几类重要平面分子结构和稳定性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Investigations on the Structures and Stability for Several Important Planar Molecules
  • 作者:贺海鹏
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2009
  • 导师:丁益宏
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-12-01
摘要
本文利用量子化学计算方法对包含五原子平面四配位碳分子、基于杂原子取代的平面分子、基于平面四配位分子的夹心组装及其稳定化等几类重要平面分子结构和稳定性做了详细的理论研究。在总结前人大量实验和理论工作的基础上。首次系统的考虑了配体为Al、Ga、Si、Ge的平面碳分子稳定体热力学及动力学稳定性;此外我们率先研究了以高周期元素Si、Ge、Sn、Pb为中心的非碳中心平面分子的稳定性;在我们以前大量的杂夹板计算基础上,首次计算了非碳中心的平面分子的杂夹板夹心组装及其稳定化的理论研究。我们将平面化学的概念进行了创新性的理解和发展,不仅将配体的从传统的Al、Si原子拓展到Ga、Ge,还将中心原子从C原子的发展到更高周期的Si、Ge、Sn、Pb原子,系统的研究了这一类分子的平面稳定性。我们的研究工作大大的丰富了平面化合物的概念,并且将其应用领域极大的推广。这为实验上设计和合成具有特殊结构和奇特性质的新型平面分子提供了有益的指导。最终为气相原子簇单元通向分子材料的应用奠定了理论基础。本文的主要成果包括以下几个方面:
     (1)利用B3LYP和CCSD(T)(单点)方法,首次研究了含Si、Ge、Sn、Pb的六原子体系[MAl_5]~+中各个异构体的结构及稳定性。结果表明,尽管与[CAl_5]~+一样也具有18个价电子,[MAl_5]~+ (M=Si、Ge、Sn、Pb)体系并不存在具有平面五配位结构的异构体,其能量的全局极小点为具有Cs对称性的蝶形异构体int1,这是由于中心原子M (Si、Ge、Sn、Pb)较大的体积显著破坏了[MAl_5]~+中平面五配位结构的稳定性。
     (2)在B3LYP计算水平下,使用混合基组6-311+G(d)&LANl2dz首次对含Sn、Pb的五原子平面四配位碳分子[CAl_3X]和[CAl_3X]~- (X=Sn,Pb)两个体系(分别具有17和18价电子)的异构体结构及能量进行了量子化学计算研究,并与文献已经报道的[CAl_3X]和[CAl_3X]~- (X=Si、Ge)作了比较。结果表明,具有平面四配位碳结构的异构体int1是能量的全局最小点。相对于17e的[CAl_3X]体系来说,在得到一个电子以后形成18e的[CAl_3X]~- int1异构体在热力学上变得更稳定。本项研究将进一步丰富五原子平面四配位碳化学。
     (3)五原子的平面四配位碳分子的理论及实验研究是当今分子科学的热点问题之一。首次对含Si的pptC单元CAl_2Si_2首次开展了夹心组装的理论研究。我们发现,当CAl_2Si_2与碱金属及碱土金属(M=Li,Na,K,Be,Mg,Ca)组装成夹心化合物时,由于CAl_2Si_2之间强烈的熔合作用,不能采取传统的“同夹板夹心”方式,即[(CAl_2Si_2)M(CAl_2Si_2)]~(q+),而我们近期提出的组装形式——“杂夹板夹心”([CpM (CAl_2Si_2)] ~(q+))更适合CAl_2Si_2的组装。“杂夹板夹心”组装方案和离子性相互作用对于CAl_2Si_2的组装和稳定化起着重要作用。在组装的过程中,CAl_2Si_2的电子和结构特征得到很好的保持。因此,平面四配位碳单元CAl_2Si_2可以作为“建筑单元”来构建大尺寸含平面中心碳的化合物。
It is fascinating to see and to understand the chemical structure of molecules. The chemical structure is a consequence not only of their constituent elements but also of the way those atoms are connected to each other, and what their special arrangement is. Any change in the spatial distribution of the nuclei will modify the nature of the chemical bond and vice versa.
     That the tetracoordinate tetravalent carbon atom prefers a tetrahedral arrangement of its four ligands was first recognized independently by J. H. van’t Hoff and J. A. LeBel in 1874. This contribution marks a milestone in understanding the structure and sterochemistry of carbon compounds. Almost a century after the publication of the van’t Hoff-LeBel model, Hoffmann et al. suggested rules to stabilize molecules containing a planar tetracoordinate carbon (ptC) atom in 1970, challenging the second structural foundation of Organic Chemistry. There are two approaches, to achieving this goal. The electronic approach involves selecting substituents that preferentially stabilize a planar disposition of the carbon bonds over the normal tetrahedral arrangement. The alternative approach is based on using mechanical molecular strain forces exerted by the surrounding ligands to the carbon atom. Inspired on Hoffmann’s ideas, several groups have successfully suggested and experimentally characterized molecules containing ptCs. The main results are summarized as follows:
     (1)Very recently, theoretical chemists have found that the hexa-atomic system [CAl_5]~+ has a planar pentacoordinate carbon structure as the most stable form. In this paper, we attempt to further such topic. By means of the B3LYP and CCSD(T) (single-point) methods, we for the first time investigate the isomeric structures and thermodynamic stability of four hexa-atomic systems [MAl_5]~+ (M=Si,Ge,Sn,Pb). The results show that although bearing the same 18-valence electrons as [CAl_5]~+,all the [MAl_5]~+ (M=Si, Ge, Sn, Pb) systems do not have a planar pentacoordinate M isomer. Instead, the global structure is a Cs-symmetrized butterfly isomer int1.This can be rationalized that the bulkier central atom M (Si, Ge, Sn, Pb) than C has significantly destructed the stability of the planar pentacoordinate structure of [MAl_5]~+.
     (2)The isomeric structures and energetics of two Sn,Pb-containing penta-atomic planar tetracoordinate carbon molecules [CAl_3X] and [CAl_3X]~- (X=Sn, Pb) (with 17 and 18 valence electrons, respectively) were studied by using the B3LYP method combined with the mixed basis set 6-311+G(d)&LANl2dz for the first time. The results were compared with the previously reported [CAl_3X] and [CAl_3X]~- (X=Si, Ge). It was shown that the isomer int1 with the planar tetracoordinate carbon structure was the global minimum point. Relative to the 17e system [CAl_3X], achieving an additional electron to form the 18e system [CAl_3X]~- int1 becomes thermodynamically more stable. The present work would enrich the penta-atomic planar tetracoordinae carbon chemistry.
     (3)One of the focuses of molecular science is the theoretical and experimental investigations on the pentatomtic planar coordinated carbon (ptC) molecules. This paper for the first time reported the design of sandwich-like compounds based on a Si-containing ptC unit CAl_2Si_2. We found that due to the strong fusion interaction between CAl_2Si_2 decks, the assembly of CAl_2Si_2 with the alkali and alkaline earth metals(M=Li,Na, K, Be ,Mg,Ca)in form of the traditional“homo-deckered sandwich”scheme to form [(CAl_2Si_2)M(CAl_2Si_2)]~(q+) is unstable. Instead, our recently proposed“hetero-decked sandwich”scheme can be effectively applied to CAl_2Si_2 to form [CpM (CAl_2Si_2)]~(q+)). Both the“hetero-decked sandwich”and the ionic interaction play important roles in the assembly and stabilization of CAl_2Si_2. During the assembly, the electronic and structural features of CAl_2Si_2 are well kept。Thus, the ptC molecule CAl_2Si_2 can act as a“building block”to construct large-scale compounds that contain planar coordinated carbon centers.
引文
[1] van’t Hoff, J. H. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 44.
    [2] Le Bel, J. A. Bull. Soc. Chim. Fr. 1874, 22, 337.
    [3] Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Jr. J. Am. Chem. Soc. 1970, 92, 4992.
    [4] Woodward, R. B.; Hoffmann, R. The conserVation of orbital symmetry; Verlag Chemie: Weinheim, 1970.
    [5] Pepper, M. J. M.; Shavitt, I.; Schleyer, P. v. R.; Glukhotsev, M. N.; Janoscheck, R.; Quack, M. J. Comput. Chem. 1995, 16, 207.
    [6] Yoshizawa, K.; Suzuki, A.; Yamabe, T. J. Am. Chem. Soc. 1999, 121, 5266.
    [7] Yoshizawa, K.; Suzuki, A. Chem. Phys. 2001, 271, 41.
    [8] Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
    [9] Minyaev, R. M.; Gribanova, T. N.; Minkin, V. I.; Starikov, A. G. J. Org. Chem., 2005, 70: 6693
    [10] Li, X.; Wang, L. S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc., 1999, 121: 6033
    [11] Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc., 1998, 120: 7967
    [12] Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc., 2000, 122: 7681
    [13] Wang, Z. X.; Manojkumar, T. K.; Wannere, C.; Schleyer, P. v. R. Org. Lett., 2001, 3: 1249
    [14] Minkin, V. I.; Minyaev, R. M.; Starikov, A. G.; Gribanova, T. N. Russ. J. Org. Chem., 2005,41: 1289
    [15] Roy, D.; Corminboeuf, C.; Wannere, C. S.; King, R. B.; Schleyer, P. v. R. Inorg. Chem., 2006, 45: 8902
    [16] Xie, H. B.; Ding, Y. H. J. Chem. Phys., 2007, 126: 184302
    [17] Minkin, V. I.; Minyaev, R. M.; Hoffmann, R. Russ. Chem. ReV. 2002, 71, 869 [Usp. Khim. 2002, 71, 989].
    [18] Bo¨hm, M. C.; Gleiter, R.; Schang, P. Tetrahedron Lett. 1979, 2575.
    [19] Chandrasekhar, J.; Wu¨rthwein, E.-U.; Schleyer, P. v. R. Tetrahedron 1981, 37, 921.
    [20] McGrath, M. P.; Radom, L. J. Am. Chem. Soc. 1993, 115, 3320.
    [21] Lyons, J. E.; Rasmussen, D. R.; McGrath, M. P.; Nobes, R. H.; Radom, L. Angew. Chem. 1994, 106, 1722; Angew. Chem., Int. Ed. Engl. 1994, 33, 1667.
    [22] Radom L.; Rasmussen, D. R. Pure Appl. Chem. 1998, 70, 1977.
    [23] Rasmussen, D. R.; Radom, L. Angew. Chem. 1999, 111, 3051; Angew. Chem., Int. Ed. 1999, 38, 2876.
    [24] Rasmussen, D. R.; Radom, L. Chem.sEur. J. 2000, 6, 2470.
    [25] Wang, Z.; Schleyer, P. v. R. J. Am. Chem. Soc. 2002, 124, 11979.
    [26] Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
    [27] Sorger, K.; Schleyer, P. v. R. J. Mol. Struct. [THEOCHEM] 1995, 338, 317.
    [28] Billups, W. E.; Haley, M. M. J. Am. Chem. Soc. 1991, 113, 5084.
    [29] Saini, R. K.; Litosh, V. A.; Daniels, A. D.; Billups, A. D. Tetrahedron Lett. 1999, 40, 6157.
    [30] Merino, G.; Me′ndez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 5026.
    [31] Merino, G.; Me′ndez-Rojas, M. A.; Beltra′n, H. I.; Corminboeuf, C.; Heine, T.; Vela, A. J. Am. Chem. Soc. 2004, 126, 16160.
    [32] Pancharatna, P. D.; Me′ndez-Rojas, M. A.; Merino, G.; Vela, A.; Hoffmann, R. J. Am. Chem. Soc. 2004, 126, 15309.
    [33] Perez, N.; Heine, T.; Barthel, R.; Seifert, G.; Vela, A.; Me′ndez-Rojas, M. A.; Merino, G. Org. Lett. 2005, 7, 1509.
    [34] Schleyer, P. v. R.; Boldyrev, A. I. J. Chem. Soc., Chem. Commun. 1991, 1536.
    [35] Zubarov, D. Y.; Boldyrev, A. I. J. Chem. Phys. 2005, 122, 144322.
    [36] Li, X.; Zhang, H.; Wang, L. S.; Geske, G. D.; Boldyrev, A. I. Angew. Chem. 2000, 112, 3776; Angew. Chem., Int. Ed. 2000, 39, 3630.
    [37] Boldyrev, A. I.; Wang, L. J. Phys. Chem. A 2001, 105, 10759.
    [38] Ro¨ttger, D.; Erker, G. Angew. Chem. 1997, 109, 840; Angew. Chem., Int. Ed. Engl. 1997, 36, 2372.
    [39] Erker, G. Chem. Soc. ReV. 1999, 28, 307.
    [40] Siebert, W.; Gunale, A. Chem. Soc. ReV. 1999, 28, 367.
    [41] Choukroun, R.; Lorber, C. Eur. J. Inorg. Chem. 2005, 4683.
    [42] Venepalli, B. R.; Agosta, W. C. Chem. ReV. 1987, 87, 399.
    [43] Agosta, W. C. In The Chemistry of the Alkanes and Cycloalkanes; Patai, S., Rappoport, Z., Eds.; Wiley-Interscience: Chichester, 1992; p927.
    [44] Thommen, M.; Keese, R. Synlett 1997, 231.
    [45] Kuck, D. Top. Curr. Chem. 1998, 169, 168.
    [46] Kuck, D. In AdVances in Theoretically Interesting Molecules; Thummel, R. P., Ed.; JAI Press: Greenwich, CT, 1998; Vol. 4, p81.
    [47] Pople, J. A. Angew. Chem. 1999, 111, 2014; Angew. Chem., Int. Ed. 1999, 38, 1894.
    [48] Foresman, J. B.; Frisch, E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, 1996.
    [49] Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
    [50] Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, J. J.; Hommes, N. J. Am. Chem. Soc. 1996, 118, 6317.
    [51] Schleyer, P. v. R.; Jiao, H. J.; Hommes, N. J. Am. Chem. Soc. 1997, 119, 12669.
    [52] Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. ReV. 2005, 105, 3842.
    [53] Boldyrev, A. I.; Wang, L. Chem. ReV. 2005, 105, 3716.
    [54] Silvi, B.; Fourre′, I.; Alikhani, M. E. Monatsh. Chem. 2005, 136, 855.
    [55] Poater, J.; Duran, M.; Sola`, M.; Silvi, B. Chem. ReV. 2005, 105, 3911.
    [56] Minyaev, R. M.; Gribanova, T. N.; Starikov, A. G.; Gapurenko, O. A.; Minkin, V. I. Dokl. Chem 2005, 404, 193.
    [57] Pepper, M. J. M.; Shavitt, I.; Schleyer, P. v. R.; Glukhotsev, M. N.; Janoscheck, R.; Quack,M. J. Comput. Chem. 1995, 16, 207.
    [58] Yoshizawa, K.; Suzuki, A.; Yamabe, T. J. Am. Chem. Soc. 1999, 121, 5266.
    [59] Yoshizawa, K.; Suzuki, A. Chem. Phys. 2001, 271, 41.
    [60] Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
    [61] Geske, G. D.; Boldyrev, A. I. Inorg. Chem. 2002, 41, 2795.
    [62] Su, M. Inorg. Chem. 2005, 44, 4829.
    [63] Jemmis, E. D.; Parameswaran, P.; Phukan, A. K. Mol. Phys. 2005, 103, 897.
    [64] Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937.
    [65] Wang, Z.; Schleyer, P. v. R. Science 2001, 292, 2465.
    [66] Erhardt, S.; Frenking, G.; Chen, Z.; Schleyer, P. v. R. Angew. Chem. 2005, 117, 1102; Angew. Chem., Int. Ed. 2005, 44, 1078.
    [67] Schleyer, P. v. R. Chem. ReV. 2005, 105, 3433.
    [68] Boldyrev, A. I.; Wang, L. Chem. ReV. 2005, 105, 3716.
    [69] Gribanova, T. N.; Minyaev, R. M.; Minkin, V. I. MendeleeV Commun. 2001, 169.
    [70] Minyaev, R. M.; Gribanova, T. N.; Starikov, A. G.; Minkin, V. I. Dokl. Chem. 2002, 382, 41.
    [71] Grimes, R. S. In ComprehensiVe Organometallic Chemistry; Abel, E. W., Stone, F. G. A., Wilkinson, G. Eds.; Pergamon: New York, 1995; Vol. 2, p 373.
    [72] Ramachandran, B. M.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 2006, 45, 336.
    [73] Kiani, F. A.; Hofmann, M. Organometallics 2006, 25, 485.
    [74] Xie, Z. W. Coord. Chem. ReV. 2006, 250, 259.
    [75] Zhai, H.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. Angew. Chem. 2003, 115, 6186; Angew. Chem., Int. Ed. 2003, 42, 6004.
    [76] Gunale, A.; Pritzkow, H.; Siebert, D.; Steiner, D.; Berndt, A. Angew. Chem. 1995, 107, 1194; Angew. Chem., Int. Ed. Engl. 1995, 34, 1111.
    [77] Gunale, A.; Steiner, D.; Schweikart, D.; Pritzkow, H.; Berndt, A.; Siebert, W. Chem.sEur. J. 1998, 4, 44.
    [78] Gunale, A.; Pritzkow, H.; Siebert, W.; Steiner, D.; Berndt, A.; Hyla-Krispin, I.; Gleiter, R. In AdVances in Boron Chemistry; Siebert, W., Ed.; The Royal Society of Chemistry: Cambridge,1997.
    [79] Sahin, Y.; Hartmann, M.; Geiseler, G.; Schweikart, D.; Balzereit, C.; Frenking, G.; Massa, W.; Berndt, A. Angew. Chem. 2001, 113, 2725; Angew. Chem., Int. Ed. 2001, 40, 2662.
    [80] Albright, T. T.; Burdett, J. K.; Whangbo, M. H. Orbital Interactions in Chemistry; Wiley & Sons: New York, 1985.
    [90] Schmitz, A.; Prevot, L.; Thommen, M.; Eberle, M. K.; Bigler, P.; Keese, R. Manuscript in preparation.
    [91] Thommen, M.; Keese, R.; Fo¨rtsch, M. Acta Crystallogr. 1996, C52, 2051.
    [92] Wang, J.; Thommen, M.; Keese, R. Acta Crystallogr. 1996, C52, 2311.
    [93] Rao, V. B.; George, C. F.; Wolff, S.; Agosta, W. C. J. Am. Chem. Soc. 1985, 107, 5732.
    [94] Denmark, S. E.; Kramps, L. A.; Montgomery, J. I. Angew. Chem. 2002, 114, 4296; Angew. Chem., Int. Ed. 2002, 41, 4122.
    [95] Denmark, S. E.; Montgomery, J. I. Angew. Chem. 2005, 117, 3798; Angew. Chem., Int. Ed. 2005, 44, 3732.
    [96] Minkin, V. I.; Minyaev, R. M.; Orlova, G. V. J. Mol. Struct. [THEOCHEM] 1984, 110, 241.
    [97] Balji, V.; Michl, J. Pure Appl. Chem. 1988, 60, 189.
    [98] Lewars, E. J. Mol Struct. [THEOCHEM] 1998, 423, 173; 2000, 507, 165.
    [99] Kenny, J. F.; Krueger, K. M.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., III J. Phys. Chem. A 2001, 105, 7745.
    [100] Minkin, V. I.; Minyaev, R. M. Dokl. Chem 2002, 385, 502.
    [101] Minyaev, R. M.; Minkin, V. I.; Gribanova, T. N.; Starikov, A. G.; Hoffmann, R. J. Org. Chem. 2003, 68, 8588.
    [102] Minyaev, R. M.; Minkin, V. I.; Gribanova, T. N.; Starikov, A. G.; Hoffmann, R. J. Org. Chem. 2003, 68, 8588.
    [103] Mieusset, J.-L.; Brinker, U. H. J. Org. Chem. 2005, 70, 10572.
    [104] Luef, W.; Keese, R. J. Mol. Struct. [THEOCHEM] 1992, 257, 353.
    [105] O’Neal, H. F.; Benson, S. W. J. Phys. Chem. 1968, 72, 1866 and 1968.
    [106] Flowers, M. C.; Frey, H. M. J. Chem. Soc. 1961, 5550.
    [107] Genaux, [g] T.; Kern, F.; Walters, W. D. J. Am. Chem. Soc. 1953, 75, 6196.
    [108] Wiberg, K. B.; McMurdie, N.; Mcclusky, J. V.; Hadad, C. M. J. Am. Chem. Soc. 1993, 115, 10653.
    [109] Wiberg, K. B.; McCusky, J. V. Tetrahedron Lett. 1987, 28, 5411.
    [110] Wolff, S.; Venepalli, R. B.; Gorge, C. F.; Agosta, W. C. J. Am. Chem. Soc. 1988, 110, 6785.
    [111] Zhang, C.; Bourgin, D.; Keese, R. Tetrahedron 1991, 47, 3059. [112] Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
    [113] Cayton, R. H.; Chacon, S. T.; Chisholm, M. H.; Hampden-Smith, M. J.; Huffman, J. C.; Folting, K.; Ellis, P. D.; Huggins, B. A. Angew. Chem. 1989, 101, 1547; Angew. Chem., Int. Ed. Engl. 1989, 28, 1523.
    [114] Chacon, S. T.; Chisholm, M. H.; Folting, K.; Huffman, J. C.; Hampden-Smith, M. J. Organometallics 1991, 10, 3722.
    [115] Chisholm, M. H. J. Chem. Soc., Dalton Trans. 1996, 1781.
    [116] Ogoshi, S.; Tsutsumi, K.; Ooi, M.; Kurosawa, H. J. Am. Chem. Soc. 1995, 117, 10415.
    [117] Ogoshi, S.; Nishida, T.; Tsutsumi, K.; Ooi, M.; Shinagawa, T.; Akasaka, T.; Yamane, M.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 3223.
    [118] Kurosawa, H. J. Organomet. Chem. 2004, 689, 4511.
    [119] Huang, J.-H.; Luci, J. J.; Lee, T.-Y.; Swenson, D. C.; Jensen, J. H.; Messerle, L. J. Am. Chem. Soc. 2003, 125, 1688.
    [120] Hyla-Kryspin, I.; Gleiter, R.; Rohmer, M.-M.; Devemy, J.; Gunale, A.; Pritzkow, H.; Siebert, W. Chem.sEur. J. 1997, 3, 294.
    [121] Cotton, F. A.; Millar, M. J. J. Am. Chem. Soc. 1977, 99, 7886.
    [122] Buchwald, S. L.; Lucas, E. A.; Davis, W. M. J. Am. Chem. Soc. 1989, 111, 397.
    [123] Harder, S.; Boersma, J.; Brandsma, L.; van Heteren, A.; Kanters, J. A.; Bauer, W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1988, 110, 7802.
    [124] Erker, G.; Fro¨mberg, W.; Angermund, K.; Schlund, R.; Kru¨ger, C. J. Chem. Soc., Chem. Commun. 1986, 372.
    [125] Ro¨ttger, D.; Erker, G.; Fro¨hlich, R.; Grehl, M.; Silverio, S. J.; Hyla-Pryspin, I.; Gleiter, R. J. Am Chem. Soc. 1995, 117, 10503.
    [126] Ahlers, W.; Erker, G.; Fro¨hlich, R.; Peuchert, U. Chem. Ber./Recl. 1997, 130, 1069.
    [127] Menzel, M.; Steiner, D.; Winkler, H.-J.; Schwikart, D.; Mehle, S.; Fau S.; Frenking, G.; Massa, W.; Berndt, A. Angew. Chem. 1995, 107, 368; Angew. Chem., Int. Ed. Engl. 1995, 34, 327.
    [128] Pulst, Arndt, P.; Heller, B.; Baumann, W.; Kempe, R.; Rosenthal, U. Angew. Chem. 1996, 108, 1175; Angew. Chem., Int. Ed. Engl. 1996, 35, 1122.
    [129] Choukroun, R.; Cassoux, P. Acc. Chem. Res. 1999, 32, 494.
    [130] Choukroun, R.; Donnadieu, B.; Zhao, J.-S.; Cassoux, P.; Lepetit, C.; Silvi, B. Organometallics 2000, 19, 1901.
    [131] Choukroun, R.; Lorber, C. Eur. J. Inorg. Chem. 2005, 4683.
    [132] O. C. Thomas, W. J. Zheng, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 5514
    [133] O. C. Thomas, W. J. Zheng, T. P. Lippa, S. J. Xu, S. A. Lyapustina, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 9895,
    [134] B. D. Leskiw, A. W. Castleman, C. Ashman, S. N. Khanna, J. Chem. Phys. 2001, 114, 1165
    [135] V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348
    [136] J. F. Stoddart, ed. Acc. Chem. Res. 2001. 34 [6] , special issue, 409-522.
    [137] Lehn, J.-M. Weinheim, 1995; pp 124-127.
    [138] Bissell, R. A.; Co′rdova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133-137.
    [139] Livoreil, A.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. J. Am. Chem.Soc. 1994, 116, 9399-9400.
    [140] Collin, J.-P.; Gavin? a, P.; Sauvage, J.-P. J. Chem. Soc., Chem. Commun. 1996, 2005-2006.
    [141] Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Menzer, S.; Pe′rez-Garc?′a, L.; Prodi, L.; Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1995, 117, 11171-11197.
    [142] Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Hamers, C.; Mattersteig, G.; Montalti, M.; Shipway, A. N.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams,D. J. Angew. Chem., Int. Ed. 1998, 37, 333-337.
    [143] Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Parodi L. Angew. Chem. 1998, 110, 838-841;Angew. Chem., Int. Ed. 1998, 37, 800-802.
    [144] Ashton, P. R.; Ballardini, R.; Balzani, V.; Boyd, S. E.; Credi, A.; Gandolfi, M. T.; Go′mez-Lo′pez, M.; Iqbal, S.; Philp D., Preece, J. A.; Prodi, L.; Ricketts, H. G.; Stoddart, J. F.; Tolley, M. S.; Venturi, M. White, A. J. P.; Williams, D. J. Molecular Meccano 14. Chem. Eur. J. 1997, 3, 152-170.
    [145] Balzani, V.; Credi A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348-3391.
    [146] M. Broyer et al., in Cluster Assembled Materials, edited by K. Sattler, Material Science Forum Vol. 232 (Trans Tech Publications, Zurich-Utikon, 1996).
    [147] P. Jena, S. N. Behera, Clusters and Nanostructured Materials (Nova Science Publishers, Inc., New York, 1996).
    [148] Theory of Atomic and Molecular Clusters with a Glimpse at Experiments, edited by J. Jellinek, Springer Series in Cluster Physics (Springer, Berlin, 1999).
    [149] V. Kumar, K. Esfarjini, Y. Kawazoe, Advances in Cluster Science (Springer-Verlag, Heidelberg, 2000).
    [150] Quantum Phenomena in Clusters and Nanostructures, edited by S. N. Khanna and A. W. Castleman, Jr. (Springer, New York, 2003).
    [151] L. M. Yang, Y. H. Ding, C. C. Sun, J. Phys. Chem. A 2007, 111, 10675.
    [152] L. M. Yang, Y. H. Ding, W. Q. Tian, C. C. Sun, Phys. Chem. Chem. Phys 2007, 9, 5304.
    [153] L. M. Yang, Y. H. Ding, C. C. Sun, Theor. Chem. Acc. 2008, 119, 335.
    [154] L. M. Yang, H. P. He, Y. H. Ding, C. C. Sun, Organometallics 2008, 27, 1727–1735. .
    [155] L. M. Yang, J. Wang, Y. H. Ding, C. C. Sun, Phys. Phys. Chem. Chem. Phys., 2008, 10, 2316–2320.
    [156] L. M. Yang, C. B. Shao, Y. H. Ding, C. C.Sun, Phys. Chem. Chem. Phys., 2008, 10, 2020–2025.
    [157] L. M. Yang, X. P. Li, Y. H. Ding, C. C. Sun, Eur. J. Inorg. Chem. 2008, 2099–2106.
    [158] Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. -J.; Wang, L. -S. Coord. Chem. Rev. 2006. 250.2811
    [159] Zhai, H. -J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G. J. Phys. Chem. A 2003, 107, 9319.
    [160] Wyss, M.; Riaplov, E.; Batalov, A.; Maier, J. P.; Weber, T.; Meyer, W.; Rosmus, P. J. Chem. Phys. 2003, 119, 9703.
    [161] Cao, Z. X.; Tian, A. M.; Liang, G. M.; Yan, G. S. Chin. Chem. Lett. 1993, 4, 75.
    [162] Kuznetsov, A. E.; Boldyrev, A. I. Struct. Chem. 2002, 13, 141.
    [163] Wyss, M.; Riaplov, E.; Batalov, A.; Maier, J. P.; Weber, T.; Meyer, W.; Rosmus, P. J. Chem. Phys. 2003, 119, 9703.
    [164] Cias, P.; Araki, M.; Denisov, A.; Maier, J. P. J. Chem. Phys. 2004, 121, 6776.
    [165] Hernandez, R.; Simons, J. J. Chem. Phys. 1991, 94, 2961.
    [166] Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H.-J.; Wang, L. S. J. Chem. Phys. 2005, 122, 054313.
    [167] Li, Q. S.; Jin, Q. J. Phys. Chem. A 2003, 107, 7869.
    [168] Li, Q. S.; Gong, L. F. J. Phys. Chem. A 2004, 108, 4322.
    [169] Alexandrova, A. N.; Zhai, H.-J.; Wang, L. S.; Boldyrev, A. I. Inorg. Chem. 2004, 43, 3552.
    [170] Li, S. D.; Guo, J. C.; Miao, C. Q.; Ren, G. M. Angew. Chem. Int. Ed. 2005, 44, 2158.
    [171] Li, S. D.; Miao, C. Q.; Guo, J. C.; Ren, G. M. J. Comput. Chem. 2006, 27, 1858.
    [1] Bor, M. and Oppenheimer, R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    [2] W. J. Hehre, L. R. Schleyer, P. v. R. et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986.
    [3] D.A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    [4]唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982.
    [5]徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    [6] P.O.Lowdin, Correlation Problem in Many-Electron Quantum Mechanics Adv. Chem. Phys. 1959, 2, 207.
    [7] Dunning T H, Petersen K A. 1998. J. Chem. Phys., 108, 4761
    [8] Knowles P J, Handy N C. 1988. J.Phys. Chem., 92, 3079
    [9] M?ller C, Plesset M S. 1934. Phys. Rev., 46, 618
    [10] Olsen J, Christiansen O, J?rgensen P et al. 1996. J. Chem. Phys., 105, 5082
    [11] Schlegel H B. 1988. J. Phys. Chem., 92, 3075
    [12] J.A. Pople, R. Seeger, R. Krishnan, Variational Configuration Interaction Methods and Comparison with Perturbation Theory, Int. J. Quant. Chem. 1977, 11, 149.
    [13] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem. 1992, 96, 135.
    [14] R. Krishnan, H. B. Schlegel, J. A. Pople, Derivate Studies in Configuration Interaction Theory J. Chem. Phys. 1980, 72, 4654.
    [15] B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer, AnalyticGradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach J. Chem. Phys. 1980, 72, 4652.
    [16] E. A Salter, G. W. Trucks, R. J. Bartlett, Analytic Energy Derivatives in Many-Body Methods I., J. Chem. Phys. 1989, 90, 1752.
    [17] K. Raghavachari, J. A. Pople, Int. J. Quant. Chem. 1981, 20, 167.
    [18] J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configura- tion Interaction. A General Technique for Determining Electron Correlation Energies, J. Chem. Phys. 1987, 87, 5968
    [19] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 1964, 136, 864. 35
    [20] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 1965, 140, 1133.
    [21] Bartlett R J. 1989. J.Phys. Chem.,93, 1697
    [22] Bernboldt D E, Bartlett R J . 1999. Adv. Quantum Chem., 34, 271
    [23] Cizek J. 1969. Adv. Chem. Phys., 10, 35
    [24] Coester F, Kummel H. 1960. Nud. Phys., 17, 477
    [25] Grissom B. Charles, Chem. Rev., 1995, 95, 3.
    [26] P. A. Frey, Chem. Rev. 1990, 90, 1343.
    [27] S. Wilson, Chem. Rev. 1980, 80, 263.
    [28] M. S. Kharasch, J. V. Mansfield, F. R. Mayo, J. Am. Chem. Soc., 1937, 59, 1155
    [29] W.C. Gardiner, Combustion Chemistry, Springer-Verlag: New York, 1984.
    [30] L.K. Puri, Environmental Implications of Combustion Processes, CRC Press: Boca Raton, FL, 1993.
    [31] S.J. Harris, A.M. Weiner, Annu. Rev. Phys. Chem. 1985, 36, 31.
    [32] J.A. Miller, R.J. Kee, C.K. Westbrook, Annu. Rev. Phys. Chem. 1990, 41, 345.
    [33] E. Herbst, The Chemistry of Interstellar Space Angew. Chem. Int. Ed. Engl. 1990, 29, 595-608.
    [34] D. Smith, Chem. Rev. 1992, 92, 1473-1485.
    [35] Les Houches Workshop; Solid Interstellar Matter; The ISO Revolution; d’Hendecourt, L, Joblin, C, Jones, A., Eds.; Springer/EDP Sciences; New York, 1999.
    [36] Smith I. W.M., & Rowe B.R., Acc. Chem. Res. 2000, 33, 261 and references therein.
    [1] van’t Hoff, J. H. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 44.
    [2] Le Bel, J. A. Bull. Soc. Chim. Fr. 1874, 22, 337.
    [3] Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Jr. J. Am. Chem. Soc. 1970, 92, 4992.
    [4] Woodward, R. B.; Hoffmann, R. The conserVation of orbital symmetry; Verlag Chemie: Weinheim, 1970.
    [5] Wang, Z. X.; Manojkumar, T. K.; Wannere, C.; Schleyer, P. v. R. Org. Lett., 2001, 3: 1249
    [6] Minkin, V. I.; Minyaev, R. M.; Starikov, A. G.; Gribanova, T. N. Russ. J. Org. Chem., 2005, 41: 1289
    [7] Roy, D.; Corminboeuf, C.; Wannere, C. S.; King, R. B.; Schleyer, P. v. R. Inorg. Chem., 2006, 45: 8902
    [8] Xie, H. B.; Ding, Y. H. J. Chem. Phys., 2007, 126: 184302
    [9] Minkin, V. I.; Minyaev, R. M.; Hoffmann, R. Russ. Chem. ReV. 2002, 71, 869 [Usp. Khim. 2002, 71, 989
    [10] Bo¨hm, M. C.; Gleiter, R.; Schang, P. Tetrahedron Lett. 1979, 2575.
    [11] Chandrasekhar, J.; Wu¨rthwein, E.-U.; Schleyer, P. v. R. Tetrahedron 1981, 37, 921.
    [12] McGrath, M. P.; Radom, L. J. Am. Chem. Soc. 1993, 115, 3320.
    [13] Lyons, J. E.; Rasmussen, D. R.; McGrath, M. P.; Nobes, R. H.; Radom, L. Angew. Chem. 1994, 106, 1722; Angew. Chem., Int. Ed. Engl. 1994, 33, 1667.
    [14] Radom L.; Rasmussen, D. R. Pure Appl. Chem. 1998, 70, 1977.
    [15] Rasmussen, D. R.; Radom, L. Angew. Chem. 1999, 111, 3051; Angew. Chem., Int. Ed. 1999, 38, 2876.
    [16] Rasmussen, D. R.; Radom, L. Chem.sEur. J. 2000, 6, 2470.
    [17] Wang, Z.; Schleyer, P. v. R. J. Am. Chem. Soc. 2002, 124, 11979.
    [18] Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
    [19] Sorger, K.; Schleyer, P. v. R. J. Mol. Struct. [THEOCHEM] 1995, 338, 317.
    [20] Billups, W. E.; Haley, M. M. J. Am. Chem. Soc. 1991, 113, 5084.
    [21] Saini, R. K.; Litosh, V. A.; Daniels, A. D.; Billups, A. D. Tetrahedron Lett. 1999, 40, 6157.
    [22] Merino, G.; Me′ndez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 5026.
    [23] Li, X.; Wang, L. S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc., 1999, 121: 6033
    [24] Li, X.; Zhang, H.; Wang, L. S.; Geske, G. D.; Boldyrev, A. I. Angew. Chem. 2000, 112, 3776; Angew. Chem., Int. Ed. 2000, 39, 3630.
    [25] Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons J. J. Am. Chem. Soc. 2000, 122, 7681.
    [26] Li, X.; Zhan, H. J.; Wang, L. S. Chem.Phys. Lett. 2002, 357, 415.
    [27] O. C. Thomas, W. J. Zheng, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 5514
    [28] O. C. Thomas, W. J. Zheng, T. P. Lippa, S. J. Xu, S. A. Lyapustina, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 9895,
    [29] B. D. Leskiw, A. W. Castleman, C. Ashman, S. N. Khanna, J. Chem. Phys. 2001, 114, 1165
    [30] Schleyer, P. v. R.; Boldyrev, A. I. J. Chem. Soc., Chem. Commun. 1991, 1536.
    [31] Keese, R. J. Chem. Rev. 2006, 106, 4787
    [32] Merino, G.; Vela, A.; Heine, T. J.Comput Chem. 2007, 28, 362
    [33] Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc., 1998, 120: 7967
    [34] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; J. A. Montgomery, J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.
    A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.02, Gaussian, Inc.: Wallingford CT, 2004.
    [35] Dennington, R., II; Todd, K.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R.; GaussView, version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.
    [36] Wang, L-S.; Li, J.; Pan, L-L. J. Chem. Phys. 2008, 129, 024302
    [1] Hoffmann, R., Alder, R. W., Wilcox, C. F. J. Am. Chem. Soc. 1970, 92, 4992.
    [2] Hoffmann, R., Pure. Appl. Chem. 1971, 28, 181.
    [3] Sorger, K., Schleyer, P. v. R. J. Mol. Struct. 1995, 338, 317.
    [4] Rottger, D., Erker, G. Angew. Chem. Int. Ed. 1997, 36, 12.
    [5] Choukroun, R., Cassoux, P. Acc. Chem. Res. 1999, 32, 494.
    [6] Siebert, W. Gunale. A. Chem. Soc. Rev. 1999, 28, 367.
    [7] Li, X., Wang, L.-S., Boldyrev, A. I., Simons, J. J. Am. Chem. Soc. 1999, 121, 6033.
    [8] Wang, L.-S., Boldyrev, A. I., Li, X., Simons, J. J. Am. Chem. Soc. 2000, 122, 7681.
    [9] Zhang, L. X., Wang, L. -S., Geske, G. D., Boldyrev, A. I.. Angew. Chem. Int. Ed. 2000, 39, 3630.
    [10] Merino, G., Mendez-Rojas, M. A., Vela, A. J. Am. Chem. Soc. 2003, 125, 6026.
    [11] Pancharatna, P. D., Mendez-Rojas, M. A., Merino, G., Vela, A., Hoffmann, R. J. Am. Chem. Soc. 2004, 126, 15309.
    [12] Perez, N., Heine, T., Barthel, R., Seifert, G., Vela, A., Me′ndez -Rojas, M. A., Merino, G. Org. Lett. 2005, 7, 1509.
    [13] O. C. Thomas, W. J. Zheng, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 5514
    [14] O. C. Thomas, W. J. Zheng, T. P. Lippa, S. J. Xu, S. A. Lyapustina, K. H. Bowen, Jr., J. Chem. Phys. 2001, 114, 9895,
    [15] B. D. Leskiw, A. W. Castleman, C. Ashman, S. N. Khanna, J. Chem. Phys. 2001, 114, 1165 16 Wu Y. B., Lu H. G., Li S. D., Wang Z. X. J. Phys. Chem. A 2009, 113: 3395-3402
    [17] Luef, W.; Keese, R. J. Mol. Struct. [THEOCHEM] 1992, 257, 353.
    [18] O’Neal, H. F.; Benson, S. W. J. Phys. Chem. 1968, 72, 1866 and 1968.
    [19] Flowers, M. C.; Frey, H. M. J. Chem. Soc. 1961, 5550.
    [20] Genaux, T.; Kern, F.; Walters, W. D. J. Am. Chem. Soc. 1953, 75, 6196.
    [21] Wiberg, K. B.; McMurdie, N.; Mcclusky, J. V.; Hadad, C. M. J. Am. Chem. Soc. 1993, 115,10653.
    [22] Wiberg, K. B.; McCusky, J. V. Tetrahedron Lett. 1987, 28, 5411.
    [23] Wolff, S.; Venepalli, R. B.; Gorge, C. F.; Agosta, W. C. J. Am. Chem. Soc. 1988, 110, 785.
    [24] Zhang, C.; Bourgin, D.; Keese, R. Tetrahedron 1991, 47, 3059. (112) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
    [25] Cayton, R. H.; Chacon, S. T.; Chisholm, M. H.; Hampden-Smith, M. J.; Huffman, J. C.; Folting, K.; Ellis, P. D.; Huggins, B. A. Angew. Chem. 1989, 101, 1547; Angew. Chem., Int. Ed. Engl. 1989, 28, 1523.
    [26] Chacon, S. T.; Chisholm, M. H.; Folting, K.; Huffman, J. C.; Hampden-Smith, M. J. Organometallics 1991, 10, 3722.
    [27] Chisholm, M. H. J. Chem. Soc., Dalton Trans. 1996, 1781.
    [28] Ogoshi, S.; Tsutsumi, K.; Ooi, M.; Kurosawa, H. J. Am. Chem. Soc. 1995, 117, 10415.
    [29] Exner, K., Schleyer, P. v. R. Science 2000, 290, 1937-1940
    [30] Wang, Z. X., Schleyer, P. v. R. Science 2001, 292, 2465-2469
    [31] O. Asvany, P. Kumar, P. B. Redlich, I. Hegemann, S. Schlemmer and D. Marx. Science 2005, 309, 1219.
    [32] Sung Soo Park, Bull. Korean Chem. Soc 2005, 26, 63.
    [33] Minyaev, R.M., Minkin, V. I., Gribanova, T. N., Starikov, A.G., Gapurenko, O.A. Doklady. Chemistry 2006, 407, 47–50.
    [34] R. M. Minyaev, T. N. Gribanova, A. G. Starikov, O. A. Gapurenko, Academician V. I. Minkin, Doklady. Chemistry 2005, 404, 193–198
    [35] Boldyrev, A. I., Wang, L. S. J. Phys. Chem. A 2001, 105, 10759
    [36] Wang, L. M., Huang, W., Averkiev, B. B., Boldyrev, A. I., Wang, L. S. Angew. Chem., Int. Ed. 2007, 46, 4550.
    [37] Schleyer, P. v. R., Boldyrev, A. I. J. Chem. Soc., Chem. Commun. 1991, 1536.
    [38] Li, X.; Zhang, H.; Wang, L. S.; Geske, G. D.; Boldyrev, A. I. Angew. Chem. 2000, 112, 3776; Angew. Chem., Int. Ed. 2000, 39, 3630.
    [39] Pei, Y., An, W., Ito, K., Schleyer, P. v. R., Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 10394.
    [40] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., J. A. Montgomery, J., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O.,Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision D.02, Gaussian, Inc.: Wallingford CT, 2004.
    [41] Ennington, R., II, Todd, K., Millam, J., Eppinnett, K., Hovell, W. L., Gilliland, R., GaussView, version 3.09, Semichem, Inc.: Shawnee Mission, KS, 2003.
    [42] Schaftenaar G., MOLDEN3.4, CAOS/CAMM Center, The Netherlands, 1998.
    [1] Sorger K., Schleyer P. v., R., J. Mol. Struct. 1995, 338, 317
    [2] Rottger D., Erker G., Angew. Chem. Int. Ed. 1997, 36, 812
    [3] Minkin R.M., Minyaev R., Hoffmann, Russ. Chem. Rev. 2002, 71, 869
    [4] Schleyer P. v. R., Boldyrev A. I., J. Chem. Soc. Chem. Commun. 1991, 1536
    [5] Boldyrev A. I., Schleyer P. v. R., J. Am. Chem. Soc. 1991, 113, 9045
    [6] Boldyrev A. I., Simons J., J. Am. Chem. Soc. 1998, 120, 7967
    [7] Li X., Wang L. S., Boldyrev A. I., Simons J., J. Am. Chem. Soc. 1999, 121(25), 6033
    [8] Li X., Zhang H. F., Wang L. S., et al.., Angew. Chem. Int. Ed. 2000, 39, 3630
    [9] Wang L. S., Boldyrev A. I., Li X., et al.., J. Am. Chem. Soc. 2000, 122, 7681
    [10] Wilson E., Chem. Eng. News. 2000, 78 (34), 8
    [11] Schleyer P. v. R., Boldyrev A. I., J. Chem. Soc. Chem. Commun. 1991,1536
    [12] Boldyrev A. I., Schleyer P. v. R., J. Am. Chem. Soc. 1991, 113, 9045
    [13] Merino G., Mendez-Rojas M. A., Beltran H. I., et al.., J. Am. Chem. Soc. 2004, 126, 16160
    [14] Tan kai (谭凯), Lu Xin (吕鑫), Lin Meng-Hai (林梦海), Zhang Qian-er (张乾二),高等学校化学学报2008, 12, 2350
    [15] Yang L. M., Ding Y. H., Sun C. C., J. Am. Chem. Soc. 2007, 129, 658
    [16] Yang L. M., Ding Y. H., Sun C. C., J. Am. Chem. Soc. 2007, 129, 1900
    [17] McLean A. D., Chandler G. S., J. Chem. Phys. 1980, 72, 5639
    [18] Clark T., Chandrasekhar J., Spitznagel. G. W., et al.., J. Comput. Chem. 1983, 4, 294
    [19] Frisch M. J., Pople J. A., Binkley J. S., J. Chem. Phys. 1984, 80, 3265
    [20] Parr R. G., Yang W., Density-functional theory of atoms and molecules, Oxford University Press: Oxford, 1989
    [21] Becke A. D., J. Chem. Phys. 1992, 96, 2155
    [22] Perdew J. P., Chevary J. A., Vosko S. H., et al.., Phys. Rev. B 1992, 46, 6671
    [23] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., J. A. Montgomery, J., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M.
    A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision D.02, Gaussian, Inc.: Wallingford CT, 2004.
    [24] Ennington, R., II, Todd, K., Millam, J., Eppinnett, K., Hovell, W. L., Gilliland, R., GaussView, version 3.09, Semichem, Inc.: Shawnee Mission, KS, 2003.
    [25] Peckham T. J., Gomez-Elipe P., Manners I., Metallocenes, 1998, 2, 724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700