E.L. and G.D. Boreman, Infrared Detectors and Systems.1996, New York:John Wiley and Sons.
    [72]Datskos, P.G. and N.V. Lavrik, Detectors-Figures of Merit. Encyclopedia of Optical Engineering,2003.
    [73]Vincent, J.D., Fundamentals of Infrared Detector Operation and Testing.1989,New York: John Wiley and Sons.
    [74]Gol'tsman, G.N., et al., Picosecond superconducting single-photon opticaldetector. Applied Physics Letters,2001.79:705-707.
    [75]Lloyd, J.M., Thermal Imaging Systems.1975, New York:Plenum Press.
    [76]潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖,基于MEMS的光力学红外成像,实验力学,2004,19(4):403-406.
    [77]C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo,F. Dong and Z. Miao. A novel uncooled substrate-free optical-readable infrared detector:design, fabrication and performance, Meas. Sci. Technol.2006,17:1-6.
    [78]缪正宇,张青川,陈大鹏,伍小平,李超波,郭哲颖,董凤良,熊志铭,双材料微梁阵列室温物体红外成像,物理学报,2006,55(70):3208-3214.
    [79]Z. Miao, Q. Zhang,D. Chen, Z. Guo, F. dong, Z. Xiong,X. Wu, C. Li, B. Jiao, Uncooled IR imaging using optomechanical Ultramicroscopy,2007,107:610-616.
    [80]Dong F, Zhang Q, Chen D, Miao Z, Xiong Z, Guo Z, Li C, Jiao B, Wu X, Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array, Ultramicroscopy,2008,108(6):579-588.
    [81]DONG Feng-Liang, ZHANG Qing-Chuan, CHEN Da-Peng, MIAO Zheng-Yu, XIONG Zhi-Ming, GUO Zhe-Ying, LI Chao-Bo, JIAO Bin-Bin, WU Xiao-Ping, Optimized Optomechanical Micro-cantilever Array for Uncooled Infrared Imaging, CHIN.PHYS.LETT.2007,24(12):3362-3364.
    [82]董凤良,基于MEMS的光学读出红外成像技术研究,博士论文,中国科学技术大学,2007。
    [1]董凤良,基于MEMS的光学读出红外成像技术研究,博士论文,中国科学技术大学,2007。
    [2]李超波,基于MEMS技术的非制冷红外成像系统,博士论文,中国科学院微电子研究所,2007。
    [3]Zhao Y., Mao. M., Horowitz R., et al, Optomechanical uncooled infrared imaging system: design, microfabrication, and performance, Journal of MEMS,2002,11 (2):136-146.
    [4]郭哲颖,张青川,陈大鹏,伍小平,董凤良,缪正宇,熊志铭,李超波,光学读出室温物体红外成像,实验力学,2005,20(2):213-218.
    [5]程腾,张青川,陈大鹏,伍小平,史海涛,高杰,无基底焦平面阵列的红外成像性能分析,物理学报,2009,58(2):852-859。
    [6]熊志铭,张青川,陈大鹏,伍小平,郭哲颖,董凤良,缪正宇,李超波,光学读出微梁阵列红外成像及性能分析,物理学报,2007,56(05):2529-2536。
    [7]Z. Xiong, Q. Zhang, J. Gao, and X. Wu, D. Chen and B. Jiao, The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system, Journal of Applied Physics,2007,102:113524.
    [8]S. Garcia-Blanco, P. Topart, Y. Desroches, J. S. Caron, F. Williamson, C. Alain, and H. Jerominek, Lowtemperature vacuum hermetic wafer-level package for uncooled microbolometer FPAs, Proc. SPIE,2008,6884:68840P-1-8.
    [1]J. Lai, T. Perazzo, Z. Shi, et al., Optimization and performance of high-resolution micro-optomechanical thermal sensors, Sensors and Actuators A,1997,58:113-119.
    [2]Zhao Y., Mao M., and Majumdar A., Application of Fourier optics for detecting deflection ofinfrared-sensing microcantilever arrays, Microscale Thermophysical Engineering,1999, 3:249-251.
    [3]Ishizuya T., Suzuki J., Akagawa K., et al, Optically readable bi-material infrared detector, Journal of Institute of Image Information & Television Engineers,2001,55:304-309.
    [4]段志辉,非相干光技术在阶跃物体形状重建和微梁阵列红外成像中的应用,硕士毕业论文,中国科学技术大学,2003。
    [5]J. W. Goodman,Introduction to Fourier Optics, New York:McGraw-Hill,1968, Chap.5.
    [6]刘鸿文,材料力学,北京:高等教育出版社,2005。
    [7]G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc.1909, 82:172-175.
    [8]李俊韬,朱健,王自鑫,李鸣,周建英.发光二极管的时间与空间相干性研究,中国激光,2005,32(1):31-34。
    [9]季家镕,高等光学教程—光学的基本电磁理论,北京:高等教育出版社,2007。
    [1]段志辉,非相干光技术在阶跃物体形状重建和微梁阵列红外成像中的应用,硕士毕业论文,中国科学技术大学,2003。
    [2]J. W. Goodman,Introduction to Fourier Optics, New York:McGraw-Hill,1968.
    [3]Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, Optical readout method for microcantilever array sensing and its sensitivity analysis, Opt. Lett.,2007,32:594-596.
    [4]H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging, Opt. Express, 2009,17:4367-4382.
    [5]Ming Liu,Yuejin Zhao, Liquan Dong, Xiaomei Yu,Xiaohua Liu, Mei Hui, Jianfeng You,and Yuliang Yi. Holographic illumination in optical readout focal plane array infrared imaging system, Opt. Lett.,2009,34(22):3547-3549.
    [6]Ishizuya T., Suzuki J., Akagawa K., et al, Optically readable bi-material infrared detector, Journal of Institute of Image Information & Television Engineers,2001,55:304-309.
    [7]D. Grbovic, N. V. Lavrik, And P. G. Datskos, D. Forrai, E. Nelson, J. Devitt and B. Mclntyre, Uncooled infrared imaging using bimaterial microcantilever arrays, Applied Physics Letters, 2006,89:073118-1-3.
    [8]C.D.W. Jones, C.A. Bolle, R. Ryf, M.E. Simon et al, MEMS thermal imager with optical readout,Sensors and Actuators A,2009,155:47-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700