几类重要的配位化合物的结构及稳定性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用量子化学方法,设计了一系列的稳定的配位化合物,并对它们的结构和稳定性做了系统的理论研究,为将来进一步的实验室探测及合成提供了理论依据,丰富了配位化学。主要内容有:i)设计了一系列基于全氮单元N_4~(2-)、N_3~-、N_5-的夹心配合物,并研究了它们的动力学稳定性。我们发现[N_4TiN_4]~(2-)是基态为三态的配位化合物,并且电荷补偿离子的影响是不能忽略的。而含有N_3单元的夹心配位化合物中的N_3单元均为3N_3~-,这是一个新型的双自由基类型的配体。而含有N_3和N_5单元的夹心配合物[N_3MN_5]~q,则是[N8M]~q势能面上比[N_4MN_4]~q能量更低的组合形式。ii)研究了C_3R_3单元取代基效应的影响,及其在夹心化合物中的结构及性质,发现C_3R_3单元均是三态的双自由基类型的配体3C_3R_3~-。iii)通过各种方法计算了最近实验报道的Zn(CO)_3配合物的结构及稳定性,并对它进行了动力学模拟,发现即使是对于光谱探测来说Zn(CO)_3也是不可能存在的。同时,我们还设计了含有Zn和CO的稳定的高自旋配位化合物,丰富了零价锌化学。
Coordinate chemistry is one of the most important parts of modern chemistry. Complexes are widely applied to our life, industry and biological science, and recently have been developed rapidly. Complexes are associated with inorganic compounds, organic compounds, cluster chemistry, coordinate catalyzer and molecular biology. In this thesis, quantum chemical investigations on the design a series of stable complexes as well as their structures and stabilities have been carried out. Our calculations provide theoretical supports for future experimental study on the detection and synthesis, and enrich the coordinate chemistry.
     The main results are summarized as follows:
     1. We investigated the electronic spins and counterions influences for the kinetic stability of sandwich-like complexes [N_4MN_4]~q (M= Ti, V, Cr, Fe, Co, Ni) based on the energetic all-nitrogen 6π-aromatic species N_4~(2-), which are reported previously. We studied the stability of the charged [N_4TiN_4]~(2-) and [N_4TiN_4TiN_4]~(2-) systems as well as the neutral [N_4TiN_4]Li2 system in both singlet and triplet electronic states at DFT level. We found that the ground state structures of di-deckered [N_4TiN_4]~(2-) and [N_4TiN_4]Li2 as well as the tri-deckered [N_4TiN_4TiN_4]~(2-) are all in triplet state, rather than the previously reported singlet ones. Therefore, the N_4~(2-) and Ti2+-based sandwich-like complexes should be in high spins and may have potential use for new paramagnetic materials. Moreover, our calculations indicated that although the counterions can induce the electronic stabilization, they on the other hand can lead to the considerable kinetic destabilization of the N_4~(2-)—based sandwich-like complexes since the counterions can structurally destroy the perfectness of aromatic N_4~(2-). Thus, in study of the sandwich-like complexes, the effect of counterions can not be neglected for assessment of the kinetic stability.
     2. We made the first successful assembly-design of the long escaped N_3~-based compounds, i.e., [N_3NiN_3]~(2-), [N_3M(CO)_2N_3]~q ((M,q)=(Fe, 0) (Mn, -1)), [N_3M(CO)_3]~q ((M,q)=(Co, 0) (Fe, -1)), and [N_3MCp]~q ((M,q)=(Ni, 0) (Co, -1)), at the density functional level. The conversion and dissociation of them need to overcome considerable barriers kinetically. The detailed structural, charge distribution and orbital analysis consistently reveal a triplet polynitrogen unit, cyclic-3N_3~-, rather than another simplest trinitrogen unit cyclic-1N_3+. The two unpaired spins within the naked cyclic-3N_3~- have effectively participated in the bonding interaction with the central transition metal atoms (here M is Ni, Fe, Co and Mn). Moreover the possible experimental routes of N_3Co(CO)_3 were proposed. The diradical-like polynitrogen ring, cyclic-3N_3~-, would add to the polynitrogen family as a novel building block.
     3. We studied a type of hetero-decked sandwich-like structures [N_3MN_5]~q containing two odd-membered all-nitrogen rings (N_3 and N_5) on the hypersurface of [N_8M]~q [(M,q)=(Ni,0), (Co,-1), (Fe,-2)]. At the B3LYP/6-311+G(d) level, the new isomers are energetically more stable than the previously reported homo-decked sandwich-like isomers [N_4MN_4]~q based on the even-membered all-nitrogen ring N_4~(2-). In particular, theη~3-η~2 (η~3-η~1) isomers of [N_3MN_5]~q [(M,q)=(Ni,0), (Co,-1), (Fe,-2)] possess considerable kinetic stability for laboratory characterization. The bond length and natural charge analysis of [N_3MN_5]~q [(M,q)=(Ni,0), (Co,-1), (Fe,-2)] indicate that each complex possesses the smallest triplet all-nitrogen ring 3N_3~-.
     4. We performed the density functional theory investigations on a series of experimentally long-knownη~3-C_3R_3~- assembled compounds, e.g., C3Ph3NiCp, (C_3Ph_3)Co(CO)_3 and (C3Ph3)NiCl(py)2, in which theη3-C_3R_3 unit was generally conceived as a singlet 2π-aromatic C_3R_3~+ have been carried out. The structural, bonding and natural charge analysis definitively reveals the existence of a negative diradical-like unit 3C_3R_3~- rather than the generally accepted 1C_3R_3~+. The two unpaired electrons within the nakedη~3-~3C_3R_3~- have effectively participated in the bonding interaction with the central transition metal atoms, resulting in the eventual diamagnetism. Moreover, we for the first time designed various half and fully sandwich-likeη~3-C_3R_3~-based complexes containing alkali and alkaline-earth metals. Interestingly, their intrinsic di-radical or tetra-radical characters allow their potential use as paramagnetic materials. Finally, we showed that the model unit ~3C_3H_3~- in both free and assembled form is kinetically stable against ring-opening, and when H is replaced byπ-type substitutes, ~3C_3R_3~- becomes more stable than singlet. Therefore, for the simplest triplet 4nπaromatic 3C_3R_3~-, we have for the first time proven its long existence in transition metal assembled complexes and have predicted its existence in main-group metal assembled complexes.
     5. We systematically investigated the thermodynamic and kinetic stability of Zn(CO)_3 towards CO-extrusion at the BP86, B3PW91, BPW91, PBEPBE, BH&HLYP, B3LYP, MP2, MP4SDQ, QCISD, CCSD and CASPT2 levels as well as the Born-Oppenheimer molecular dynamic (BOMD) simulation. All these calculations consistently reveal that the 18e Zn(0) complex Zn(CO)_3 is neither a genuine minimum point nor kinetically stable with negligibly low barriers. In particular, Zn(CO)_3 is thermodynamically quite unstable with respect to the fragments ~1Zn+3CO by around 40 kcal/mol at all the three sophisticated correlation levels, i.e., MP4SDQ, QCISD and CCSD. We thus concluded that the tricarbonyl Zn(0) complex, Zn(CO)_3, should not exist even for spectroscopic characterization. Interestingly, our extensive structural search predicts that two triplet di-zinc carbonyls, i.e., ~3(CO)ZnZn and ~3(CO)_2ZnZn, have noticeable kinetic stability(10.41 and 8.11 kcal/mol at the CCSD level) against the respective CO- and Zn-extrusion, which can be compared with the value 8.70 kcal/mol for the already detected ~3Zn(CO)_2. Our designed ~3(CO)ZnZn and ~3(CO)_2ZnZn together with the experimentally known ~3ZnCO and ~3Zn(CO)_2 are formally associated with the zinc (0)“spin-based zinc carbonyls”and should be considered as remarkable, since most of the known zinc complexes usually contain +2 or +1 oxidation state Zn.
引文
[1]戴安邦.配位化学[M ].北京:科学出版社, 1987.
    [2]戴环.络合物化学及其应用[J].化学世界, 1983, 09, 28~(2-)284.
    [3]罗勤慧,沈孟长.配位化学[M ].南京:江苏科学技术出版社, 1987.
    [4] KEALY T J, PAUSON P L. A new type of organo-iron compound [J] Nature,1951, 168, 1039-1040.
    [5] MILLER S A, TEBBOTH J A, TREMAINE J F. Dicyclopentadienyliron [J]. Journal of Chemistry Society, 1952, 63~(2-)635.
    [6] WILKINSON G, ROSENBLUM M, WHITING M C, WOODWARD R B.The structure of iron bis-cyclopentadienyl [J].Journal of the American Chemical Society, 1952, 74, 2125-2126.
    [7] FISCHER E O, PFAB W . Zur kristallstruktur der di-cyclopentadienyl -verbindungen des zweiwertigen eisens, kobalts und nickels [J].Z. Naturforsch. B,1952, 7, 377-379.
    [8] DUNITZ J, ORGEL L, RICH A. The crystal structure of ferrocene [J]. Acta Crystallographica, 1956, 9, 373–375.
    [9] LASZLO P, HOFFMANN R. Ferrocene: ironclad history or rashomon tale? [J], Angewandte Chemie International Edition, 2000, 39, 123-124.
    [10] GREEN M L H, Organometallic compounds vol. ii: the transition elements [M], 1968.
    [11] AMIET R G, PETTIT R. Cyclobutadiene(.pi.-cyclopentadienyl)cobalt [J]. Journal of the American Chemical Society, 1968, 90, 1059-1060.
    [12] NAKAMURA A, HAGIHARA N. New stable olefin complexes of cobalt(i) [J]. Bulletin of the Chemical Society of Japan, 1961, 34, 45~(2-)453.
    [13] HAYTER R G. A new route toπ-allyl complexes of molybdenum and tungsten [J]. Journal of Organometallic Chemistry, 1968,13, P1-P3.
    [14] SCHERER O J, BRAUN J, WOLMERSHAUSER G. Nickelapnicogencubane [J].Chemische Berichte, 1990, 123, 471-475.
    [15] SCHERER O J. pn and asn ligands: a novel chapter in the chemistry of phosphorus and arsenic [J]. Account of Chemical Research, 1999, 32, 751-762.
    [16] BREUNIG H J, R?SLER R, LORK E. Complexes with sb2 and cyclo-sb3 ligands: the tetrahedranes [c5h5(co)2mo2sb2], [c5h5(co)2mosb3], and [c5me5(co)2mosb3] [J]. Angewandte Chemie International Edition in English, 1997, 36, 2819-2821.
    [17] SCHERER O J. Complexes with substituentfree acyclic and cyclic phosphorus, arsenic, antimony, and bismuth ligands [J]. Angewandte Chemie International Edition in English, 1990, 29, 1104-1122.
    [18] WHITMIRE K H. Main group-transition metal cluster compounds of the group15 elements [J]. Advances in Organometallic Chemistry 1998, 42, 1-145.
    [19]郭用猷,刘传朴,刘耀岗,邓从豪.结构化学[M].济南:山东大学出版社, 1998.
    [20] URNEZIUS E, BRENNESSEL W W, CRAMER, C J, ELLIS J E, SCHLEYER P V R. A Carbon-free sandwich complex [(p5)2ti]~(2-) [J]. Science, 2002, 295, 83~(2-)834.
    [21] HUBER H, HA T K, NGUYEN M T. Is n6 an open-chain molecule?[J]. Journal of Molecular Structure: THEOCHEM 1983, 105, 351-358.
    [22] GAGLIARDI L, ORLANDI G, A theoretical study of the nitrogen clusters formed from the ions n3?, n5+, and n5? [J]. The Journal of Chemical Physics, 2001, 114, 10733-10738.
    [23]VIJ A, WILSON W W, VIJ V, THAM F S, SHEEHY J A, CHRISTE K O. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of n5+ [J]. Journal of the American Chemical Society 2001, 123, 6308-6313.
    [24] CHRISTE K O, WILSON W W, SHEEHY J A, BOATZ J A, N_5+: a novel homoleptic polynitrogen ion as a high energy density material [J]. Angewandte Chemie International Edition 1999, 38, 2004-2009.
    [25] GAGLIARDI L, PYYKKO P.η5-N_5-?METAL?η7-N73-: a new class of compounds [J]. Journal of Physical Chemistry A, 2002, 106, 4690-4694.
    [26] LEIN M, FRUNZKE J, TIMOSHKIN A, FRENKING G. Iron bispentazole fe(η5-n5)2, a theoretically predicted high-energy compound: structure, bondinganalysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene [J]. Chemistry - A European Journal, 2001, 7, 4155-4163.
    [27] LI Q S, GUAN J. Theoretical study of ni(n4)2, ni(c4h4)2, and ni(c2o2)2 complexes [J]. Journal of Physical Chemistry A, 2003, 107, 8584-8593.
    [28] GUAN J, LI Q S. Structures and kinetic stabilities of the possible complexes of mononuclear ni and (n2)x(x=1-4) [J]. Journal of Physical Chemistry A, 2005, 109, 9875-9881.
    [29] MERCERO J M, MATXAIN J M, UGALDE J M. Mono- and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring [J]. Angewandte Chemie International Edition 2004, 43, 5485-5488
    [30] RAUSCHLA M D, TUGGLE R M, WEAVER D L. Formation and structure of a new mixed sandwich complex (η5-c5h5)ni(η3-c3ph3) [J]. Journal of the American Chemical Society, 1970, 92, 4981-4982.
    [31] COLLINS J, SCHLEYER P V R. Sandwich-type molecules of first-row atoms instability of bis-(η3-cyclopropenyl) beryllium [J]. Inorganic Chemistry, 1977 16, 15~(2-)155.
    [32] MOND L, LANGER C, QUINCKE F. J. Chem. Soc. 1890, 749.
    [33]ZHOU M F, CHERTIHIN G V, ANDREWS L. Reactions of laser-ablated iron atoms with carbon monoxide: infrared spectra and density functional calculations of fexco, fe(co)x, and fe(co)x? (x = 1,2,3) in solid argon [J]. The Journal of Chemical Physics. 1998, 109, 10893-10904
    [34] BACH S B H, TAYLOR C A, VAN ZEE R J, VALA M T, WELTNER W. Bonding in the first-row transition-metal monocarbonyl molecules [J]. Journal of the American Chemical Society, 1986, 108, 7104-7105.
    [35] COTTON F A, WILKINSON G, MURILLO C A, BOCHMANN M. Advanced inorganic chemistry, 6th ed [M]. New York: Wiley, 1999.
    [36] MUETTERTIES E L, STEIN J. Mechanistic features of catalytic carbon monoxide hydrogenation reactions [J]. Chemical Review, 1979, 79, 479-490.
    [37] TUMAS W, GITLIN B, ROSAN A M, YARDLEY J T. Olefin rearrangement resulting from the gas-phase krypton fluoride laser photolysis of chromiumhexacarbonyl [J]. Journal of the American Chemical Society, 1982, 104, 55-59.
    [38] LUCKHART C M. Fundamental transition metal organometallic chemistry [M]. Monterey, CA: Brooks-Cole, 1985.
    [39] PARSHALL G W, ITTEL S D. Homogeneous catalysis [M]. New York: Wiley-Interscience, 1992.
    [40] FALBE J. Carbon monoxide in organic synthesis [M]. Berlin: Springer- Verlag, 1980.
    [41] WEBER L. Homoleptic noble metal carbonyl cations [J]. Angewandte Chemie International Edition. 1994, 33, 1077-1078.
    [42] ROOY A, BRUIJN J N H, ROOBEK K F, KRAMER P C J, VAN LEEUWEN P W N M. Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand [J]. Journal of Organometallic Chemistry, 1996, 507, 69-73.
    [43] LUO Q, LI Q S, YU Z H, XIE Y M, KING R B, SCHAEFER H F. Bonding of seven carbonyl groups to a single metal atom: theoretical study of m(co)n (m = ti, zr, hf; n = 7, 6, 5, 4) [J]. Journal of the American Chemical Society, 2008, 130, 7756-7765.
    [44]罗琼,李前树,钛、锆、铪羰基化合物M(CO)n (M=Ti, Zr, Hf; n=4-7)的理论研究[J],分子科学学报,2009,01,23-26.
    [45] JIANG L, XU Q. Experimental and theoretical evidence for the formation of zinc tricarbonyl in solid argon [J]. Journal of the American Chemical Society, 2005, 127, 8906-8907.
    [46] JIANG L, TENG Y, XU Q. Reactions of laser-ablated zinc and cadmium atoms with co: infrared spectra of the zn(co)x (x = 1?3), cdco-, and cd(co)2 molecules in solid neon [J].The Journal of Physical Chemistry A, 2006, 110, 709~(2-)7096.
    [1] BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln [J], 1927, 389, 457-484.
    [2] HEHRE W J, RADOM L, SCHLEYER P R, et al., Ab Initio molecular orbitaltheory [M], John Wiley &Sons Inc, 1986.
    [3] MCQUARRIE D A, Quantum Chemistry University Science [M], Mill Vally CA, 1983.
    [4] LOWDIN P O, Correlation problem in many-electron quantum mechanics [J]. Advances in Chemical Physics, 1959, 2, 207.
    [5] POPLE J A, SEEGER R, KRISHNAN R, Variational configuration interaction methods and comparison with perturbation theory [J], International Journal of Quantum Chemistry. Sympos, 1977, 11, 149-163.
    [6] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al, Toward a systematic molecular orbital theory for excited states [J], Journal of Physical Chemistry, 1992, 96, 135-149.
    [7] KRISHNAN R., SCHLEGEL H B, POPLE J A, Derivative studies in configuration–interaction theory [J], Journal of Chemical Physics, 1980, 72, 4654-4655.
    [8] BROOKS B R, LAIDIG W D, SAXE P, et al, Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J], Journal of Chemical Physics, 1980, 72, 465~(2-)4653.
    [9] SALTER E A, TRUCKS G W, BARTLETT R J, Analytic energy derivatives in many-body methods. I. First derivatives [J], Journal of Chemical Physics, 1989, 90, 175~(2-)1756.
    [10] RAGHAVACHARI K, POPLE J A, Specificity and molecular mechanism of abortificient action of prostaglandins [J], International Journal of Quantum Chemistry, 1981, 20, 167-178.
    [11] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Quadratic configuration interaction. A general technique for determining electron correlation energies [J], Journal of Chemical Physics, 1987, 87, 5968-5975.
    [12] EADE R H E, ROBB M A, Direct minimization in mc scf theory. The quasi-newton method [J], Chemical Physics Letters, 1981, 83, 36~(2-)368.
    [13] POPLE J A, KRISHNAN R, SCHLEGEL H B, BINKLEY J S. Electron correlation theories and their application to the study of simple reaction potentialsurfaces [J]. International Journal of Quantum Chemistry, 1978, 14, 545-560.
    [14] BARTLETT R J, PURVIS G D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem [J], International Journal of Quantum Chemistry, 1978, 14, 561-581.
    [15] SCUSERIA G E, SCHAEFER III H F, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J], Journal of Chemical Physics, 1989, 90, 3700-3703.
    [16] PURVIS G D, BARTLETT R J, A full coupled-cluster singles and doubles model: the inclusion of disconnected triples [J], Journal of Chemical Physics, 1982, 76, 1910-1918.
    [17] SCUSERIA G E, JANSSEN C L, SCHAEFER III H F, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J], Journal of Chemical Physics, 1988, 89, 738~(2-)7387.
    [18] KOHN W, SHAM L J, Self-consistent equations including exchange and correlation effects [J], Physical Review, 1965, 140, A1133-A1138..
    [19] HOHENBERG P, KOHN W, Inhomogeneous electron gas [J], Physical Review, 1964, 136, B864-B871.
    [20] KOHN W, SHAM L J, Self-consistent equations including exchange and correlation effects [J], Physical Review, 1965, 140:A1133-A1138.
    [21] SLATER J C, Quantum theory of molecular and solids. vol. 4: the self-consistent field for molecular and solids mcgraw-hill: New York, 1974.
    [22] SALAHUB D R, ZERNER M C, eds, The challenge of d and f electrons acs: Washington, D.C. 1989.
    [23] PARR R G, YANG W, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [24] POPLE J A, GILL P M W, JOHNSON B G, Kohn—Sham density-functional theory within a finite basis set [J], Chemical Physics Letters, 1992, 199:557-560.
    [25] JOHNSON B G, FRISCH M J, An implementation of analytic second derivatives of the gradient-corrected density functional energy [J], Journal of Chemical Physics, 1994, 100:7429-7442.
    [26] LABANOWSKI J K, ANDZELM J W, eds., Density Functional Methods in Chemistry [M], Springer-Verlag: New York, 1991.
    [27] FUKUI K. Variational principles in a chemical reaction [J], International Journal of Quantum Chemistry, 1981, S15, 633-642.
    [28] FUKUI K, TACHIBANA A, YAMASHITA K. Toward chemodynamics [J], International Journal of Quantum Chemistry, 1981, S15, 621-632.
    [1] HUBER H, HA T K, NGUYEN M T. Is n6 an open-chain molecule?[J]. Journal of Molecular Structure: THEOCHEM 1983, 105, 351-358.
    [2] GAGLIARDI L, ORLANDI G, A theoretical study of the nitrogen clusters formed from the ions n3?, n5+, and n5? [J]. The Journal of Chemical Physics, 2001, 114, 10733-10738.
    [3] CHRISTE K O, WILSON W W, SHEEHY J A, BOATZ J A, N_5+: a novel homoleptic polynitrogen ion as a high energy density material [J]. Angewandte Chemie International Edition 1999, 38, 2004-2009.
    [4] VIJ A, WILSON W W, VIJ V, THAM F S, SHEEHY J A, CHRISTE K O. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of n5+ [J]. Journal of the American Chemical Society, 2001, 123, 6308-6313.
    [5] ZANDWIJK G V, JANSSEN R A J, BUCK H M. 6πaromaticity in four-membered rings [J]. Journal of the American Chemical Society, 1990, 112, 4155-4164.
    [6] NAKAMURA A, HAGIHARA N. New stable olefin complexes of cobalt(i) [J]. Bulletin of the Chemical Society of Japan, 1961, 34, 45~(2-)453.
    [7] RAUSCH M D, GENETTI R A. Aromatic-type substitution reactions of an organocobalt compound [J]. Journal of the American Chemical Society, 1967, 89, 550~(2-)5503.
    [8] HILL R H, WRIGHTON M S, Oxidative addition of trisubstituted silanes to photochemically generated coordinatively unsaturated species (η4-c4h4)fe(co)2, (η5-c5h5)mn(co)2, and (η6-c6h6)cr(co)2 and related molecules [J]. Organometallics 1987, 6, 63~(2-)638.
    [9] HARVEY P D, BUTLER I S, GILSON D F R, Determination of the barrier to rotation of the cyclobutadienyl ring in solid tricarbonyl(η3-cyclobutadienyl)iron(0), (η4-c4h4)fe(co)3, from proton spin-lattice relaxation time measurements and vibrational spectra [J]. Inorganic Chemistry, 1986, 25, 1009-1013.
    [10] LI Q S, GUAN J. Theoretical study of ni(n4)2, ni(c4h4)2, and ni(c2o2)2 complexes [J]. Journal of Physical Chemistry A, 2003, 107, 8584-8593.
    [11] MERCERO J M, MATXAIN J M, UGALDE J M. Mono- and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring [J]. Angewandte Chemie International Edition 2004, 43, 5485-5488
    [12] LANGMUIR I, Types of valence [J]. Science, 1921, 54, 59-67.
    [13] Bose D M,über die magnetonenzahl in den komplex- verbindungen einer paramagnetischer elemente [J], Zeitschrift fur Physik 1926, 35, 219-223.
    [14] SIDGWICK N V, BAILEY R W, Structures of the metallic car-bonyls and nitrosyls [J]. Proceedings of the Royal Society London, 1934, A144, 521-537.
    [15] CRAIG D P, DOGGETT G, Theoretical basis of the“rare-gas rule”[J]. Journal of Chemistry Society, 1963, 4189-4198.
    [16] MITCHELL P R, PARISH R V, The eighteen-electron rule [J]. Journal of Chemical Education, 1969, 46, 811-814.
    [17] Pyykk? P. Understanding the eighteen-electron rule [J]. Journal of Organometallic Chemistry. 2006, 691, 4336-4340.
    [18] XU Z F, XIE Y, FENG W L, SCHAEFER H F, Systematic investigation of electronic and molecular structures for the first transition metal series metallocenes m(c5h5)2 (m = v, cr, mn, fe, co, and ni)[J]. Journal of Physical Chemistry A, 2003 107, 2716-2729
    [19] LI Q S, CHENG L P, Aromaticity of square planar n4~(2-) in the m2n4 (m = li, na, k, rb, or cs) species [J]. Journal of Physical Chemistry A, 2003, 107, 288~(2-)2889.
    [20] Frisch M J, Trucks G W, Schlegel H B, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K.Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
    [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    [22] ZHANG D Y, HROVAT D A, ABE M, BORDEN W T, Dft calculations on the effects of para substituents on the energy differences between singlet and triplet states of 2,~(2-)difluoro-1,3-diphenylcyclopentane-1,3-diyls [J], Journal of the American Chemical Society, 2003, 125, 12823-12828.
    [23] ABE M, ADAM W, BORDEN W T, HATTORI M, HROVAT D A, NOJIMA M, NOZAKI K, WIRZ J, Effects of Spiroconjugation on the Calculated Singlet?Triplet Energy Gap in 2,~(2-)Dialkoxycyclopentane-1,3-diyls and on the Experimental Electronic Absorption Spectra of Singlet 1,3-Diphenyl Derivatives. Assignment of the Lowest-Energy Electronic Transition of Singlet Cyclopentane-1,3-diyls [J], Journal of the American Chemical Society, 2004, 126, 574-582.
    [24] BROWN E C, BORDEN W T, Ab initio and density functional theory calculations on heteroatom analogues of trimethylenemethane radical ions. can a quartet be the ground state? [J], Journal of Physical Chemistry A, 2002, 106, 2963-2969.
    [25] COATES G E, GREEN M L H, WADE K. Organometallic compounds, Vol. II, Methuen and Cο, 1968.
    [26] HANSEN N, WODTKE A M. Velocity map ion imaging of chlorine azide photolysis: evidence for photolytic production of cyclic-n3 [J]. Journal of Physical Chemistry A, 2003, 107, 10608-10614.
    [27] SAMARTZIS P C, LIN J J, CHING T. Two photoionization thresholds of n3 produced by cln3 photodissociation at 248 nm: further evidence for cyclic n3 [J], The Journal of Chemical Physics, 2005, 123, 051101.
    [28] VIJ A, PAVLOVICH J G, WILSON W W, VIJ V, CHRISTE K O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-n5- [J], Angewandte Chemie International Edition, 2002, 41, 3051-3054.
    [29] CHRISTE K O, WILSON W W, SHEEHY J A, BOATZ J A, N_5+: a novel homoleptic polynitrogen ion as a high energy density material [J]. Angewandte Chemie International Edition, 1999, 38, 2004-2009.
    [30] VIJ A, WILSON W W, VIJ V, THAM F S, SHEEHY J A, CHRISTE K O. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of n5+ [J]. Journal of the American Chemical Society, 2001, 123, 6308-6313.
    [31] NGUYEN M T, HA T. Decomposition mechanism of the polynitrogen n5 and n6 clusters and their ions [J], Chemical Physics Letters, 2001, 335, 311-320.
    [1] CACACE F. From n2 and o2 to n4 and o4: pneumatic chemistry in the 21st century [J], Chemistry - A European Journal, 2002, 8, 3838-3847.
    [2] CHRISTE K O, WILSON W W, SHEEHY J A, BOATZ J A, N_5+: a novel homoleptic polynitrogen ion as a high energy density material [J]. Angewandte ChemieInternational Edition, 1999, 38, 2004-2009.
    [3] HAIGES R, SCHNEIDER S, SCHROER T, CHRISTE K O. High-energy-density materials: synthesis and characterization of n5+[p(n3)6]-, n5+ [b(n3)4]-, n5+ [hf2]- n hf, n5+ [bf4]-, n5+ [pf6]-, and n5+ [so3f]- [J], Angewandte Chemie International Edition, 2004, 43, 4919-4924.
    [4] KUNIKEEV S D, TAYLOR H S, SCHROER T, HAIGES R, JONES C J B, CHRISTE K O. New signal processing method for the faster observation of natural-abundance 15n nmr spectra and its application to n5+[J], Inorganic Chemistry, 2006, 45, 437-442.
    [5] VIJ A, PAVLOVICH J G, WILSON W W, VIJ V, CHRISTE K O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-n5- [J], Angewandte Chemie International Edition, 2002, 41, 3051-3054.
    [6] Proceedings of the High Energy Density Matter Conference (New Orleans, LA) 1989, available from the Defense Technical Information Center, Fort Belvoir, VA, as report no. ADA212314.
    [7] LAUDERDALE W J, STANTON J F, BARTLETT R J. Stability and energetics of metastable molecules: tetraazatetrahedrane (n4), hexaazabenzene (n6), and octaazacubane (n8) [J], Journal of Physical Chemistry, 1992, 96, 1173-1178.
    [8] GLUKHOVTSEV M N, JIAO H, SCHLEYER P V R. Besides n2, what is the most stable molecule composed only of nitrogen atoms?[J], Inorganic Chemistry, 1996, 35, 7124-7133.
    [9] OLAH G A, SURYA PRAKASH G K, RASUL G. N62+ and n42+ dications and their n12 and n10 azido derivatives: dft/giao-mp2 theoretical studies [J], Journal of the American Chemical Society, 2001, 123, 3308-3310.
    [10] CACACE F, PETRIS G, TROIANI A. Experimental detection of tetranitrogen [J], Science, 2002, 295, 480-481.
    [11] HAMMERL A, KLAPO1TKE T M. Tetrazolylpentazoles: nitrogen-rich compounds[J], Inorganic Chemistry, 2002, 41, 906-912.
    [12] LI Q S, WANG L J. Theoretical studies on the potential energy surfaces of n8 clusters [J], Journal of Physical Chemistry A, 2001, 105, 1979-1982.
    [13] LI Q S, LIU Y D. Theoretical studies of the n6 potential energy surface [J], Journal of Physical Chemistry A, 2002, 106, 9538-9542.
    [14] BYUN Y, SAEBO S, PITTMAN C U. An ab initio study of potentially aromatic and antiaromatic three-membered rings [J], Journal of the American Chemical Society, 1991, 113, 3689-3696.
    [15] ZANDWIJK G, JANSSEN R A J, BUCK H M, 6πaromaticity in four-membered rings [J]. Journal of the American Chemical Society, 1990, 112, 4155-4164.
    [16] MELIN J, MISHRA M K, ORTIZ J V. Electronic structure analysis and electron detachment energies of polynitrogen pentagonal aromatic anions [J], Journal of Physical Chemistry A, 2006, 110, 12231-12235.
    [17] STRAKA M. N6 ring as a planar hexagonal ligand in novel m(η~6-n_6) species [J], Chemical Physics Letters, 2002, 358, 531-536.
    [18] GAGLIARDI L, PYYKKO P. Scandium cycloheptanitride, scn7: a predicted high-energy molecule containing an [η~7-n_7]~(3-) ligand [J], Journal of the American Chemical Society, 2001, 123, 9700-9701.
    [19] HANSEN N, WODTKE A M. Velocity map ion imaging of chlorine azide photolysis: evidence for photolytic production of cyclic-n_3[J], Journal of Physical Chemistry A, 2003, 107, 10608-10614.
    [20] HANSENA N, WODTKE A M, GONCHER S J, ROBINSON J C, SVEUM N E, NEUMARK D M. Photofragment translation spectroscopy of cln3 at 248 nm: determination of the primary and secondary dissociation pathways [J], The Journal of Chemical Physics 2005, 123, 104305.
    [21] MERCERO J M, MATXAIN J M, UGALDE J M. Mono- and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring [J]. Angewandte Chemie International Edition, 2004, 43, 5485-5488
    [22] LI Q S, GUAN J. Theoretical study of ni(n4)2, ni(c4h4)2, and ni(c2o2)2 complexes [J]. Journal of Physical Chemistry A, 2003, 107, 8584-8593.
    [23] GUAN J, LI Q S. Structures and kinetic stabilities of the possible complexes of mononuclear ni and (n2)x(x=1-4) [J]. Journal of Physical Chemistry A, 2005, 109, 9875-9881.
    [24] CHENG L P, LI Q S. N_4 ring as a square planar ligand in novel mn4 species [J], Journal of Physical Chemistry A, 2005, 109, 318~(2-)3186.
    [25] LEIN M, FRUNZKE J, TIMOSHKIN A, FRENKING G. Iron bispentazole fe(η~5-n_5)_2, a theoretically predicted high-energy compound: structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene [J]. Chemistry - A European Journal, 2001, 7, 4155-4163.
    [26] ZHAO J F, LI Q S, A kinetic stability study of mn+5 (m=be, mg, ca, sr, and ba) [J], International Journal of Quantum Chemistry, 2004, 98, 485–494.
    [27] GAGLIARDI L, PYYKKO P.η~5-N_5~--METAL-η~7-N_7~(3-): a new class of compounds [J]. Journal of Physical Chemistry A, 2002, 106, 4690-4694.
    [28] The singlet linear azide, i.e. N_3~-, has been investigated extensively as an inorganicη1-ligand experimentally and theoretically. For examples, please see: (a) WIBERG N, SCHWENK G, SCHMID K H, Chem. Ber. 1972, 105, 1209-1215. (b) KLAPO1TKE T M, KRUMM B, MAYER P, RUSCITTI O P, First synthesis and structures of aryltellurium(iv) diazides [J], Inorganic Chemistry, 2000, 39, 5426-5427. (c) HAIGES R, BOATZ J A, VIJ A, GERKEN M, SCHNEIDER S, SCHROER T, CHRISTE K O, Polyazide chemistry: preparation and characterization of te(n3)4 and [p(c6h5)4]2[te(n3)6] and evidence for [n(ch3)4][te(n3)5] [J], Angewandte Chemie International Edition, 2003, 42, 5847-5851. (d) BR?SE S, GIL C, KNEPPER K, ZIMMERMANN V, Organic azides: an exploding diversity of a unique class of compounds [J], Angewandte Chemie International Edition, 2005, 44, 5188-5240.
    [29] BARTLETT R J, FAU S, TOBITA M, WILSON K, PERERA A. Structure and Stability of Polynitrogen Molecules and their Spectroscopic Characteristics, Quantum Theory Project, University of Florida, 2001, for more information, see: http://www.qtp.ufl.edu/~bartlett/pdf/polynitrogen.pdf
    [30] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, JR. J. A.; VREVEN, T.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.;FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; KLENE, M.; LI, X.; KNOX, J. E.; HRATCHIAN, H. P.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G.; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, Q.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; POPLE, J. A. Gaussian, Inc., Wallingford CT, 2004.
    [31] LANGMUIR I, Types of valence [J], Science, 1921, 54, 59-67.
    [32] SIDGWICK N V, BAILEY R W, Structures of the metallic carbonyls and nitrosyls [J], Proceedings of the Royal Society London. 1934, A144, 521-537.
    [33] SCHLEYER P V R, MANOHARAN M, WANG Z X, KIRAN B, JIAO H , PUCHTA R, EIKEMA HOMMES N J R, Dissected nucleus-independent chemical shift analysis ofπ-aromaticity and antiaromaticity [J], Orgnic Letters, 2001, 3, 2465-2468.
    [34] SCHLEYER P V R, JIAO H J, EIKEMA HOMMES N J R, MALKIN V G, MALKINA O L. An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties [J], Journal of the American Chemical Society, 1997, 119, 12669-12670.
    [35] ZHOU M F, ANDREWS L, BAUSCHLICHER C W. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions [J], Chemical Review, 2001, 101, 1931-1962.
    [36] SINGH R P, VERMA R D, MESHRI D T, SHREEVE J M. Energetic nitrogen-rich salts and ionic liquids [J], Angewandte Chemie International Edition,2006, 45, 3584-3601.
    [37] STEINHAUSER G, KLAPLTKE T M.“Green”pyrotechnics: a chemists' challenge [J], Angewandte Chemie International Edition, 2008, 47, 3330-3347.
    [38] KLAP?TKE T M, STIERSTORFER J. The cn7? anion [J], Journal of the American Chemical Society, 2009, 131, 1122–1134.
    [39]SINGH R P, GAO H, MESHRI D T, SHREEVE J M. High energy density materials [M], Springer, Berlin, 2007, 35–83.
    [40] KLAPLTKE T M. High energy density materials [M], Springer, Berlin, 2007, 85–122.
    [41] KARAGHIOSOFF K, KLAPLTKE T M, MAYER P, SABAT C M, PENGER M A, WELCH J M. Salts of methylated 5-aminotetrazoles with energetic anions [J], Inorganic Chemistry, 2008, 47, 1007-1019.
    [1] HUBER H, HA T K, NGUYEN M T. Is n6 an open-chain molecule?[J]. Journal of Molecular Structure: THEOCHEM 1983, 105, 351-358.
    [2] LAUDERDALE W J, STANTON J F, BARTLETT R J. Stability and energetics of metastable molecules: tetraazatetrahedrane (n4), hexaazabenzene (n6), and octaazacubane (n8) [J], Journal of Physical Chemistry, 1992, 96, 1173-1178.
    [3] GLUKHOVTSEV M N, JIAO H, SCHLEYER P V R. Besides n2, what is the most stable molecule composed only of nitrogen atoms?[J], Inorganic Chemistry, 1996, 35, 7124-7133.
    [4] CHRISTE K O, WILSON W W, SHEEHY J A, BOATZ J A, N_5+: a novel homoleptic polynitrogen ion as a high energy density material [J]. Angewandte Chemie International Edition 1999, 38, 2004-2009.
    [5] VIJ A, WILSON W W, VIJ V, THAM F S, SHEEHY J A, CHRISTE K O. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of n5+ [J]. Journal of the American Chemical Society, 2001, 123, 6308-6313.
    [6] GUAN J, LI Q S. Structures and kinetic stabilities of the possible complexes ofmononuclear ni and (n2)x(x=1-4) [J]. Journal of Physical Chemistry A, 2005, 109, 9875-9881.
    [7] CHENG L P, LI Q S. N_4 ring as a square planar ligand in novel mn4 species [J], Journal of Physical Chemistry A, 2005, 109, 318~(2-)3186.
    [8] MERCERO J M, MATXAIN J M, UGALDE J M. Mono- and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring [J]. Angewandte Chemie International Edition 2004, 43, 5485-5488.
    [9] VIJ A, PAVLOVICH J G, WILSON W W, VIJ V, CHRISTE K O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-n5- [J], Angewandte Chemie International Edition, 2002, 41, 3051-3054.
    [10] SAMARTZIS P C, LIN J J, CHING T. Two photoionization thresholds of n3 produced by cln3 photodissociation at 248 nm: further evidence for cyclic n3 [J], The Journal of Chemical Physics, 2005, 123, 051101.
    [11] HANSENA N, WODTKE A M, GONCHER S J, ROBINSON J C, SVEUM N E, NEUMARK D M. Photofragment translation spectroscopy of cln3 at 248 nm: determination of the primary and secondary dissociation pathways [J], The Journal of Chemical Physics 2005, 123, 104305.
    [12] NGUYEN M T, Polynitrogen compounds 1. structure and stability of n4 and n5 systems [J], Coordination Chemistry Reviews. 2003, 244, 93-113.
    [13] ZANDWIJK G V, JANSSEN R A J, BUCK H M. 6πaromaticity in four- membered rings [J]. Journal of the American Chemical Society, 1990, 112, 4155-4164.
    [14] GLUKHOVTSEV M N, SCHLEYER P V R, MAERKER C, Pentaaza- and pentaphosphacyclopentadienide anions and their lithium and sodium derivatives: structures and stabilities [J], The Journal of Physical Chemistry, 1993, 97, 8200-8206.
    [15] NGUYEN M T, MCGINN M A, HEGARTY A F, ELGUERO J, Can the pentazole anion (n_5~-) be isolated and/or trapped in metal complexes? [J], Polyhedron, 1985, 4, 1721-1726.
    [16] LEIN M, FRUNZKE J, TIMOSHKIN A, FRENKING G. Iron bispentazole fe(η~5-n_5)_2, a theoretically predicted high-energy compound: structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronicferrocene [J]. Chemistry - A European Journal, 2001, 7, 4155-4163.
    [17] STRAKA M. N6 ring as a planar hexagonal ligand in novel m(η6-n6) species [J], Chemical Physics Letters, 2002, 358, 531-536.
    [18] GAGLIARDI L, PYYKKO P. Scandium cycloheptanitride, scn7: a predicted high-energy molecule containing an [η7-n7]3- ligand [J], Journal of the American Chemical Society, 2001, 123, 9700-9701.
    [19] JIN L, DING Y H,η3-Sandwich-Like complexes based on the smallest polynitrogen ring [J], The Journal of Physical Chemistry A, 2009, 113, 5246-5250.
    [20] BARTLETT R J, FAU S, TOBITA M, WILSON K, PERERA A. Structure and Stability of Polynitrogen Molecules and their Spectroscopic Characteristics, Quantum Theory Project, University of Florida, 2001, for more information, see: http://www.qtp.ufl.edu/~bartlett/pdf/polynitrogen.pdf
    [21] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; ZAKRZEWSKI, V. G.; MONTGOMERY, J. A.; STRATMANN, R. E.; BURANT, J. C.; DAPPRICH, S.; MILLAM, J. M.; DANIELS, A. D.; KUDIN, K. N.; STRAIN, M. C.; FARKAS, O.; TOMASI, J.; BARONE, V.; COSSI, M.; CAMMI, R.; MENNUCCI, B.; POMELLI, C.; ADAMO, C.; CLIFFORD, S.; OCHTERSKI, J.; PETERSSON, G. A.; AYALA, P. Y.; CUI, Q.; MOROKUMA, K.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; CIOSLOWSKI, J.; ORTIZ, J. V.; BABOUL, A. G.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; GOMPERTS, R.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; GONZALEZ, C.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; ANDRES, J. L.; GONZALEZ, C.; HEAD-GORDON, M.; REPLOGLE, E. S.; and POPLE, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
    [22] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, JR. J. A.; VREVEN, T.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.;FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; KLENE, M.; LI, X.; KNOX, J. E.; HRATCHIAN, H. P.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G.; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, Q.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; POPLE, J. A. Gaussian, Inc., Wallingford CT, 2004.
    [23] BECKE A D, Density‐functional thermochemistry. iii. the role of exact exchange [J], The Journal of Chemical Physics, 1993, 98, 5648-5652.
    [24] LEE C, YANG W, PARR R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J], Physical Review B, 1988, 37, 785-789.
    [25] CLARK T, CHANDRASEKHAR J, SPITZNAGEL G W, SCHLEYER P V R, Efficient diffuse function-augmented basis sets for anion calculations. iii. the 3-21+g basis set for first-row elements, li-f [J], Journal of Computational Chemistry, 1983, 4, 294-301.
    [26] FRISCH M J, POPLE J A, BINKLEY J S, Self‐consistent molecular orbital methods 25. supplementary functions for gaussian basis sets [J], The Journal of Chemical Physics, 1984, 80, 3265-3269.
    [27] DITCHFIELD R, HEHRE W J, POPLE A, self‐consistent molecular‐orbital methods. ix. an extended gaussian‐type basis for molecular‐orbital studies of organic molecules [J], The Journal of Chemical Physics, 1971, 54, 724-728.
    [28] MCLEAN A D, CHANDLER G S, Contracted Gaussian basis sets for molecular calculations. i. second row atoms, z=11–18 [J], The Journal of Chemical Physics,1980, 72, 5639-5648.
    [29] GONZALEZ C, SCHLEGEL H B, An improved algorithm for reaction path following[J], The Journal of Chemical Physics, 1989, 90, 2154-2161.
    [30] GONZALEZ C, SCHLEGEL H B, Reaction path following in mass-weighted internal coordinates [J], The Journal of Physical Chemistry, 1990, 94, 5523-5527.
    [31] WACHTERS A J H, Gaussian basis set for molecular wavefunctions containing third‐row atoms [J], The Journal of Chemical Physics, 1970, 52, 1033-1036.
    [32] HAY P J, Gaussian basis sets for molecular calculations. the representation of 3d orbitals in transition‐metal atoms [J], The Journal of Chemical Physics, 1977, 66, 4377-4384.
    [33] CIZEK J, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules [J], Advances in Chemical Physics, 1969, 14, 35-89.
    [34] PURVIS G D, BARTLETT R J, A full coupled-cluster singles and doubles model: the inclusion of disconnected triples [J], The Journal of Chemical Physics, 1982, 76, 1910-1918.
    [35] SCUSERIA G E, JANSSEN C L, SCHAEFER H F, The vibrational circular dichroism of dimethylcyclopropane in the c–h stretching region [J], The Journal of Chemical Physics, 1988, 89, 728~(2-)7297.
    [36] JIN L, DING Y H, Stability of n4~(2-)-based sandwich-like energetic complexes [n4tin4]~(2-): effect of spins and counterions [J], Journal of Computational Chemistry, 2009, 30, 1279-1289.
    [37] LEE T J, RICE J E, SCUSERIA G E, SCHAEFER H F, Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of foof, (no)2 and fnnf and the transition state structure for fnnf cis-trans isomerization [J], Theoretical Chemistry Accounts, 1989, 75, 81-98.
    [38] Lee T J, Taylor P R, International Journal of Quantum Chemistry: Symposium,1989, 23, 199.
    [39] Hess B A, Schaad L J, Hueckel molecular orbitalπresonance energies.Benzenoid hydrocarbons [J], Journal of the American Chemical Society, 1971, 93, 2413-2416.
    [40] HADDON R C, FUKUNAGA T, Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2]annulenes [J], Tetrahedron Letters, 1980, 21, 1191-1192.
    [41] PEARSON R G, Electronic spectra and chemical reactivity [J], Journal of the American Chemical Society, 1988, 110, 209~(2-)2097.
    [42] ZHOU Z, PARR R G, New measures of aromaticity: absolute hardness and relative hardness [J], Journal of the American Chemical Society, 1989, 111, 7371-7379.
    [43] LIU X, SCHMALZ T G, KLEIN D J, Favorable structures for higher fullerenes [J], Chemical Physics Letters, 1992, 188, 550-554.
    [44] DIENER M D, ALFORD J M, Isolation and properties of small-bandgap fullerenes [J], Nature (London), 1998, 393, 668-671.
    [1] H?CKEL E, Zeitschrift fur Physik 1931, 70, 204.
    [2] MINKIN V I, GLUKHOVTSEV M N, SIMKIN B Y, Aromaticity and Antiaromaticity; John Wiley & Sons: NewYork, 1994.
    [3] SCHLEYER P V R, JIAO H, What is aromaticity? [J], Pure and Applied Chemistry 1996, 68, 209-218.
    [4] LLOYD D, What is aromaticity?[J], Journal of Chemical Information and Computer Sciences, 1996, 36, 44~(2-)447.
    [5] KRYGOWSKI T M, CYRA?SKI M K, CZARNOCKI Z, HAFELINGER G, KATRITZKY A R, Aromaticity: a Theoretical Concept of Immense Practical Importance [J], Tetrahedron, 2000, 56, 1783-1796.
    [6] SCHLEYER P V R, Guest Ed. Special issue on aromaticity [J], Chemical Reviews, 2001, 101.
    [7] CHEN Z F, WANNERE C S, CORMINBOEUF C, PUCHTA R, SCHLEYER P V R, Nucleus-independent chemical shifts (nics) as an aromaticity criterion [J],Chemical Reviews, 2005, 105, 384~(2-)3888.
    [8] MASUI H, Metalloaromaticity [J], Coordination Chemistry Reviews, 2001, 219, 957-992.
    [9] BLEEK J R, Metallabenzenes [J], Chemical Reviews, 2001, 101, 1205-1228.
    [10] SCHLEYER P V R, KIRAN B, SIMION D V, SORENSEN T S. Does cr(co)3 complexation reduce the aromaticity of benzene? [J], Journal of the American Chemical Society, 2000, 122, 510-513.
    [11] URNEZIUS E, BRENNESSEL W W, CRAMER, C J, ELLIS J E, SCHLEYER P V R. A Carbon-free sandwich complex [(p5)2ti]~(2-) [J]. Science, 2002, 295, 83~(2-)834.
    [12] KING R B, Three-dimensional aromaticity in polyhedral boranes and related molecules [J], Chemical Reviews, 2001, 101, 1119-1152.
    [13] ZHAI H J, KIRAN B, LI J, WANG L S, Hydrocarbon analogues of boron clusters- planarity, aromaticity and antiaromaticity [J], Nature Materials, 2003, 2, 827-833.
    [14] BOLDYREV, A. I.; WANG, L. S. All-metal aromaticity and antiaromaticity [J], Chemical Reviews, 2005, 10, 3716-3757.
    [15] KUZNETSOV A E, CORBETT J D, WANG L S, BOLDYREV A I, Aromatic mercury clusters in ancient amalgams[J], Angewandte Chemie International Edition, 2001, 40, 3369-3372.
    [16] LI X W, PENNINGTON W T, ROBINSON G H. Metallic system with aromatic character. synthesis and molecular structure of na2[[(2,4,6-me3c6h2)2c6h3]ga]3 the first cyclogallane [J]. Journal of the American Chemical Society, 1995, 117, 7578-7579.
    [17] LI X, KUZNETSOV A E, ZHANG H F, BOLDYREV A I, WANG L S, Observation of all-metal aromatic molecules [J], Science, 2001, 291, 859-861.
    [18] ALEXANDROVA A N, BIRCH K A, BOLDYREV A I. Flattening the b6h6~(2-) octahedron. ab initio prediction of the new family of planar all-boron aromatic molecules [J], Journal of the American Chemical Society, 2003, 125, 10786-10787.
    [19] VILLAUME S, FOGARTY H A, OTTOSSON H, Triplet-state aromaticity of 4nπ-electron monocycles: analysis of bifurcation in theπcontribution to the electron localization function [J], ChemPhysChem, 2008, 9, 257-264.
    [20] BRESLOW R, DOWD P, Org. Biomol. Chem. 1963, 20, 2729.
    [21] BRESLOW R, BROWN J, GAJEWSKI J J, Antiaromaticity of cyclopropenyl anions [J], Journal of the American Chemical Society, 1967, 89, 4383-4390.
    [22] SACHSF R K, KASS S R, 3-Carbomethoxycyclopropen-3-yl anion. formation and characterization of an antiaromatic ion [J], Journal of the American Chemical Society, 1994, 116, 783-784.
    [23] WASIELEWSKI M R, BRESLOW R, Thermodynamic measurements on unsubstituted cyclopropenyl radical and anion, and derivatives, by second harmonic alternating current voltammetry of cyclopropenyl cations [J], Journal of the American Chemical Society, 1976, 98, 422~(2-)4229.
    [24] BRESLOW R, CHU W, Thermodynamic determination of pKa's of weak hydrocarbon acids using electrochemical reduction data. triarylmethyl anions, cycloheptatrienyl anion, and triphenyl- and trialkylcyclopropenyl anions [J], Journal of the American Chemical Society, 1973, 95, 411-418.
    [25] ARROWOOD T L, KASS S R, Formation of transient and long-lived cyclopropenyl anions [J], Journal of the American Chemical Society, 1999, 121, 727~(2-)7273.
    [26] MERRILL G N, KASS S R. A high-level ab initio and density functional investigation of cyclopropenyl anion and its mono-, di-, and trisubstituted derivatives [J], Journal of the American Chemical Society, 1997, 119, 1232~(2-)12337.
    [27] Koser H G, Renzoni G E, Borden W T, Evidence for rapid pseudorotation in triphenylcyclopropenyl anion [J], Journal of the American Chemical Society, 1983, 105, 6359-6360.
    [28] KLICIC J, RUBINT Y, BRESLOW R, Approaches to stable cyclopropenyl anions: tris-1,2,3-p-nitrophenylcyclopropene [J], Tetrahedron, 1997, 53, 4129-4136.
    [29] GLUKHOVTSEV M N, LAITER S, PROSS A, Thermochemical assessment of the aromatic and antiaromatic characters of the cyclopropenyl cation, cyclopropenyl anion, and cyclopropenyl radical: a high-level computational study [J], Journal of Physical Chemistry, 1996, 100, 17801-17806.
    [30] WINKELHOFER G, JANOSCHEK R, FRATEV F, SPITMAGEL G W,CHANDRASEKHAR J, SCHLEYER P V R, Nonplanar structures of the singlet and triplet cyclopropenyl anions. an ab initio study [J], Journal of the American Chemical Society, 1985, 107, 33~(2-)337.
    [31] JURSIC B S, High level ab initio study of singlet and triplet cyclopropene and diazocyclopropene carbenes stability in comparison with stability of singlet and triple cyclopropenyl cation and anion [J], Journal of Molecular Structure: THEOCHEM, 1999, 491, 33-40.
    [32] CHIANG T, KERBER R C, KIMBALL S D, LAUHER J W, (eta3-Triphenylcyclopropenyl) tricarbonylcobalt [J], Inorganic Chemistry, 1979, 18, 1687-1691.
    [33] HUGHES R P, TUCKER D S, RHEINGOLD A L, Preparation and dynamic behavior of .eta.3-cyclopropenyl complexes of cobalt, rhodium, and iridium. crystal and molecular structure of [ir(.eta.3-c3tbu3)(co)3][J], Organometallics, 1993, 12, 3069-3074.
    [34] TUGGLE R M, WEAVER D L, Crystal structure and properties ofπ-triphenylcyclopropenylchlorodipyridinenickel(0)-pyridine, aπcomplex of a three-membered aromatic ring [J], Inorganic Chemistry, 1971, 10, 2599-2603.
    [35] HUGHES R P, LAMBERT J M J, WHITMAN D W, HUBBARD J L, HENRY W P, RHEINGOLD A L, Reactions of cyclopropenyl cations with tricarbonylnitrosylferrate(1-), tetracarbonylcobaltate(1-), and octacarbonyldicobalt. synthesis and conformational and configurational stabilities of .eta.3-cyclopropenyl and .eta.3-oxocyclobutenyl complexes of iron and cobalt. crystal and molecular structure of fe(.eta.-c3ph~(2-)tert-bu)(co)2(no) [J], Organometallics, 1986, 5, 789-797.
    [36] CHURCHILL M R, FETTINGER J C, MCCULLOUGH L G, SCHROCK R R. Transformation of a tungstenacyclobutadiene complex into a nonfluxional .eta.3-cyclopropenyl complex by addition of a donor ligand. the x-ray structure of the tungstenacyclobutadiene-.eta.3-cyclopropenyl complex w(.eta.5-c5h5)[c3(cme3)2me](pme3)cl2 [J], Journal of the American Chemical Society, 1984, 106, 3356-3357.
    [37] RAUSCH M D, TUGGLE R M, WEAVER D L, Formation and structure of anew mixed sandwich complex, (.pi.-c5h5)ni(.pi.-c3ph3) [.pi.-cyclopentadienyl-.pi.-triphenylcyclopropenylnickel] [J], Journal of the American Chemical Society, 1970, 92, 4981-4982.
    [38] TUGGLE R M, WEAVER D L, Crystal and molecular structure of the mixed sandwich complex .pi.-cyclopentadienyl- .pi.-triphenylcyclopropenylnickel, (.pi.-C5H5)Ni(.pi.-C3(C6H5)3)[J], Inorganic Chemistry, 1971, 10, 1504-1510.
    [39] DREW M G B, BRISDON B J, DAY A, Cyclopropenyl and oxocyclobutenyl complexes of molybdenum. crystal and molecular structures of (2,2’-bipyridine) bromodicarbonyl (1-3-η-1,2,3-triphenylcyclopropenyl) molybdenum(II) and (2,2’-bipyridine) bromodicarbonyl (~(2-)4-η-1-oxo-2,3,4-triphenylcyclobutenyl) molybdenum(II)[J], Journal of the Chemical Society, Dalton Transactions. 1981, 1310-1316.
    [40] LIN Z Y, HALL M B, Stabilities of metallacyclobutadiene and metalatetrahedrane complexes [J], Organometallics, 1994, 13, 2878-2884.
    [41] SRINIVAS G N, YU L, SCHWARTZ M, Theoretical studies on a3h3+ (a = c, si, ge) asπligands in organometallic chemistry [J], Organometallics, 2001, 20, 5200-5204.
    [42] JEMMIS E D, HOFFMANN R, Cleaving carbon-carbon bonds in cyclopropenium ions [J], Journal of the American Chemical Society, 1980,102, 2570-2575.
    [43] ANSLYN E V, BRUSICH M J, GODDARD V A, Metallacyclobutadiene versus metallatetrahedrane structures for cl3moc3h3 complexes [J], Organometallics, 1988, 7, 98-105.
    [44] LICHTENBERGER D L, HOPPE M L, SUBRAMANIAN L, KOBER E M, HUGHES R P, HUBBARD J L, TUCKER D S, Electron distribution and bonding in .eta.3-cyclopropenyl-metal complexes [J], Organometallics, 1993,12, 2025-2031.
    [45] COLLINS J B, SCHLEYER P V R, Sandwich-type molecules of first-row atoms. Instability of bis-(.eta.3-cyclopropenyl)beryllium [J], Inorganic Chemistry, 1977, 16, 15~(2-)155.
    [46] KOMATSU K, KITAGAWA T, Cyclopropenylium cations, cyclopropenones,and heteroanalogues-recent advances [J], Chemical Review, 2003, 103, 1371-1428.
    [47] SCHROCK R R, PEDERSEN S F, CHURCHILL M R, ZILLER J W, Formation of cyclopentadienyl complexes from tungstenacyclobutadiene complexes and the x-ray crystal structure of an .eta.3-cyclopropenyl complex, w[c(cme3)c(me)c(me)](me2nch2ch2nme2)cl3 [J], Organometallics, 1984, 3, 1574-1583.
    [48] BORDEN W T, DAVIDSON E R, Theoretical studies of diradicals containing four .pi. electrons [J], Account of Chemical Research, 1981, 14, 69-76.
    [49] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, JR. J. A.; VREVEN, T.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; KLENE, M.; LI, X.; KNOX, J. E.; HRATCHIAN, H. P.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G.; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, Q.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; POPLE, J. A. Gaussian, Inc., Wallingford CT, 2004.
    [50] LEIN M, FRUNZKE J, TIMOSHKIN A, FRENKING G. Iron bispentazole fe(η5-n5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene [J]. Chemistry - A European Journal, 2001, 7, 4155-4163.
    [51] JIN L, DING Y H,η3-Sandwich-Like complexes based on the smallest polynitrogen ring [J], Journal of Physical Chemistry A, 2009, 113, 5246-5250.
    [1] COTTON F A, WILKINSON G, MURILLO C A, BOCHMANN M, Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
    [2] Pyykk? P. Understanding the eighteen-electron rule [J]. Journal of Organometallic Chemistry. 2006, 691, 4336-4340.
    [3] ZHOU M F, ANDREWS L, BAUSCHLICHER C W. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions [J], Chemical Review, 2001, 101, 1931-1962.
    [4] LIN Z Y, HALL M B, Stabilities of metallacyclobutadiene and metalatetrahedrane complexes [J], Organometallics, 1994, 13, 2878-2884.
    [5] HSIEH J C, HU C C, LEE T C, The synergistic effects of additives on improving the electroplating of zinc under high current densities [J], Journal of Electrochemical Society, 2008, 155, D675-681.
    [6] CATLOW R A, FRENCH S A, SOKOL A A, AL-SUNAIDI A A, WOODLEY S M, Zinc oxide: a case study in contemporary computational solid state chemistry [J], Journal of Computational Chemistry, 2008, 29, 2234-2239.
    [7] PEARTON S J, NORTON D P, IP K, HEO Y W, STEINER T, Recent progress in processing and properties of zno [J], Progress in Materials Science, 2005, 50, 293-340.
    [8] LOOK D C, CLAFLIN B, P-type doping and devices based on zno phys stat sol (b) 2004, 241, 624-630.
    [9] COLEMAN V A, JAGADISH C, Zinc Oxide Bulk, Thin Films and Nanostructures, Ch. 1, Jagadish, C.; Pearton, S., Elsevier, Amsterdam, 2006.
    [10] TSAI Y C, LU D Y, LIN Y M, HWANG J K, YU J S, Structural transformations in dinuclear zinc complexes involving zn–zn bonds [J], Chemical Communication, 2007, 4125-4127.
    [11] SCHULZ S, SCHUCHMANN D, WESTPHAL U, BOLTE M, Dizincocene as a building block for novel zn?zn-bonded compounds?[J], Organometallics, 2009, 28, 1590-1592.
    [12] WANG Y Z, QUILLIAN B, WEI P, WANG H Y, YANG X J, XIE Y M, KING R B, SCHLEYER P V P, SCHAEFER H F, ROBINSON G H, On the chemistry of zn?zn bonds, rzn?znr (r = [{(2,6-pri2c6h3)n(me)c}2ch]): synthesis, structure, and computations[J], Journal of the American Chemical Society, 2005, 127, 11944-11945.
    [13] FEDUSHKIN I L, SKATOVA A A, KETKOV S Y, EREMENKO N V, PISKUNOV A V, FUKIN G, [(dpp-bian)Zn-Zn(dpp-bian)]: a zinc-zinc-bonded compound supported by radical-anionic ligands [J], Angewandte Chemie International Edition, 2007, 46, 430~(2-)4305.
    [14] YANG X J, YU J, LIU Y Y, XIE Y M, SCHAEFER H F, LIANGC Y, WU B, A new zinc–zinc-bonded compound with a dianionicα-diimine ligand: synthesis and structure of [Na(THF)2]2·[LZn–ZnL] (L = [(2,6-iPr2C6H3)N(Me)C]22–)[J], Chemical Communication, 2007, 2363-2365.
    [15] RESA I, CARMONA E, GUTIERREZ-PUEBLA E, MONGE A, Decamethyldizincocene, a stable compound of zn(i) with a zn-zn bond [J], Science 2004, 305, 1136-1138.
    [16] GRIRRANE A, RESA I, RODRíGUEZ A, CARMONA E, Synthesis and structural characterization of dizincocenes zn2(η5-c5me5)2 and zn2(η5-c5me4et)2 [J], Coordination Chemistry Reviews, 2008, 252, 153~(2-)1539.
    [17] FERNáNDEZ R, RESA I, DEL RíO D, CARMONA E, GUTIERREZ-PUEBLA E, MONGE A, Synthesis and solid-state structure of zn(η5-c5me4sime3)(η1-c5me4sime3), a zincocene with nonparallel cyclopentadienyl rings [J], Organometallics, 2003, 22, 381-383.
    [18] JIANG L, XU Q. Experimental and theoretical evidence for the formation of zinc tricarbonyl in solid argon [J]. Journal of the American Chemical Society, 2005, 127, 8906-8907.
    [19] JIANG L, TENG Y, XU Q. Reactions of laser-ablated zinc and cadmium atoms with co: infrared spectra of the zn(co)x (x = 1?3), cdco-, and cd(co)2 molecules insolid neon [J].The Journal of Physical Chemistry A, 2006, 110, 709~(2-)7096.
    [20] BUDZELAAR P H M, ENGELBERTS J J, LENTHE J H, Trends in cyclopentadienyl-main-group-metal bonding [J], Organometallics, 2003, 22, 156~(2-)1576.
    [21] PARKIN G. Zinc-zinc bonds: a new frontier [J], Science, 2004, 305, 1117-1118.
    [22] MERCERO J M, PIRIS M, MATXAIN J M, LOPEZ X, UGALDE J, Sandwich complexes of the metalloaromaticη3-al3r3 ligand [J], Journal of the American Chemical Society, 2009, 131, 6949-6951.
    [23] LI Q S, XU Y, A dft study on dinuclear metallocenes rmmr [r= (bco)5, (bnn)5; m = be, mg, ca, zn, cd] [J], Journal of Physical Chemistry A, 2006, 110, 11898-11902.
    [24] VELAZQUEZ A, FERNáNDEZ I, FRENKING G, MERINO G, Multimetallocenes a theoretical study [J], Organometallics, 2007, 26, 4731-4736.
    [25] BOLSHAKOV V I, ROSSIKHIN V V, VORONKOV E O, OKOVYTYY S I, LESZCZYNSKI J, The performance of the new 6-31g## basis set: molecular structures and vibrational frequencies of transition metal carbonyls [J], Journal of Computational Chemistry, 2007, 28, 778-782.
    [26] SUNDERLIN L S, WANG D, SQUIRES R R, Bond strengths in first-row-metal carbonyl anions [J], Journal of the American Chemical Society, 1993, 115, 12060-12070.
    [27] LUO Q, LI Q S, YU Z H, XIE Y M, KING R B, SCHAEFER H F. Bonding of seven carbonyl groups to a single metal atom: theoretical study of m(co)n (m = ti, zr, hf; n = 7, 6, 5, 4) [J]. Journal of the American Chemical Society, 2008, 130, 7756-7765.
    [28]罗琼,李前树,钛、锆、铪羰基化合物M(CO)n (M=Ti, Zr, Hf; n=4-7)的理论研究[J],分子科学学报,2009, 01, 23-26.
    [29] KIM J, KIM T K, KIM J, LEE Y S, IHEE H, Density functional and ab initio study of cr(co)n (n = 1?6) complexes [J], Journal of Physical Chemistry A, 2007, 111, 4697-4710.
    [30] CEDE?O D L, WEITZ E, ATTILA BéRCES, Bond energies and bonding interactions in fe(co)5-n(n2)n (n = 0?5) and cr(co)6-n(n2)n (n = 0?6)complexes: density functional theory calculations and comparisons to experimental data [J], Journal of Physical Chemistry A, 2001, 105, 3773-3787.
    [31] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, JR. J. A.; VREVEN, T.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; KLENE, M.; LI, X.; KNOX, J. E.; HRATCHIAN, H. P.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G.; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, Q.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; POPLE, J. A. Gaussian, Inc., Wallingford CT, 2004.
    [32] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B., PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J.E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, O.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. Gaussian, Inc., Wallingford CT, 2009.
    [33] MILLAM J M, CHEN W, HASE W L, SCHLEGEL B H, Ab initio classical trajectories on the born–oppenheimer surface: hessian-based integrators using fifth-order polynomial and rational function fits [J], The Journal of Chemical Physics, 1999, 111, 3800-3805.
    [34] DARLING J H, OGDEN J S, Spectroscopic studies on matrix-isolated metal carbonyls. part i. use of c18o enrichment to obtain characteristic frequency and intensity patterns [J], Journal of the Chemical Society, Dalton Transactions, 1972, 2496-2502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700