纳米分子的电子结构和非线形光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学研究有着重要的理论意义和实际用途,比如光计算机、光通讯、全光学信息处理等。那么,设计和寻找高性能的非线性光学材料是这一领域发展的关键基础。而近二十年来,新型纳米分子,如富勒烯,纳米管等,它们独特的电子结构和奇特的性质已经广泛的关注。本论文主要通过内嵌或修饰的富勒烯和纳米管,来研究它们的电子结构和第一超极化率的关系,为寻求高性能的非线性光学性质提供新思路。主要包括以下四个方面:
     一、首次构建了二聚物Na@C60C60@F,它们不仅两个笼子之间存在多重共价键,还有被内嵌不同笼子里面的正负离子间的长程离子键。特别是,发现了通过这一新的策略膨胀的Na???F长程离子键来实现大的第一超极化率。
     二、揭示C60笼不仅可以作为分子尺度反应器,也可在内嵌其内部的复合物NH3…HCl质子转移形成离子对NH4+Cl-过程中起到催化作用。C60笼催化复合物NH3…HCl质子转移的机理可以从两个方面来解释:(1)C60笼和内嵌物种的相互静电引诱作用。(2)限制效应和C60笼对内嵌物种挤压作用。
     三、我们给出了锂盐效应和供电子基团取代效应结合去提高第一超极化率的思想。特别地发现,在不寻常的―推-纳米管(拉)-推‖Li-NT(6,0)-(NH2)2体系单锂盐和供电子基团取代基能戏剧性地展示大的第一超极化率。
     四、Li2@BNNT(n,0) (n=4, 5, 6, 7和8)被第一次得到,特别研究了管径对偶极距,极化率和第一超极化率的效应。计算结果说明第一超极化率比偶极距和极化率对管径有更强烈的依赖性,表明选择合适管径对获得大的第一超极化率放入重要性。此外,还揭示Li2@BNNT(8,0)是一个新颖的electride化合物。
As for the various applications from the Nonlinear Optical (NLO) materials, for example, optical computer, optical communication, optical process of information, the investigation of NLO is one of the hottest topics of the world at the present. Among these studies, the design and search of high-performance NLO materials are an important part. On the other hand, novel nanomolecules, for example fullerences, nanotube, have attracted lots of attentions, due to their unique electronic structures and properties. In the study of NLO materials, the physical parameter, the first hypoarizability is the microscopic origin of the second order of NLO materials, and is an important index for evaluating whether the NLO materials are high-performance or not. To explored novel nanomolecules with large NLO response, in this paper, we theoretically calculated the unique structures and properties of the representative nanomolecules, and revealed the relationships between the structures and properties.
     In this thesis, the main contributions are followings:
     1. Isomer structures of four endohedral fullerene dimers Na@C60C60@F with n-fold bond (n=1, 2, 5 and 6) covalent bond between two cages and long distance ion bond between Na and F are obtained for the first time by using density-functional theory (DFT). Further, the electronic properties of the endohedral dimers are first investigated. The dimers exhibit strong nonlinear optical (NLO) response—large static first hyperpolarizabilities (β0). The large first hyperpolarizabilitiy is up to 25169 au for [5+5], which is almost 110 times larger than that of NaF molecule (228 au). This provides a novel strategy for enhancing first hyperpolarizability by altering molecular structure. Moreover, it is found that the first hyperpolarizability and crucial charge transfer transition depend on the dimeric pattern, that is to say, modulating the first hyperpolarizability and crucial charge transfer transition by controlling the dimeric pattern.
     2. The proton transfer reaction in the complex H3N···HCl forming the ion pair NH4+Cl?, which is favored inside the C60 cage, is reported. The calculated result shows that the obtained NH4+Cl?@C60 is stable with the interaction energy to be -2.78 kcal/mol. Moreover, C60 cage plays the role as a catalyzer for the proton transfer. The catalysis of the C60 cage comes from two effects: i) the electrostatic inducement between C60 cage and endohedral molecules and ii) the confinement effect to compress endohedral molecular structures inside C60 cage. In addition, it is found that the confinement effect of the cage can cause the large blue shifts of N-H stretching vibrations in NH4+Cl?@C60 comparing with that in NH4+Cl·?··H2O complex.
     3. Lithium salt of substituted nanotube is suggested as a new kind of nonlinear optical (NLO) material. It is found that the combination of the lithiation effect and the donor substitution effect can greatly enhance the static first hyperpolarizability (β0). Specially, the unusual donor—acceptor(nanotube)—donor system Li-NT(6,0)-(NH2)2 has considerableβ0 to be 6.8 x105 au, due to its small transition energy and large transition moment. Further, the relationships betweenβ0 and the number of Li atoms m and the substituents R for Lim-NT(6,0)-(R)2 (m=1, 6 and R= -CN, -NH2) systems are explored.
     4. The structures of Li2 molecule doping boron nitride nanotube BNNT(n,0) (n=4, 5, 6, 7 and 8) (Li2@BNNT) are obtained. The natural bond orbital (NBO) charges show that the charge transfers are from Li2 molecule to BNNT, except for Li2@BNNT(8,0). Specially, the diameter effect of the tube on the dipole moment (μ0), polarizability (α0) and first hyperpolarizability (β0) has been studied systematically. Both the dipole moment and polarizability increase with the increasing of the tube diameter (n). Note that the static first hyperpolarizability (β0) is not monotonic with tube diameter, the order of first hyperpolarizability (β0) is 2716 (n=4) < 6274 (n=7) < 7939 (n=8) < 12392 (n=5) < 13918 au (n=6), which indicates that the choosing suitable tube diameter is important to obtain largeβ0 values. Moreover, it is found that the large diameter tube BNNT(8,0) can trap the excess electron of the Li2 molecule, which indicates that Li2@BNNT(8,0) is a novel electride compound. These results may widen the knowledge and potential applications of boron nitride nanotube in nonlinear optical (NLO) materials.
     In the thesis, the unique structures and properties of the representative nanomolecules are theoretically calculated, and the relationships between the structures and properties are revealed. The resules show that, the doped, modified novel nanomolecules have large first hyperpolarizabilit, and suggest that these novel nanomolecules can be potential high-performance NLO materials. Hence, the thesis plays some important role in the studies and explorations of novel NLO nanomaterials.
引文
1. KROTO H W, HEATH J R, BRIEN S C O, SMALLEY R E. C60:Buckmisterfullerene [J]. Nature, 1985, 318: 162.
    2. (a) CIOSLOSKI J, FLEISHMANN E D. Endohedral complexes: Atoms and ions inside the C60 cage [J]. J. Chem. Phys., 1991, 94: 3730. (b) CIOSLOSKI J. Endohedral Chemistry: Electronic Structures of MoleculesTrapped Inside the C60 Cage [J]. J. Am. Chem. Soc., 1991, 113: 4139.
    3. HU Y H, RUCKENSTEIN E. Endohedral Chemistry of C60-Based Fullerene Cages [J]. J. Am. Chem. Soc., 2005, 127: 11277.
    4. WANG C R, KAI T, TOMIYAMA T, YOSHIDA T, KOBAYASHI Y, NISHIBORI E, TAKATA M, SAKATA M, SHINOHARA H. C66 fullerene encaging a scandium dimer[J]. Nature,2000,408: 426-427.
    5. SHI Z Q, WU X, WANG C R, LU X, SHIOHARA H. Isolation and Characterization of Sc2C2@C68: A Metal-Carbide Endofullerene with a Non-IPR Carbon Cage[J]. Angew. Chem. Int. Ed,. 2006, 45: 2107–2111
    6. WANG T S, CHEN N, XIANG J F, LI B, WU J Y, XU W, JIANG L, TAN K, SHU C Y, LU X, WANG C R. Russian-Doll-Type Metal Carbide Endofullerene: Synthesis, Isolation, and Characterization of Sc4C2@C80 [J]. J. Am. Chem. Soc., 2009, 131:16646–16647.
    7. IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56.
    8. (a) IIJIMA S,ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter [J]., Nature, 1993, 363:603. (b) BETHUNE D S, KIANG C H, DEVRIES M S. [J]. Nature, 1993, 363: 605.
    9.成会明,纳米碳管:制备、结构、物性及应用[M].化学工业出版社,2002年.
    10. DRESSELHAUS M S, DRESSELHAUS G, EKLUND P C. Science of Fullerenes & Carbon Nanotube[M], San Diego: Academic Press, 1996.
    11.朱宏伟,吴德海,徐才录,碳纳米管[M].机械工业出版社,2003年.
    12. SGOBBA V, GULDI D M. Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics [J]. Chem. Soc. Rev., 2009, 38: 165.
    13. ZHOU O, SHIMODA H, GAO B, OH S, FLEMING L, YUE G. Materials Science of Carbon Nanotubes: Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes [J]. Acc. Chem. Res., 2002, 35:1045.
    14. OUYANG M, HUANG J L, LIEBER C M. Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes [J]. Acc. Chem. Res., 2002, 35: 1018.
    15. TERRONES M. [J].Inter. Mater. Rev, 2004, 39: 325.
    16. NIYOGI S, HAMON M A, HU H, ZHAO B, BHOWMIK P, SEN R, ITKIS M E, HADDON R C. Chemistry of Single-Walled Carbon Nanotubes [J]. Acc. Chem. Res., 2002, 35: 1105.
    17. AJAYAN P M. Magnetism of the carbon allotropes [J]. Nature, 1995, 375: 1550.
    18. NORIAK H. New one-dimensional conductors: Graphitic microtubules [J]. Phy Rev Lett, 1992, 68: 1579.
    19. RINZLER A G. Unraveling Nanotubes: Field Emission from an Atomic Wire [J]. Science, 1995, 269: 1550.
    20. BANERJEE S, KAHN M G C, WONG S S. Ueber einen einfachen Scheidetrichter [J]. Chem. Eur. J., 2003, 9: 1898.
    21. TASIS D. TAGMATARCHIS N, BIANCO A, PRATO M.. Chemistry of Carbon Nanotubes [J]. Chem. Rev., 2006, 106: 1105.
    22. ANGEL R, JENNIFER L C. Theory of graphitic boron nitride nanotubes [J]. Physical Review B, 1994, 49: 5081.
    23. BLASéX, RUBIO A, LOUIE S G, COHEN M L. Stability and Band Gap Constancy of Boron Nitride Nanotubes [J]. Euro. Phys. Lett., 1994, 28:335.
    24. CHOPRA N G, LUYKEN R J, CHERREY K. Boron Nitride Nanotubes [J]. Science, 1995, 269: 966.
    25. CUMINGS J, ZETTL A. Field emission and current-voltage properties of boron nitride nanotubes [J]. Solid State Comm., 2004, 129: 661.
    26. RADOSAVLJEVIC M. Drain voltage scaling in carbon nanotube transistors[J]. Appl. Phys. Lett. 2003, 82: 4131.
    27. ISHIGAMI M. Observation of the Giant Stark Effect in Boron-NitrideNanotubes [J]. Phys. Rev. Lett. 2005, 94: 056804.
    28. TANG C C, Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes [J]. J. Am. Chem. Soc., 2002, 124:14550.
    29. HERNANDEZ E,GOZE C P, BERNIER A. Rubio, Elastic Properties of C and BxCyNz Composite Nanotubes [J]. Phys. Rev. Lett., 1998, 80: 4502.
    30. SURYAVANSHI A P, YU M, WEN J, TANG C C, BANDO Y. Effect of growth temperature on morphology, structure and luminescence of Eu-doped GaN thin films [J]. Appl. Phys. Lett., 2004, 84: 2527.
    31. HAN W Q, BANDO Y, KURASHIMA K, SATO Boron-doped carbon nanotubes prepared through a substitution reaction [J]. Chem. Phys. Lett., 1999, 299: 368.
    32. (a) GOLBERG D, BANDO Y, TANG C C, ZHI C Y. Boron Nitride Nanotubes [J]. Adv. Mater., 2007, 19:2413. (b) TERRONES M, ROMO-HERRERA J M, CRUZ-SILVA E, LOPEZ-URIAS F, MUNOZ-SANDOVAL E, VELAZQUEZ-SALAZAR J J, TERRONES H, BANDO Y, GOLBERG D. Pure and doped boron nitride nanotubes [J]. Materials Today, 2007, 10: 30.
    33. ZHI C Y, TANG C C, HUANG Q, GOLBERG D. Boron nitride nanotubes: functionalization and composites [J]. J. Mater. Chem., 2008, 18: 3900.
    34. ZHI C Y, BANDO Y, TANG C C, HONDA S, SATO K, KUWAHARA H, GOLBERG D. Covalent Functionalization: Towards Soluble Multiwalled Boron Nitride Nanotubes [J]. Angew. Chem. Int. Ed., 2005, 44: 7932.
    35. (a) SCHMIDT T M, BAIERLE R J, PIQUINI P, FAZZIO A. Theoretical study of native defects in BN nanotubes [J]. Phys. Rev. B., 2003, 67: 113407. (b) PIQUININ P, NAILERLE R J, SCHMIDT T M, FAZZIO A. Formation energy of native defects in BN nanotubes: an ab initio study [J]. Nanotechnology, 2005,
    16: 827. (c) KANG H S. Theoretical Study of Boron Nitride Nanotubes with Defects in Nitrogen-Rich Synthesis [J]. J. Phys. Chem. B, 2006, 110: 4621. (d) AN W, WU X J, YANG J L, ZENG X C. Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stone?Wales Defects [J]. J. Phys. Chem. C, 2007, 111: 14105. (e) LI Y F, ZHOU Z, ZHAO J J. Functionalization of BN nanotubes with dichlorocarbenes [J]. Nanotechnology, 2008, 19: 015202. (f) HU S L, KAN ER-J, YANG J L. First-principles study of interaction between H2 molecules and BN nanotubes with BN divacancies [J]. J. Chem. Phys., 2007, 127: 164718. (g) WU X J, AN W, ZENG X C. ChemicalFunctionalization of Boron-Nitride Nanotubes with NH3 and Amino Functional Groups [J]. J. Am. Chem. Soc. 2006, 128: 12001.
    36.孙慷,张福学主编,<<压电学>> [M],上册,第十二章,国防工业出版社,北京,1985。
    37. FRANKEN P A, HILL A E, et al, Generation of Optical Harmonics [J]. Phys. Rev. Lett., 1961, 7:118.
    38. CHEN C T, LIU G Z. [J].Ann. Rev. Mater. Sci., 1986, 16: 203.
    39. WILLIAMS D J, ed. Nonlinear Optical Prooerties of Organic and Polymeric Materials [M]. ACS Symp. Ser., No. 233, Washington D. C., 1983.
    40. CHEMLA D S, ZYSS J ed. Nonlinear Optical Properties of Organic Molecules and Crystals [M] Vol. 1 and 2, Academic Press, Orlando, 1987.
    41. BUCKINGHAM A D. Permanent and induced molecular moments and long-range intermolecular forces [J]. Adv. Chem. Phys., 1967, 12:107.
    1. BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Ann Phsik [J] .Quantum Theory of the Molecules Ann. Phys, 1927, 84: 457-484.
    2. (a) HEHRE W J, RADOM L, SCHLEYER P v R, et al. Ab initio molecular orbital theory [M]. John Wiley &Sons, Inc., 1986. (b) Mcquarrie D A. Quantum chemistry university science books [M]. Mill Vally. CA, 1983.
    3. (a)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M]。北京:科学出版社,1985。(b)唐敖庆,杨忠志,李前树,量子化学[M]。北京:科学出版社,1982。
    4. JANKOWSKI K, SOKOLOWSKI A. Ab initio studies of electron correlation in rare-earth ions. I. Intrashell correlation for 4f2 in Pr3+ [J]. J. Phys. B: At. Mol. Phys, 1981, 14: 3345.
    5. POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quant. Chem., 1977, 11: 149-161.
    6. MARK E C, CHRISTINE J, KIM C C, Dennis R S. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys. 1998,108:4439.
    7. KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivate studies in configuration interaction theory [J]. J. Chem. Phys., 1980, 72: 4654-4655.
    8. BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys., 1980, 72, 4652-4653.
    9. SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods i. first derivatives [J]. J. Chem. Phys., 1989, 90: 1752-1766.
    10. RAGHAVACHARI K, POPLE J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem., 1981, 20: 167-178.
    11. POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87: 5968-5875.
    12. CIOSLOWSKI J A. New robust algorithm for fully automated determination of attactor interaction lines in moleclues [J]. Chem. Phys. Lett., 1994, 219: 151-154.
    13. SCHLEGEL H B, ROBB M A. MCSCF gradient optimization of the H2CO→H2+CO transition structure [J]. Chem. Phys. Lett. ,1982, 93: 43-46.
    14. EADE R H E, ROBB M A. Direct minimization in mcscf theory. The quasi-newton method [J]. Chem. Phys. Lett., 1981, 83: 362-368.
    15. ENRIQUE Es, IBON A, JOSE E, ELIES M. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H?F–Y systems [J]. J. Chem. Phys. 2002, 117:5529.
    16. CARLO A, VINCENZO B. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J]. J. Chem. Phys., 1999, 110: 6158.
    17. LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry [M]. New York: Springer-Verlag, 1991.
    18. FUKUI K. Variational principles in a chemical reaction [J]. Int. J. Quantum. Chem. Quant. Chem. Symp. 1981, 15: 633-642.
    19. Fukui, K.; Tachibana, A.; Yamashita, K. Toward chemodynamics [J]. Int. J. Quantum. Chem. Quant. Chem. Symp. 1981, 15: 621-632.
    20. ZHAO H M, SUN C K, ZHANG R C, XI H G, LI Z H, Theoretical study on the reaction mechanism of (CH3)3CO+CO [J]. SCIENCE IN CHINA SERIES B:(CHEMISTRY), 2005, 1 :48.
    21. THOMAS L H. The calculation of atomic fields [J] Camb Proc. Phil. Soc., 1927, 23.
    22. FERMI E, Rend. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente [J]. Accad. Lincei, 1927, 6: 602.
    23. DIRAC P A M. Note on Exchange Phenomena in the Thomas Atom [J]. Camb Proc. Phil. Soc., 1930, 26:376.
    24. WEIZSACKER C F. von. Zur Theorie der Kernmassen [J]. Phys., 1935, 96:431.
    25. HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136: 864-871.
    26. KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140: 1133-1138.
    27. SLATER J C. Quantum theory of molecular and solids. Vol. 4: The self-consistent field for molecular and solids mcgraw-hill [M]. New York, 1974.
    28. SALAHUB D R, ZERNER M C. The challenge of d and f electrons acs [M]. Washington, D.C., 1989.
    29. PARR R G, YANG W. Density-functional theory of atoms and molecules Oxford Univ [M]. Press: Oxford, 1989.
    30. POPLE J A, GILL P M W, JOHNSON B G. Kohn-sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992, 199: 557-560.
    31. FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem., 1992, 96: 135-147.
    32. RAGHAVACHARI K, POPLE J A, Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem., 1981, 20: 1067-1071.
    33. a). PAN Q J, ZHANG H X. Ab initio study on luminescent properties and aurophilic attraction of [Au2(dpm)(i-mnt)] and its related Au(I) Complexes (dpm = bis(diphosphino)methane and i-mnt = i-malononitriledithiolate) [J]. Organometallics, 2004, 23: 5198-5209. b). Pan Q J, Zhang H X. An ab initio study on luminescent properties and aurophilic attraction of binuclear Gold(I) complexes with phosphinothioether ligands [J]. Inorg. Chem. 2004, 43: 593-601. c). PAN Q J, ZHANG H X. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J]. J. Chem. Phys., 2003, 119: 4346-4352.
    34. a). YANG L, REN A M, FENG J K,et al. Theoretical studies of ground and excited electronic states in a series of halide Rhenium(I) bipyridine complexes [J]. J. Phys. Chem. A 2004, 108: 6797-6808. b). LIAO Y, FENG J K, YANG L, et al. theoretical study on the electronic structure and optical properties of mercury-containing diethynylfluorene monomer, oligomer, and polymer [J]. Organometallics 2005, 24: 385-394.
    35. van GISBERGEN S J A, GROENEVELD J A, ROSA A. et al. Excitation energies for transition metal compounds from time-dependent density functional theory. applications to MnO4-, Ni(CO)4, and Mn2(CO)10 [J]. J. Phys. Chem. A 1999, 103: 6835.
    36. HALLS M D, SCHLEGEL H B. Molecular orbital study of the first excited state of the OLED material Tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater. 2001, 13: 2632-2640.
    37. FORESMAN J B, FRISCH ?. Exploring chemistry with electronic structure methods, 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    38. FRANK I. Excited state molecular dynamics Invited Review, SIMU Newsletter, 2001, 3: 63-77.
    39.王一波[J].中国科学B辑1995,25,1016.
    40. BOYNS S F, BERMARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol. Phy., 1970, 19: 553.
    41. WOON D E. Benchmark calculations with correlated molecular wave functions. V. The determination of accurate ab initio intermolecular potentials for He2, Ne2, and Ar2 [J]. J. Chem. Phys. 1994, 100: 2838.
    42. TAO F M, PAN Y K. M?ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions [J]. J. Chem. Phys. 1992, 97: 4989.
    43. TAO F M, PAN Y K. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys. 1985, 82: 270.
    44. PANICH M J. NMR study of the F---Hcdots, three dots, centeredF hydrogen bond. Relation between hydrogen atom position and F---Hcdots, three dots, centeredF bond length [J]. Chem. Phys., 1995, 196: 511.
    45. TAO F M, Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials [J]. Int. Rev. in Phys. Chem. 2001, 20: 617-643.
    1. BETHUNE D S, JOHNSON R D, SALEM J R, DE VRIES M S, YANNONI C S. Atoms in Carbon Cages: The Structure and Properties of Endohedral Fullerenes [J]. Nature, 1993, 366:123-128.
    2. SHINOHARA H. Endohedral metallofullerenes [J]. Rep. Prog. Phys. 2000, 63:843.
    3. DUNSCH L, YANG S. Endohedral Cluster Fullerenes—Playing with Cluster and Cage Sizes [J]. Phys. Chem. Chem. Phys. 2007, 9:3067.
    4. CIOSLOWSKI J, FLEISCHMANN E D. Endohedral Complexes: Atoms and Ions inside: The C60 cage [J]. J. Chem. Phys. 1991, 94: 3730.
    5. (a) HU Y H, RUCKENSTEIN E. Endohedral Chemistry of C60-Based Fullerene Cages [J]. J. Am. Chem. Soc. 2005, 127: 11277. (b) KOMATSU K, MURATA M, MURATA Y. Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis [J]. Science 2005, 307: 238.
    6. (a) STEVENSON S, RICE G, GLASS T, HARICH K, CROMER F, JORDAN M R, CRAFT J, HUDJU E,BIBLE R, OLMSTEAD M M, MAITRA K, FISHER A J, BELCH A L, DORN H C. Small-band Gap Endohedral Metallofullerenes in High Yield and Purity [J]. Nature 1999, 401: 55–57. (b) WANG C R, KAI T, TOMIIYAMA T, YOSHIDA T, KOBAYASHI Y, NISHIBORI E, TAKATA M, SHINOHARA H. A Scandium Carbide Endohedral Metallofullerene: (Sc2C2)@C84 [J]. Angew. Chem.,Int. Ed., 2001, 40: 397–399.(c) LIDUKA Y, WAKAHARA T, NAKAJIMA K, NAKAHODO T, TSUCHIYA T, MAEDA Y, AKASAKA T, YOZA K, LIU M T H, MIZOROGI N, NAGASE S. Structural determination of metallofuIlerene SC3C82 revisited: A surprising finding [J].Angew. Chem., Int. Ed., 2005, 46: 5562–5564.(d) IIDUKA Y, WAKAHARA T, NAKAHODO T, TSUCHIYA T, SAKURABA A, MAEDA Y, AKASAKA T, YOZA K, HORN E, KATO T, LIU M T H, MIZOROGI N, KOBAYASHI K. Structural Determination of Metallofullerene Sc3C82 Revisited: A Surprising Finding [J]. J. Am. Chem. Soc., 2005, 127: 12500–12501. (e) STEVENSON S, MACKEY M A, STUART M A, PHILLIPS J P, EASTERLING M L, CHANCELLOR C J, OLMSTEAD M M, BALCH A L. A distorted Tetrahedral Metal Oxide Cluster inside An Icosahedral Carbon Cage. Synthesis, IIsolation, and Structural Characterization of Sc4(μ3-O)2@Ih-C80 [J]. J. Am. Chem. Soc. 2008, 130:11844–11845.
    7. KOBAYASHI S, MORI S, LIDA S, ANDO H,TAKENOBU T, TAGCHI Y, FUJIWARA S, TANINAKS A, SHINOHARA H, IWASA Y. Conductivity and Field Effect Transistor of La2@C80 Metallofullerene [J]. J. Am. Chem. Soc. 2003, 125: 8116.
    8. (a)HARNEIT W. Fullerene-based Electron-spin Quantum Computer [J]. Phys. Rev. A, 2002, 65:032322.(b) BENJAMIN S C, ARDAVAN A, BRIGGS G A D, BRITZ D A, GUNLYCKE D, JEFFERSON J, JONES M A G, LEIGH D F, LOVETT B W, KHOBYSTOV A N, LYON S, MORTON J J L, PORFYRAKIS K, SAMBROOK M R, TYRYSHKIN A M. Towards A Fullerene-based Quantum Computer [J]. J. Phys.: Condens. Matter, 2006, 18:S867.
    9. FENG L, TSUCHIYA T, WAKAHARA T, NAKAHODO T, PIAO Q, MAEDA Y, AKASAKA T, KATO T, YOZA K, HORN E, MIZOROGI N, NAGASE S. Synthesis and Characterization of a Bisadduct of La@C82 [J]. J. Am. Chem. Soc. 2006, 128: 5990.
    10. (a) EATON D F. Nonlinear optical materials [J]. Science, 1991, 253:281-287. (b) GESKIN V M, LAMBERT C, BREDAS J L. Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: the Remarkable Role of Polarized Aromatic Groups [J]. J. Am. Chem. Soc., 2003, 125: 15651-15658. (c) NAKANO M, FUJITA H, TAKAHATA H.. Hyperbranched Molecular Nanocapsules: Comparison of the Hyperbranched Architecture with the Perfect Linear Analogue [J]. J. Am. Chem. Soc. 2002, 124: 9648-9655. (d) LONG N J, WILLIAMS C K. Metal Alkynyl Complexes: Synthesis and Materials [J]. Angew. Chem., Int. Ed. 2003, 42: 2586-2617. (e) AVRAMOPOULOS A, REIS H, LI J, PAPADOPOULOS M G. The Dipole Moment, Polarizabilities, and First Hyperpolarizabilities of HArF. A Computational and Comparative Study [J]. J. Am. Chem. Soc. 2004, 126: 6179-6184. (f) LE BOUNDER T, MAURY O, BONDON A, COSTUAS K, AMOUYAL E, LEDOUX I, ZYSS J, LE BOZEC H. Synthesis, photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) ruthenium(II) moieties: Evidence for a supramolecular self-ordering in a dentritic structure [J]. J. Am. Chem. Soc. 2003, 125: 12284-12899. (g) KIRTMAN B, CHAMPAGNE B, BISHOP D M. Comparison with Ab Initio Predictions for Dipole Moments, Polarizabilities, and Hyperpolarizabilities [J]. J. Am. Chem. Soc. 2000, 122: 8007-8012.(h) MARDER S R. TORRUELLAS W E, BLANCHARD-DESCE M, RICCI V, STEGEMAN G I, GILMOUR S, BREDAS J L, LI J, BUBLITZ G U, BOXER S G. Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids[J]. Science, 1997, 276:1233. (i) CHAMPAGNE B, SPASSOVA M, JADIN J B, KIRTMAN B. Ab initio investigation of doping-enhancedelectronic and vibrational second hyperpolarizability of polyacetylene chains [J]. J. Chem. Phys. 2002, 116: 3935.
    11. (a) BOSSI A, LICANDRO E, MAIORANA S, RIGAMONTI C, RIGHETTO S, STEPHENSON G R, SPASSOVA M, BOTEK E, CHAMPAGNE B. Theoretical and Experimental Investigation of Electric Field Induced Second Harmonic Generation in Tetrathia[7]helicenes [J]. J. Phys. Chem. C, 2008, 112: 7900. (b) SANGUINET L, POZZO J L, RODRIGUEZ V, ADAMIETZ F, CASTET F, DUCASSE L, CHAMPAGNE B. Acido- and Phototriggered NLO Properties Enhancement [J]. J. Phys. Chem. B 2005, 109:11139. (c) COE B J, HARRIS J A, HALL J J, BRUNSCHWIG B S, HUNG S T, LIBAERS W, CLAYS K, COLES S J, HORTON P N, LIGHT M E, HURSTHOUSE M B, CARIN J. Orduna J. Syntheses and Quadratic Nonlinear Optical Properties of Salts Containing Benzothiazolium Electron-Acceptor Groups [J]. J. Chem. Mater. 2006, 18: 5907. (d) NAKANO M, KISHI R, OHTA S, TAKAHASHI H, KUBO T, KAMADA K, OHTA K, BOTEK E, CHAMPAGNE B. Relationship between Third-Order Nonlinear Optical Properties and Magnetic Interactions in Open-Shell Systems: A New Paradigm for Nonlinear Optics [J]. Phys. Rev. Lett. 2007, 99: 033001. (e) COE B J, HARRIS J A, JONES L A, BRUNSCHWIG B S, SONG K, CLAYS K, CARIN J. Orduna J, COLES S J, BRUNSCHWIG B S. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers [J]. J. Am. Chem. Soc., 2005, 127: 4845. (f) KANG H, FACCHETTI A, JIANG H, CARIATI E, RIGHETTO S, UGO R, ZUCCACCIA C, MACCHIONI A, STERN C L, LIU Z F, HO S T, BROWN E C, RATNER M A, MARKS T J. Ultralarge Hyperpolarizability Twistedπ-Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies[J]. J. Am. Chem. Soc. 2007, 129: 3267. (g) NAKANO M, OHTA S, TOKUSHIMA K, KISHI R, KUBO T, KAMADA K, OHTA S, CHAMPAGNE B, BOTEK E, TAKAHASHI H, First and Second Hyperpolarizabilities of Donor–acceptor Disubstituted Diphenalenyl Radical Systems[J]. Chem. Phys. Lett. 2007, 443: 95. (h) BOTEK E, SPASSOVA M, CHAMPAGNE B, ASSELBERGHS I, PERSOONS A, CLAYS K. Hyper-Rayleigh scattering of neutral and charged helicenes [J]. Chem. Phys. Lett. 2005, 412: 274.
    12. (a)LIU Z B, LI Z R, ZUO M H, LI Q Z, MA F, LI Z J, CHEN G H, SUN C C. Rare Gas Atomic Number Dependence of The Hyperpolarizability for Rare Gas Inserted Fluorohydrides, HRgF (Rg=He, Ar, and Kr) [J]. J. Chem. Phys. 2009, 131: 044308. (b) PAPADOULOS M G, AVRAMOPOULOS A. The linear and non-linear optical properties of some noble gas compounds [C]. AIP Conf. Proc. 2007, 963: 316.(c) AVRAMOPOULOS A. REIS H, LI J, PAPADOULOS M G, The Dipole Moment, Polarizabilities, and First Hyperpolarizabilities of HArF. A Computational and Comparative Study[J]. J. Am. Chem. Soc. 2004,126: 6179. (d) HOLKA F, AVRAMOPOULOS A, LOBODA O, KELLO V, PAPADOULOS M G The (hyper)polarizabilities of AuXeF and XeAuF[J]. Chem. Phys. Lett. 2009, 472: 185.
    13. (a) REED A E, WEINSTOCK R B,WEINHOLD F. Natural Population Analysis [J]. J. Chem Phys, 1985, 83: 735. (b) CARPENTER J E, WEINHOLD F. Analysis of the geometry of the hydroxymethyl radical by the―different hybrids for different spins‖natural bond orbital procedure [J]. J. Mol Struct(Theochem) 1988, 169: 41.
    14. LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation energy formula into a functional of the electron density [J]. Phys. Rev B., 1988, 37: 785.
    15. (a) BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. J. Mol. Phys., 1970, 19: 553. (b) TURI L, DANNENBERG J J. Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction [J]. J.Phys. Chem. 1993, 97: 2488.
    16. CHAMPAGEN B, PERPETE E A, JACQUENMIN D, VAN GISBERGEN S J A, BAERENDS E J, SOUBRA-GHAOUI C, ROBINS K A. Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push?Pullπ-Conjugated Systems [J]. J. Phys. Chem. A, 2000, 104: 4755-4763.
    17. TAWADA Y, TSUNEDA T, YANAGISAWA S, YANAI T, HIRAO K. A long-range-corrected time-dependent density functional theory[J]. J. Chem. Phys. 2004, 120: 8425.
    18. YANAI T, TEW D P, HANDY N C.A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) [J]. Chem. Phys. Lett., 2004, 393: 51.
    19. PEACH M J G, HELGAKER T, SALEK P, KEAL T W, LUTNAES O B, TOZER D J, HANDY N C. Assessment of a Coulomb-attenuated exchange–correlation energy functional[J]. Phys. Chem. Chem. Phys. 2006, 8: 558.
    20. KOBAYASHI R, AMOS R D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex [J]. Chem. Phys. Lett. 2006, 420: 106.
    21. CAI Z L, CROSSLEY M J, REIMERS J R, KOBAYASHI R, AMOS R D. Density Functional Theory for Charge Transfer: The Nature of the N-Bands of Porphyrins and Chlorophylls Revealed through CAM-B3LYP, CASPT2, and SAC-CI Calculations [J]. J. Phys. Chem. B, 2006, 110: 15624-15632.
    22. CHAMPAGNE B, BOTEK E, NAKANO M, NITTA T, YAMAGUCHI K. Basis Set and Electron Correlation Effects on The Polarizability and Second Hyperpolarizability of Model Open-shell p-conjugated Systems[J]. J. Chem. Phys. 2005, 122: 114315.
    23. NAKANO M, KISHI R, NITTA T, KUBO T, NAKASUJI K, KAMADA K, OHTA K, CHAMPAGNE B, BOTEK E, YAMAGUCHI K. Second Hyperpolarizability (γ) of Singlet Diradical System: Dependence ofγon the Diradical Character [J]. J. Phys. Chem. A, 2005, 109: 885-89.
    24. (a) WANG F F, LI Z R, WU D, WANG B Q, LI Y, LI Z J, CHEN W, YU G T, GU F L, AOKI Y. Structures and Considerable Static First Hyperpolarizabilities: New Organic Alkalides (M+@n6adz)M¢- (M, M¢) Li, Na, K; n ) 2, 3) with Cation Inside and Anion Outside of the Cage Complexants[J]. J. Phys. Chem. B, 2008, 112: 1090-1094 (b) CHEN W, LI Z R, WU D, LI R Y, SUN C C. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom[J]. J. Phys. Chem. B, 2005, 109: 601-608.
    25. ZHAO Y, SCHULTZ N E, TRUHLAR D G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization forThermochemistry, Thermochemical Kinetics, and Noncovalent Interactions [J]. J. Chem. Theory Comput., 2006, 2: 364.
    26. (a)DYKSTRA C E, JASIEN P G. Derivative Hartree—Fock theory to all orders. Chem. Phys. Lett., 1984, 109: 388. (b) PULAY P. Second and third derivatives of variational energy expressions: Application to multiconfigurational self-consistent field wave functions [J]. J. Chem. Phys., 1983, 78: 5043.
    27. (a) DALSKOV E K, JENSEN H J A, ODDERSHEDE J. Does scaling or addition provide the correct frequency dependence of beta (omega; omega , omega ) at the correlated level? An investigation for six e sigma molecules [J]. Mol. Phys., 1997, 12: 3. (b) JACQUEMIN D, QUINET O, CHAMPAGNE B, ANDRE J M. Second-order nonlinear optical coefficient of polyphosphazene-based materials: A theoretical study [J]. J. Chem. Phys. 2004, 120: 9401.
    28. Frisch, M. J.; et. al. Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    29. Frisch, M. J.; et. al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
    30. KONAREV D V, KHASANOV S S, OTSUKA A, SAITO G. The Reversible Formation of a Single-Bonded (C60-)2 Dimer in Ionic Charge Transfer Complex: Cp*2Cr·C60(C6H4Cl2)2. The Molecular Structure of (C60-)2 [J]. J. Am. Chem. Soc., 2002, 124: 8520-8521.
    31. KENNARD O.eIn CRC Handbook of Chemistry and Physics [M]. Weast, R. C., Ed.; CRC Press: Boca Raton, Florida, 1987; p F106.
    32. (a) WANG G W, KOMATSU K, MURATA Y, SHIRO M. Synthesis andX-ray structure of dumb-bell-shaped C120 [J]. Nature, 1997, 387: 583-586. (b)FUJITSUKA M, LUO C, ITO O, MURATA Y, KOMATSU K. Triplet Properties and Photoinduced Electron-Transfer Reactions of C120, the [2+2] Dimer of Fullerene C60 [J]. J. Phys. Chem. A, 1999, 103:7155-7160.
    33. KONAREV D V, KHASANOV S S, OTSUKA A, SAITO G, LYUBOVSKAYA R N.Negatively Chargedπ-(C60-)2 Dimer with Biradical State at Room Temperature [J]. J. Am. Chem. Soc. 2006, 128: 9292-9293.
    34. FENG M, ZHAO J, PETEK H. Atomlike,Hollow-Core–Bound Molecular Orbitals of C60 [J]. Science, 2008, 320: 359.
    35. (a) CHEN W, LI Z R, WU D, LI Y, SUN C C, GU F. The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981.(b) XU H L, LI Z R, WU D, WANG B Q, LI Y, GU F L, AOKI Y. Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain[J]. J. Am. Chem. Soc. 2007, 129: 2967-2970.
    36. (a) VANCE F W, HUPP J T. Probing the Symmetry of the Nonlinear Optic Chromophore Ru(trans-4,4?-diethylaminostyryl-2,2?-bipyridine)32+: Insight from Polarized Hyper-Rayleigh Scattering and Electroabsorption (Stark) Spectroscopy [J]. J. Am. Chem. Soc. 1999, 121: 4047-4053.(b) COE B J, HARRIS J A, JONES L A, BRUNSCHWIG B S, SONG K, CLAYS K, GARLN J, ORDUNA J, COLES S J, HURSTHOUSE M B. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers [J]. J. Am. Chem. Soc. 2005, 127: 4845–4859.
    37. (a) OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the Nitroanilines and Their Relations to the Excited State Dipole Moment[J]. J. Chem. Phys. 1977, 66: 2664. (b) OUDAR J L. Optical Nonlinearities of Conjugated Molecules.Stilbene Derivatives and Highly Polar Aromatic Compounds [J]. J. Chem. Phys. 1977, 66: 446. (c) KANIS D R, RATNER M A, MARKS T J. Design and Construction of Molecular Assemblies with Large Second-order Optical Nonlinearities.Quantum Chemical Aspects [J]. Chem. Rev. 1994, 94:195
    
    1. KROTO H W, HEATH J R, BRIEN S C O. Smalley, R. E. C60:Buckmisterfullerene [J]. Nature, 1985, 318: 162.
    2. ZHANG M, HARDING L B, GRAY S K, RICE S. Quantum States of the Endohedral Fullerene Li@C60 [J]. J. Phys. Chem. A, 2008, 112 : 5478.
    3. BETHUNE D S, JOHNSON R D, SALEM J R, DE VRIES M S, YANNONI C S. Atoms in Carbon Cages: The Structure and Properties of Endohedral Fullerenes [J]. Nature, 1993, 366: 123-128.
    4. DUNSCH L, YANG S. Endohedral clusterfullerenes—playing with cluster and cage sizes [J]. Phys. Chem. Chem. Phys., 2007, 9:3067.
    5. MACOVEZ R, SAVAGE R, VENEMA L, SCHIESSLING J, KAMARAS J, RUDOLF P. Low Band Gap and Ionic Bonding with Charge Transfer Threshold in the Polymeric Lithium Fulleride Li4C60 [J]. J. Phys. Chem. C, 2008, 112: 2988.
    6. SHI Z Q, XU X, WANG C R, LU X, SHINPHARA H. Isolation and Characterization of Sc2C2@C68: A Metal-Carbide Endofullerene with a Non-IPR Carbon Cage [J]. Angew. Chem. Int. Ed., 2006, 45: 2107.
    7. YANG S I, TROYANOV A A, POPOV M, KRAUSE M, DUNSCH L. Deviation from the Planarity a Large Dy3N Cluster Encapsulated in an Ih-C80 Cage: An X-ray Crystallographic and Vibrational Spectroscopic Study [J]. J. Am. Chem. Soc., 2006, 128: 16733.
    8. MURATA Y, MURATA M, KOMATSU K. 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H2@C60 [J]. J. Am. Chem. Soc., 2003, 125: 7152.
    9. RUBIN Y, JARROSSON T, WANG G, BARTBERGER M D, HOUK K N, SCHICK G, SAUNDERS M, CROSS J R. Insertion of Helium and Molecular Hydrogen Through the Orifice of an Open Fullerene [J]. Angew. Chem., Int. Ed., 2001, 40:1543.
    10. CARRAVETTA M, MURATA Y, MURATA M, HEINMAA I, STERN R, TONTCHEVA A, SAMOSON A, RUBIN Y, KOMATSU K, LEVITT M H. Solid-State NMR Spectroscopy of Molecular Hydrogen Trapped Inside an Open-Cage Fullerene [J]. J. Am. Chem.Soc., 2004, 126: 4092.
    11. CIOSLOWSKI J, FLEISCHMANN E D. Endohedral complexes: Atoms and ions inside the C60 cage [J]. J. Chem. Phys., 1991, 94: 3730.
    12. CIOSLOWSKI J. Endohedral Chemistry: Electronic Structures of MoleculesTrapped Inside the C60 Cage [J]. J. Am. Chem. Soc. 1991, 113:4139.
    13. HU Y H, RUCKENSTEIN E. Endohedral Chemistry of C60-Based Fullerene Cages, J. Am. Chem. Soc., 2005, 127: 11277.
    14. MURRY R L, SCUSERIA G E, Theoretical Evidence for a C60 "Window" Mechanism [J]. Science, 1994, 263:791.
    15. SHIMOTANI H, ITO T, IWASA Y, TANINAKA A, SHINOHARA H, NISHIBOR E, TAKATA M, SAKATA M. Quantum Chemical Study on the Configurations of Encapsulated Metal Ions and the Molecular Vibration Modes in Endohedral Dimetallofullerene La2@C80 [J]. J. Am. Chem. Soc., 2004, 126:364.
    16. KOBAYASHI K, SANO Y, NAGASE S. Theoretical study of endohedral metallofullerenes: Sc3-nLanN@C80 (n=0-3) [J]. J. Comput. Chem., 2001, 22:1353.
    17. MAKURIN Y N, SOFRONOV A A, GUSEV A I, IVANOVSKY A L, DU M H, CHENG H P. Manipulation of fullerene-induced impurity states in carbon peapods [J]. Phys. Rev. B, 2003, 68: 113402.
    18. SANVILLE E, BELBRUNO J J. Computational Studies of Possible Transition Structures in the Insertion and Windowing Mechanisms for the Formation of Endohedral Fullerenes [J]. J. Phys. Chem. B, 2003, 107: 8884.
    19. INFANTE I, GAGLIARDI L, SCUSERIA G E. Is Fullerene C60 Large Enough to Host a Multiply Bonded Dimetal? [J]. J. Am. Chem. Soc., 2008, 130: 7459.
    20. LI R J, LI Z R,WU D, CHEN W, LI Y, WANG B Q, SUN C C. Proton Transfer of NH3?HCl Catalyzed by Only One Molecule [J]. J. Phys. Chem. A, 2005, 109: 629.
    21. CAZAR A A, JAMKA J, TAO F M. Ab Initio Investigation of Proton Transfer in Ammonia?Hydrogen Chloride and the Effect of Water Molecules in the Gas Phase[J]. J. Phys. Chem. A, 1998,102: 5117.
    22. BIZYSKO M, LATAJKA Z.iczysko, A 13C NMR study on the structural change of silk fibroin from Samia cynthia ricini [J]. Chem.Phys.Lett., 1999, 313:366.
    23. EUSTIS S N, RADISIC D, BOWEN K H, BACHORZ R A, HARANCZYK M, SCHENTER G K, GUTOWSKI M. Electron-Driven Acid-Base Chemistry:Proton Transfer from Hydrogen Chloride to Ammonia[J]. Science, 2008, 319: 936.
    24. REED A E, WEINSTOCK R B, WEINHOLD F. Natural Population Analysis[J]. J. Chem Phys, 1985, 83: 735.
    25. CARPENTER J E, WEINHOLD F. Analysis of the geometry of the hydroxymethyl radical by the―different hybrids for different spins‖natural bond orbital procedure[J]. J. Mol Struct (Theochem), 1988, 169:41.
    26. BOYNS S F, BERMARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Mol. Phy., 1970, 19:553.
    27. TURI L, DANNENBERG J J. Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction [J]. J.Phys. Chem., 1993, 97:2488.
    28. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian, Inc., Pittsburgh, PA, 2003.
    29. LEE T B, MCKEE M L. Endohedral Hydrogen Exchange Reactions in C60 (nH2@C60, n = 1?5): Comparison of Recent Methods in a High-Pressure Cooker [J]. J. Am. Chem. Soc., 2008, 130: 17610.
    30. MOURIK T V, KARAMERTZANIS P G, PRICE S L. Molecular Conformations and Relative Stabilities Can Be as Demanding of the Electronic Structure Method as Intermolecular Calculations [J]. J. Phys. Chem. A, 2006, 110: 8.
    31. SHIELDS A E, MOURIK T V. Comparison of ab Initio and DFT Electronic Structure Methods for Peptides Containing an Aromatic Ring: Effect of Dispersion and BSSE [J]. J. Phys. Chem. A, 2007, 111:13272.
    32. RAMACHANDRAN C N, SATHYAMURTHY N. Water clusters in a confined nonpolar environment [J]. Chem.Phys.Lett., 2005, 410:348.
    33. SHAMEEMA O, RAMACHANDRAN C N, SATHYAMURTHY N. Blue Shift in X-H Stretching Frequency of Molecules Due to Confinement [J]. J. Phys. Chem. A , 2006, 1:110.
    1. IIJIMA S. Helical microtubules of graphitic carbon [J], Nature, 1991, 354: 56.
    2. BAUGHMAN R H, ZAKHIDOV A A, HEER W A DE. Carbon Nanotubes--the Route Toward Applications [J], Science, 2002, 297:787.
    3. XIE R H. In Handbook of AdVanced Electronic and Photonic Materials and DeVices [M]. Nalwa, H. S., Ed.; Academic Press: New York, 2000.
    4. FAGAN J A, SIMPSON J R, BAUER B J, LACERDA S H D P, BECKER M L, CHUN J, MIGLER K B, WALKER A R H, HOBBIE E K. Length-Dependent Optical Effects in Single-Wall Carbon Nanotubes [J], J. Am. Chem. Soc., 2007, 129: 10607.
    5. MACHON M, REICH S, THOMSEN C, SANCHEZ P D, ORDEJO P. Ab initio calculations of the optical properties of 4-?-diameter single-walled nanotubes [J], Phys. Rev. B 2002, 66:155410.
    6. SLEPYAN G Y, MAKSIMENKO S A, KALOSHAV P, HERRMANN J, CAMPBELL E E B, HERTEL I V, Highly efficient high-order harmonic generation by metallic carbon nanotubes [J], Phys. Rev. A, 1999, 60: R777.
    7. SUN J, GUO Z, LIANG W Z, Harmonic generation of open-ended and capped carbon nanotubes investigated by time-dependent Hartree-Fock theory [J], Phys. Rev. B, 2007, 75: 195438.
    8. Guo G Y, CHU K C, WANG D S, DUAN C, Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations [J], Phys. Rev. B, 2004, 69: 205416.
    9. DATTA A, PATI S K, Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability [J], Chem. Soc. Rev., 2006, 35: 305.
    10. DATTA A, PATI S K, Nonlinear optical properties in calix[n]arenes: Orientation effects of monomers [J], Chem. Eur. J., 2005, 11: 4961.
    11. MOLINER V, ESCRIBANO P, PERIS E, Intermolecular hydrogen bonding in NLO. Theoretical analysis of the nitroaniline and HF cases [J], New J. Chem., 1998, 22: 387.
    12. KEINSNAN S, RATNER M A, MARKS T J, Self-Assembled Electrooptic Superlattices. A Theoretical Study of Multilayer Formation and Response Using Donor?Acceptor, Hydrogen-Bond Building Blocks [J], Chem. Mater., 2004, 16:1848.
    13. DATTA A, PATI S K, Dipole orientation effects on nonlinear optical properties of organic molecular aggregates [J]. J. Chem. Phys., 2003, 118: 4820.
    14. JENSENA L, ?STRAND PO, OSTED A, KONGSTED J, MIKKEISEN K V, Polarizability of molecular clusters as calculated by a dipole interaction model [J], J. Chem. Phys., 2002, 116: 4001.
    15. DATTA A, PATI S K, DAVIS D, SREEKUMAR K, Odd-even oscillations in first hyperpolarizability of dipolar chromophores: Role of conformations of spacers [J]. J. Phys. Chem. A, 2005, 109: 4112.
    16. BELLS S D, RATNER M A, MARKS T J. Design of chromophoric molecular assemblies with large second-order optical nonlinearities. A theoretical analysis of the role of intermolecular interactions [J]. J. Am. Chem. Soc, 1992, 114: 5842.
    17. NGUYEN P, LESLEY G, MARDER TB, LEDOUX I, ZYSS J. Second-Order Nonlinear Optical Properties of Push?Pull Bis(phenylethynyl)benzenes and Unsymmetric Platinum Bis(phenylacetylide) Complexes [J]. Chem. Mater.,1997, 9: 406.
    18. KATTI V, RAGHURAMAN K, PILLARSETTY N, KARRA S R, CULOTTY R J, CHARTIER M A, LANGHOFF C A. First Examples of Azaphosphanes as Efficient Electron Donors in the Chemical Architecture of Thermally Stable New Nonlinear Optical Materials [J]. Chem. Mater., 2002, 14: 2436.
    19. MARDER S R. Organic nonlinear optical materials: where we have been and where we are going [J]. Chem. Commun., 2006, 2: 131.
    20. PRIYADARSHY S, THERIEN M J, BERATAN D N. Acetylenyl-Linked, Porphyrin-Bridged, Donor?Acceptor Molecules: A Theoretical Analysis of theMolecular First Hyperpolarizability in Highly Conjugated Push?Pull Chromophore Structures [J]. J. Am. Chem. Soc., 1996, 118: 1504.
    21. BULAT F A, ALEJANDRO T L, CHAMPAGNE B, KIRTMAN B. Density-functional theory (hyper)polarizabilities of push-pull pai-conjugated systems: Treatment of exact exchange and role of correlation [J]. J. Chem. Phys., 2005, 123: 014319.
    22. DAUL C A, CIOFINI I, WEBER V I. Investigation of NLO properties of substituted (M)-tetrathia-[7]-helicenes by semiempirical and DFT methods [J]. J. Quantum Chem., 2003, 91: 297.
    23. BOTEK E, CHAMPAGNE B, TURKI M, TURKI M, ANDRE J M. Theoretical study of the second-order nonlinear optical properties of [N]helicenes and [N]phenylenes [J]. J. Chem. Phys., 2004,120: 2042.
    24. CHAMPAGNE B, ANDRE J M, BOTEK E, LICANDRO E, MAIORANA S, BOSSI A, CLAYS K, PERSOONS A., Theoretical Design of Substituted Tetrathia-[7]-Helicenes with Large Second-Order Nonlinear Optical Responses [J]. Chem. Phys. Chem., 2004, 5: 1438.
    25. XIAO D, BULAT F A, YANG W T, BERATAN D N. A donor-nanotube paradigm for nonlinear optical materials [J]. Nano Lett., 2008, 8: 2814.
    26. POLITZER P, MURRAY J S, LANE P, CONCHA M C, JIN P, PERALTA-INGA Z. An unusual feature of end-substituted model carbon (6,0) nanotubes [J]. J. Mol. Model., 2005,11: 258.
    27. GUSTAVSSON S, ROSEN A, BOLTON K. Theoretical Analysis of Ether-Group Derivatization at Carbon Nanotube Ends [J]. Nano Lett., 2003, 3: 265.
    28. RAPTIS G, PAPADOPOULOS M G, SADLEJ A J. Hexalithiobenzene: A molecule with exceptionally high second hyperpolarizability [J]. Phys. Chem. Chem. Phys., 2000, 2: 3393.
    29. MA F, LI Z R, XU H L, LI Z J, LI Z S, AOKI Y, GU F L, Lithium Salt Electride with an Excess Electron Pairs - A Class of Nonlinear OpticalMolecules for Extraordinary First Hyperpolarizability [J]. J. Phys. Chem. A, 2008, 112 : 11462.
    30. XU H L, LI Z R, WU D, MAF, LI Z J, GU F L, Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability [J]. J. Phys. Chem. C, 2009,113: 4984.
    31. REED A E, WEINSTOCK R B, WEINHOLD F, Natural Population Analysis [J]. J. Chem Phys, 1985, 83: 735.
    32. BECKE A D, Density-functional thermochemistry. III. The role of exact exchange [J]. Chem Phys, 1993, 98: 5648.
    33. CHAMPAGNE B, PERPETE E A, GISBERGEN S J A VAN, BAERENDS E J, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B. Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains [J]. J. Chem. Phys, 1998, 109: 10489.
    34. MORI-SANCHEZ P, WU Q, YANG W T. Accurate polymer polarizabilities with exact exchange density-functional theory [J]. J. Chem. Phys. 2003, 119: 11001.
    35. BOYNS S F, BERMARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Mol. Phy., 1970, 19: 553.
    36. HOBZA P, HAVLAS Z. Counterpoise-corrected potential energy surfaces of simple H-bonded systems [J]. Theor. Chem. Acc., 1998, 99: 372.
    37. ALKORTA I, ELGUERO J. Theoretical Study of Strong Hydrogen Bonds between Neutral Molecules: The Case of Amine Oxides and Phosphine Oxides as Hydrogen Bond Acceptors [J]. J. Phys. Chem. A, 1999, 103: 272.
    38. FRISCH M J, TRUCKS G W, SHLEGEL H B, et al. rucks Gaussian, Inc., Pittsburgh, PA, 2003.
    39. BLANCHARD D M, ALAIN V, BEDWORH P V, MARDER S R, FORT A, RUNSER C, BARZOUKAS M, LEBUS S, WORTMANN R. Large Quadratic Hyperpolarizabilities with Donor - Acceptor Polyenes Exhibiting Optimum BondLength Alternation: Correlation between Structure and Hyperpolarizability [J]. Chem.-Eur.J., 1997, 3: 1091.
    40. VANCE F W, HUPP J T. Probing the Symmetry of the Nonlinear Optic Chromophore Ru(trans-4,4?-diethylaminostyryl-2,2?-bipyridine)32+: Insight from Polarized Hyper-Rayleigh Scattering and Electroabsorption (Stark) Spectroscopy [J]. J. Am. Chem. Soc., 1999, 121: 4047.
    41. ABBOTTO A, BEVERINA L, MANFREDI N, PAGANI G A, ARCHETTI G, KUBALL H G, WITTENBURG C, HECK J, HOLTMANN J. Second-Order Nonlinear Optical Activity of Dipolar Chromophores Based on Pyrrole-Hydrazono Donor Moieties [J]. Chem.-Eur. J., 2009, 15: 6175.
    42. OUDER J L. CHEMLA D S. Hyperpolarizabilities of the Nitroanilines and Their Relations to the Excited State Dipole Moment [J]. J. Chem. Phys., 1977, 66: 266.
    43. OUDER J L. Optical Nonlinearities of Conjugated Molecules. Stilbene Derivatives and Highly Polar Aromatic Compounds [J]. J. Chem. Phys., 1977, 67: 446.
    44. KANIS D R, RATNER M A, MARKS T J. Design and Construction of Molecular Assemblies with Large Second-order Optical Nonlinearities.Quantum Chemical Aspects [J]. Chem. Rev., 1994, 94: 195.
    1. (a) GOLBERG D, BANDO Y, TANG C, ZHI C. Boron Nitride Nanotubes [J]. Adv. Mater. 2007, 19: 2413-2432. (b) ARENAL R, FERRARI A C, REICH S, WIRTZ L, MEVELLEC J Y, LEFRANT S, RUBIO A, LOISEAU A. Raman Spectroscopy of Single-Wall Boron Nitride Nanotubes [J]. Nano Lett. 2006, 6: 1812-1816. (c) CUMINGS J, ZETTL A. Field emission and current-voltage properties of boron nitride nanotubes [J]. Solid State Commun. 2004, 129: 661-664. (d) WIRTZ L, MARINI A, RUBIO A. Excitons in Boron Nitride Nanotubes: Dimensionality Effects [J]. Phys. Rev. Lett. 2006, 96:126104. (e) PARK C H, SPATARU C D, LOUIE S G. Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes [J]. Phys. Rev. Lett. 2006, 96: 126105.
    2. (a) RUBIO A, CORKILL J L, COHEN M L. Theory of graphitic boron nitride nanotubes [J]. Phys. Rev. B, 1994, 49: 5081. (b) BLASE X, RUBIO A, LOUIE S S, COHEN M L. Stability and Band Gap Constancy of Boron Nitride Nanotubes [J]. Europhys. Lett., 1994, 28: 335. (c) CHEN Y, ZOU J, CAMPBELL S J, CAER G L. Boron nitride nanotubes: Pronounced resistance to oxidation [J]. Appl. Phys. Lett., 2004, 84: 2430.
    3. (a) TANG C C, BANDO Y,DING X X, QI S R, GOLBERG D. Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes [J]. J. Am. Chem. Soc., 2002, 124: 14550. (c) BAILERLE R J, PIQUINI P, SCHMIDT T M, FAZZIO A. Hydrogen Adsorption on Carbon-Doped Boron Nitride Nanotube [J]. J. Phys. Chem. B, 2006, 110: 21184. (e) ZHOU Z, ZHAO J J, CHEN Z, GAO X P, YAN T Y, SCHLEYER P V R. Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes [J]. J. Phys. Chem. B, 2006, 110:13363. (g) WU X J, YANG J L, HOU J G, ZHU Q S. Deformation-induced site selectivity for hydrogen adsorption on boron nitride nanotubes [J]. Phys. Rev. B, 2004, 69: 153411. (h) WU X J, YANG J L, HOU J G, ZHU Q S. Defects-enhanced dissociation of H2 on boron nitride nanotubes [J]. J. Chem. Phys., 2006, 124: 054706. (i) WU X J, YANG J L, ZENG X C. Adsorption of hydrogen molecules on the platinum-doped boron nitride Nanotubes [J]. J. Chem. Phys., 2006, 125: 044704.
    4. (a) WU X J, AN W, ZENG X C. Chemical Functionalization of Boron?Nitride Nanotubes with NH3 and Amino Functional Groups [J]. J. Am. Chem. Soc., 2006, 128:12001. (b) ZHI C Y, BANDO Y, TANG C C, GOLBERG D. Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization [J]. Phys. Rev. B, 2006, 74: 153413. (c) LI Y F, ZHOU Z, ZHAO J J, Functionalization of BN nanotubes with dichlorocarbenes [J]. Nanotechnology, 2008, 19:015202. (10) (d) TANG C C, BANDO Y, HUANG Y, YUE S L, GU C Z, XU F F, GOLBERG D. Fluorination and Electrical Conductivity of BN Nanotubes [J]. J. Am. Chem. Soc., 2005, 127: 6552. (e) LAI L, SONG W, LU J, GAO Z, NAGSE S, NI M, MEI W N, LIU J, YU D, YE H. Structural and Electronic Properties of Fluorinated Boron Nitride Nanotubes [J]. J. Phys. Chem. B, 2006, 110:14092. (d) ZHOU Z, ZHAO J J, CHEN Z, SCHLEYER P V R. Atomic and Electronic Structures of Fluorinated BN Nanotubes: Computational Study [J]. J. Phys. Chem. B, 2006, 110: 25678.
    5. ZHANG Z, GUO W. Tunable Ferromagnetic Spin Ordering in Boron Nitride Nanotubes with Topological Fluorine Adsorption [J]. J. Am. Chem. Soc., 2009, 131: 6874–6879.
    6. LI J, ZHOU G, CHEN Y, GU B L, DUAN W. Magnetism of C Adatoms on BNNanostructures: Implications for Functional Nanodevices [J]. J. Am. Chem. Soc., 2009, 131: 1796–1801
    7. YAN B, PARK C, IHM J, ZHOU G, DUAN W, PARK N. Electron Emission Originated from Free-Electron-like States of Alkali-Doped Boron?Nitride Nanotubes [J]. J. Am. Chem. Soc., 2008, 130:17012–17015
    8. (a)HARNEIT W. Fullerene-based electron-spin quantum computer [J]. Phys. Rev. A, 2002, 65: 032322.(b) BENJAMIN S C, ARDAVAN A, BRIGGS G A D, BRITZ D A, GUNLYCKE D, JEFFERSON J, JONES M A G, LEIGH D F, LOVETT B W, KHLOBYSTOV A N, LYON S, MORTON J J L, PORFYRAKIS K, SAMBROOK M R, TYRYSHKIN A M. Towards a Fullerene-Based Quantum Computer [J]. J. Phys.: Condens. Matter, 2006, 18: S867.
    9. CHEN W, YU G T, GU F L, AOKI Y. Investigation on the Electronic Structures and Nonlinear Optical Properties of Pristine Boron Nitride and Boron Nitride-Carbon Heterostructured Single-Wall Nanotubes by the Elongation Method [J]. J. Phys. Chem. C, 2009, 113: 8447–8454.
    10. REED A E, WEINSTOCK R B, WEINHOLD F. Natural Population Analysis [J]. J. Chem Phys, 1985, 83:735.
    11. BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. Chem Phys, 1993, 98: 5648.
    12. (a) BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. J. Mol. Phys., 1970, 19: 553. (b) TURI L, DANNENBERG J J. Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction [J].J.Phys. Chem., 1993, 97: 2488.
    13. (a) CHAMPAGNE B, PERPETE E A, GISBERGEN S J A VAN, BAERENDS E J, SNIJDERS J G, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B. Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains [J], J. Chem. Phys, 1998, 109: 10489. (b) MORI-SANCHEZ P, WU Q, YANG W T. Accurate polymer polarizabilities with exact exchange density-functional theory [J]. J. Chem. Phys., 2003, 119: 11001.
    14. XIAO D, BULAT F A, YANG W T, BERATAN D N. A donor-nanotube paradigm for nonlinear optical materials [J]. Nano Lett., 2008, 8: 2814.
    15. (a) XU H L, LI Z R, WU D, MA F, LI Z J, GU F L, Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability [J], J. Phys. Chem. C, 2009,113: 4984. (b) XU, H L, LI Z R,WU D. WANG B Q, LI Y, GU F L, AOKI Y. Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain [J]. J. Am. Chem. Soc., 2007, 129: 2967-2970. (c) CHEN W, LI Z R, WU D, LI Y, SUN C C. Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties [J]. J. Phys. Chem. A, 2005, 109: 2920–2924. (d) CHEN W, LI Z R, WU D, LI R Y, SUN C C. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom [J]. J. Phys. Chem. B, 2005, 109: 601-608. (f) MA F, LI Z R, XU H L, LI Z J, LI Z S, AOKI Y, GUu F L. Lithium Salt Electride with an Excess Electron Pairs - A Class of Nonlinear Optical Molecules for Extraordinary First Hyperpolarizability [J]. J. Phys. Chem. A, 2008, 112 : 11462. (g) CHEN W, LI Z R, WU D, LI Y, SUN C C, GU F L. TheStructure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981. (h) CHEN W, LI Z R, WU D, LI Y, SUN C C, GU F L, AOKI Y. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): Alkali Anion Atomic Number Dependence [J]. J. Am. Chem. Soc. 2006, 128:1072–1073
    16. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al..Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    17. WANG F F, LI Z R, WU D, WANG B Q, LI Y, LI Z J, CHEN W, YU G T, GU F L, AOKI Y. Structures and Considerable Static First Hyperpolarizabilities: New Organic Alkalides (M+@n6adz)M‘- (M, M‘= Li, Na, K; n = 2, 3) with Cation Inside and Anion Outside of the Cage Complexants [J]. J. Phys. Chem. B, 2008, 112: 1090-1094
    18. OUDER J L. CHEMLA D S. Hyperpolarizabilities of the Nitroanilines and Their Relations to the Excited State Dipole Moment [J]. J. Chem. Phys., 1977, 66: 266.
    19. OUDER J L. Optical Nonlinearities of Conjugated Molecules. Stilbene Derivatives and Highly Polar Aromatic Compounds [J]. J. Chem. Phys., 1977, 67: 446.
    20. KANIS D R, RATNER M A, MARKS T J. Design and Construction of Molecular Assemblies with Large Second-order Optical Nonlinearities.Quantum Chemical Aspects [J]. Chem. Rev., 1994, 94: 195.
    21. ICHIMURA A S, DYE J L. Toward Inorganic Electrides [J]. J. Am. Chem. Soc., 2002, 124:1170-1171.
    22. DYE J L. Electrons as anions [J]. Science, 2003, 301: 607-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700