低温轧制结合退火热处理下锆的微结构与强韧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用液氮低温轧制进行强塑性变形,再结合低温退火热处理的工艺对纯Zr进行处理,研究了其微结构的演变和强韧化机理。研究结果显示:液氮低温可以有效抑制动态回复,低温轧制能够使Zr的累积位错密度达到更高的稳定状态。在平均应变速率为2.238s-1的时候,将纯Zr强塑性变形至累积等效应变量为2.869,再经450℃条件下退火一小时后,获得了具有多尺度的微结构的Zr:其中约有20%的体积分数的亚晶和晶粒为纳米尺度(<100nm),约有56%的体积分数的超细晶(100nm-1000nm),同时有大约24%的体积分数的粗晶(>1000nm)。这种Zr材料具有高的强度和良好的韧性:极限抗拉强度为658MPa,均匀延伸率为8.5%,断裂延伸率为20.7%;其强度是原始粗晶锆的退火样品的1.8倍,同时韧性为127.5×106J/m3,要大于原始粗晶锆的退火样品的韧性110.7×106J/m3。其内在的强韧化机制为多尺度微结构与高角度晶界的综合作用:多尺度微结构中的纳米晶和超细晶提供了高的强度,而粗晶提供了大的变形能力和塑性,三种尺度晶粒之间复杂的相互作用而引起的多种变形路径也使得材料的应变硬化能力增强,此外,高角度晶界的形成对强度和韧性的强化也有利。对制备工艺的研究显示,随着低温轧制过程中的应变速率的增大,变形更加剧烈,退火前Zr中存储的位错、缺陷密度增大,并使得位错、缺陷的分布趋于平行带状,高的储存能促进退火过程中的形核和二次再结晶,更加有利于在退火之后形成多尺度的微结构。
The evolution of microstructure and the enhancement of strength and ductility of Zrhave been investigated in this research by cryorolling via the liquid nitrogen cooling withfollowed low-temperature annealing. The results of this research demonstrate these pointsfollowed: The use of the low temperature suppresses dynamic recovery, allowing thedensity of the accumulated dislocations to reach a higher steady-state level than thatachievable at room temperature. A multimodal grained structure composed of nanoscalegrains and subgrains (20%,<100nm), ultrafine grains (56%,100nm-1000nm), coarsegrains (24%,>1000nm) has been introduced in pure Zr by employing cryorolling withaverage strain rate2.238s-1and strain2.869, combined with subsequent low-temperatureannealing at450℃for1hour. This kind of pure Zr exhibits a high ultimate strength(658MPa), a good uniform elongation (8.5%) and a large elongation to failure (20.7%).Its strength is1.8times as the raw coarse-grained Zr that is processed by annealing. At thesame time, It has a larger toughness127.5×106J/m3than the second one’s110.7×106J/m3. The mechanism of the simultaneous enhancement of strength andductility is the introduction of multimodal grained structure and high-angle grainboundaries. The high strength results from the contribution of nanoscale and ultrafinegrains, while the good ductility is provided by the coarse grains and the strain hardeningcapability is improved by the coarse grains and complex deformation strain paths causedby the multimodal grains. While the strain rate increases, the deformation is more severe,much more dislocations are put in the pure Zr to a higher density. And its distributionbecomes regular as lamellas. The high energy stored lead to more recrystallizationnucleation evens and secondary recrystallization. These have benefits for the production ofmultimodal grained structure Zr.
引文
[1]周邦新,李强,姚美意,等.锆-4合金氧化膜中的晶粒形貌观察[J].稀有金属材料与工程,2003,32(6):417-419.
    [2]周邦新,赵文金,苗志,等.新锆合金的研究[A].1996中国材料研讨会[C].北京:化学工业出版社,1997:183-187.
    [3]弗罗斯特B R T主编.周邦新译.核材料(第II部分)[M].北京:科学出版社,1999.
    [4] Tenckhoff E. Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy[R].ASTM STP966,1988.
    [5]王卫国,周邦新.锆合金板织构的控制[J].核动力工程,1994,15(2):158.
    [6]那顺桑,姚青芳.金属强韧化原理与应用[M].北京:化学工业出版社,2006.
    [7] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk Nanostructured Materials from Severe PlastikDeformation[J]. Prog Mater Sci,2000,45(2):103–89.
    [8] Zhu Y T, Langdon T G. The Fundamentals of Nanostructured Materials Processed by Severe PlasticDeformation[J]. JOM,2004,56(10):58–63.
    [9] Meyers M A, Mishra A, Benson D J. Mechanical Properties of Nanocrystalline Materials[J]. ProgMater Sci,2006,51(4):427–556.
    [10] Ma E. Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys[J].JOM,2006,58(4):49–53.
    [11] Gleiter H. Nanocrystalline Materials[J]. Prog Mater Sci,1989;33:223–315.
    [12] Koch C C, Morris D G, Lu K, et al. Ductility of Nanostructured Materials[J]. Mater. Res. Soc. Bull.1999,24(2):54–58.
    [13] Valiev R Z. Nanomaterial Advantage[J]. Nature,2002,419:887.
    [14] Youssef K M, Scattergood R O, Murty K L, et al. Ultrahigh Strength and High Ductility of BulkNanocrystalline Copper[J]. Appl Phys Lett2005,87(9):091904.
    [15] Chen J, Lu L, Lu K. Hardness and Strain Rate Sensitivity of Nanocrystalline Cu[J]. ScriptaMaterialia,2006,54(11):1913–1918.
    [16] Estrin Y, Kim H S, Nabarro F R N. A Comment on the Role of Frank–Read Sources in Plasticity ofNanomaterials[J]. Acta Materialia,2007,55(19):6401-6407.
    [17] Hansen N, Huang X, Winther G. Grain Orientation, Deformation Microstructure and FlowStress[J]. Mater. Sci. Eng. A,2008,494(1-2):61-67.
    [18] Reihanian M, Ebrahimi R, Tsuji N, et al. Analysis of the Mechanical Properties and DeformationBehavior of Nanostructured Commercially Pure Al Processed by Equal Channel AngularPressing (ECAP)[J]. Mater. Sci. Eng. A,2008,473(1-2):189-794.
    [19] Reihanian M, Ebrahimi R, Moshksar M M, et al. Microstructure Quantification and Correlationwith Flow Stress of Ultrafine Grained Commercially Pure Al Fabricated by Equal ChannelAngular Pressing (ECAP)[J]. Mater. Charact.,2008,59(9):1312-1323.
    [20] Song R, Ponge D, Raabe D, et al. Overview of Processing, Microstructure and MechanicalProperties of Ultrafine Grained Bcc Steels[J]. Mater. Sci. Eng. A,2006,441(1-2):1-17.
    [21] Dao M, Lu L, Asaro R J, et al. Toward a Quantitative Understanding of Mechanical Behavior ofNanocrystalline Metals[J]. Acta Materialia,2007,55(12):4041–4065.
    [22] Koch C C. Optimization of Strength and Ductility in Nanocrystalline and Ultrafine GrainedMetals[J]. Scripta Materialia,2003,49(7):657–662.
    [23] Koch C C, Youssef K M., Scattergood R O, et al. Breakthroughs in Optimization of MechanicalProperties of Nanostructured Metals and Alloys[J]. Advanced Engineering Materials,2005,7(9):787-794.
    [24] Ruslan Valiev. Nanostructuring of Metals by Severe Plastic Deformation for AdvancedProperties[J]. Nature Materials,2004,3:511-516.
    [25] Sanders P G, Fougere G E, Thompson L J, Eastman J A, Weertman J R. Improvements in theSynthesis and Compaction of Nanocrystalline Materials[J]. Nanostruct Mater,1997,8(3):243–252.
    [26] Suryanarayana C. Mechanical Alloying and Milling[J]. Prog Mater Sci2001,46(1–2):1–184.
    [27] Groza J. Nanocrystalline Powder Consolidation Methods[M]. Nanostructured Mater. Processing,Properties,Applications: WILLIAM ANDREW Publishing,2002, Ch.4.
    [28] Simchi A, Ahmadi R, Seyed Reihani S M, et al. Kinetics and Mechanisms of NanoparticleFormation and Growth in Vapor Phase Condensation Process[J]. Materials&Design,2007,28(3):850-856.
    [29] Mashreghi A, Moshksar M M. Densification and Grain Growth of Nanocrystalline NiAl Powderduring Pressureless Sintering[J]. Int. J. Mod. phys. B,2008,22(18-19):2896-2904.
    [30] Koch S A, Palasantzas G, Vystavel T, et al. Magnetic and Structural Properties of Co NanoclusterThin Films[J]. Phys Rev B,2005,71(8):085410.
    [31] Detor A J, Schuh C A. Tailoring and Patterning the Grain Size of Nanocrystalline Alloys OriginalResearch Article[J]. Acta Mater2007,55(1):371–379.
    [32] Lu K, Wang J T, Wei W D. A New Method for Synthesizing Nanocrystalline Alloys[J]. J ApplPhys,1991,69(1):522-524.
    [33] Valiev R Z, Estrin Y, Horita Z, et al. Producing Bulk Ultrafine-grained Materials by Severe PlasticDeformation[J]. JOM.,2006,58(4):33-39.
    [34] Torre F D, Lapovok R, Sandlin J, et al. Microstructures and Properties of Copper Processed byEqual Channel Angular Extrusion for1-16Passes[J]. Acta Materialia,2004,52:4819-4835.
    [35] Oruganti R K, Subramanian P R, Marte J S, et al. Effect of Friction, Backpressure and Strain RateSensitivity on Material Flow during Equal Channel Angular Extrusion[J]. Material Science&Engineering A,2005,406:102-109.
    [36] Zhang H W, Huang X, Hansen1N, et al. Strengthening of Nickel Deformed by High PressureTorsion[J]. Materials Science Forum,2008,(584-586):417-421.
    [37] Sakai G, Horita Z, Langdon T G. Grain Refinement and Superplasticity in an Aluminum AlloyProcessed by High Pressure Torsion[J]. Materials Science&Engineering A,2005.393:344-351.
    [38] Horita Z, Langdon T G. Achieving Exceptional Superplasticity in a Bulk Aluminum AlloyProcessed by High-pressure Torsion[J]. Scripta Materialia,2008,58(11):1029-1032.
    [39] Rentenberger C, Waitz T, Karnthaler H P. Formation and Structures of Bulk NanocrystallineIntermetallic Alloys Studied by Transmission Electron Microscopy[J]. Materials Science&Engineering A,2007,462:283-288.
    [40] Tokunaga T, Kaneko K, Sato K, et al. Microstructure and Mechanical Properties of AluminumFullerene Composite Fabricated by High Pressure Torsion[J]. Scripta Materialia,2008,58:735-738.
    [41] Imayev M F, Daminov R R, Reissner M, et al. Microstructure, Texture and SuperconductingProperties of Bi2212Ceramics, Deformed by Torsion under Pressure[J]. Physica C,2007,467:14-26.
    [42] Mehdi Eizadjou, Habib Danesh Manesh, Kamal Janghorban. Microstructure and MechanicalProperties of Ultrafine Grains (UFGs) Aluminum Strips Produced by ARB Process[J]. Journal ofAlloys and Compounds,2009,474:406–415.
    [43] Changa H, Zhenga M Y, Wu K, et al. Microstructure and Mechanical Properties of theAccumulative Roll Bonded (ARBed) Pure Magnesium Sheet[J]. Materials Science andEngineering A,2010,527:7176–7183.
    [44] Chena Liangwei, Shia Qingnan, Chen Dengquan, et al. Research of Textures of Ultrafine GrainsPure Copper Produced by Accumulative Roll-bonding[J]. Materials Science and Engineering A,2009,508:37–42.
    [45] Sandip Ghosh Chowdhury, Srivastava V C, Ravikumar B, et al. Evolution of texture duringaccumulative roll bonding (ARB) and its comparison with normal cold rolledaluminium–manganese alloy[J]. Scripta Materialia,2006,54:1691–1696.
    [46] Min Guanghui, Lee Jung-Moo, Kang Suk-Bong, et al. Evolution of Microstructure forMultilayered Al/Ni Composites by Accumulative Roll Bonding Process[J]. Materials Letters,2006,60:3255–3259.
    [47] Hughes D A, Hansen N. High Angle Boundaries Formed by Grain Subdivision Mechanisms[J].Acta Mater,1997,45:3871–3886.
    [48] Wang Y M, Ma E, Chen M W. Enhanced Tensile Ductility and Toughness in Nanostructured Cu[J].Appl. Phys. Lett,2002,80:2395–2397.
    [49] Wang Y M, Chen M, Zhou F, et al. High Tensile Ductility in a Nanostructured Metal[J]. Nature,2002,419:912.
    [50] Chan K S. Theoretical Analysis of Grain Size Effects on Tensile Ductility[J]. Scripta Metall. Mater.1990,24(9),1725-1730.
    [51] Ovid’ko I A. Deformation of Nanostructures[J]. Science,2002,295:2386.
    [52] Van Swygenhoven H. Grain Boundaries and Dislocations[J]. Science,2002,296:66–67.
    [53] Yamakov V, Wolf D, Phillpot S R, et al. Deformation-mechanism Map for Nanocrystalline Metalsby Molecular-dynamics Simulation[J]. Nature Mater,2002,3,43–47.
    [54] Conrad H. Grain Size Dependence of the Plastic Deformation Kinetics in Cu[J]. Mater Sci Engr A,2003,341(1-2):216.
    [55] Cheng S, Spencer J A, Milligan W W. Strength and Tension/Compression Asymmetry inNanocrystalline and Ultrafine-grain Metals[J]. Acta Mater,2003,51:4505–4518.
    [56] Jang J S C, Koch C C. The Hall-petch Relationship in Nanocrystalline Iron Produced by BallMilling[J]. Scripta Met. Mat.,1990,24:1599.
    [57] Zhao Yonghao, Zhu Yuntian, Lavernia Enrique J. Strategies for Improving Tensile Ductility ofBulk Nanostructured Materials[J]. Advanced Engineering Materials,2010,12(8):769-778.
    [58] Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of Strength and Ductility in Metals Processedby Severe Plastic Deformation[J]. Journal of Materials Research,2002,17:5-8.
    [59] Tellkamp V L, Melmed A, Lavernia E J. Mechanical Behavior and Microstructure of a ThermallyStable Bulk Nanostructured Al Alloy[J]. Metall. Mater. Trans. A,2001,32:2335-2343.
    [60] Yang D K, Hodgson P D, Wen C E. Simultaneously Enhanced Strength and Ductility of Titaniumvia Multimodal Grain Structure[J]. Scripta Materialia,2010,63:941-944.
    [61] Li Y S, Zhang Y, Tao N R, et al. Effect of Thermal Annealing on Mechanical Properties of aNanostructured Copper Prepared by Means of Dynamic Plastic Deformation[J]. Scr. Mater.,2008,89:475.
    [62] Zhao Y H, Topping T, Li Y, et al. Finite Plasticity and Visco-Plasticity of Conventional andEmerging Materials-Plasticity, St. Kitts, January3–8,2010.
    [63] Laws V. On the Mixture Rule for Strength of Fibre Reinforced Cements[J]. J. Mater. Sci. Lett.1983,2:527-531.
    [64] Zhao Y H, Topping T, Bingert J F, et al. High Tensile Ductility and Strength in BulkNanostructured Nickel[J]. J. Adv.Mater.2008,20:3028-3033.
    [65] Ertorer O, Topping T D, Li Y, et al. Enhanced Tensile Strength and High Ductility in CryomilledCommercially Pure Titanium[J]. Scr. Mater.2009,60(7):586-589.
    [66] Ertorer O, Topping T D, Li Y, et al. Strategies for Improving Ductility of CryomilledNanostructured Titanium[J]. Mater. Sci. Forum,2010,633–634:459-469.
    [67] Lu L, Shen Y, Chen X, et al. Ultrahigh Strength and High Electrical Conductivity in Copper[J].Science,2004,304(5669):422-426.
    [68] Zhao Y H, Bingert J F, Liao X Z, et al. Simultaneously Increasing the Ductility and Strength ofUltra-Fine-Grained Pure Copper[J]. Adv.Mater.,2006,18(22):2949-2953.
    [69] Shen Y F, Lu L, Lu Q H, et al. Tensile Properties of Copper with Nano-scale Twins[J]. ScriptaMater,2005,52(10):989-994.
    [70] Ma E, Wang Y M, Lu Q H, et al. Strain Hardening and Large Tensile Elongation inUltrahigh-strength Nano-twinned Copper[J]. Appl. Phys. Lett.,2004,85(21):4932.
    [71] Horita Z, Ohashi K, Fujita T, et al. Achieving High Strength and High Ductility inPrecipitation-Hardened Alloys[J]. Adv.Mater.,2005,17(13):1599-1602.
    [72] Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously Increasing the Ductility and Strength ofNanostructured Alloys[J]. Adv.Mater.,2006,18(17):2280-2283.
    [73] Song R, Ponge D, Raabe D. Improvement of the Work Hardening Rate of Ultrafine Grained SteelsThrough Second Phase Particles[J]. Scripta Mater.,2005,52(11):1075-1080.
    [74] Cheng S, Zhao Y H, Zhu Y T, et al. Optimizing the Strength and Ductility of Fine Structured2024Al Alloy by Nano-precipitation[J]. Acta Mater.,2007,55(17):5822-5832.
    [75] Takata N, Ohtake Y, Kita K, et al. Increasing the Ductility of Ultrafine-grained Copper Alloy byIntroducing Fine Precipitates[J]. Scr.Mater.,2009,60(7):590-593.
    [76] Sun B B, Sui M L, Wang Y M, et al. Ultrafine Composite Microstructure in a Bulk Ti Alloy forHigh Strength, Strain Hardening and Tensile Ductility[J]. Acta Mater.,2006,54(5):1349-1357.
    [77] Dai Q L, Sun B B, Sui M L, et al. High-performance Bulk Ti-Cu-Ni-Sn-Ta Nanocomposites Basedon a Dendrite-eutectic Microstructure[J]. J. Mater. Res.,2004,19(9):2557-2566.
    [78] Tao K X, Choo H, Li H Q, et al. Transformation-induced Plasticity in an Ultrafine-grained Steel:An in Situ Neutron Diffraction Study[J]. Appl.Phys. Lett.,2007,90(10):101911.
    [79] Zhao Y H, Zhu Y T, Liao X Z, et al. Tailoring Stacking Fault Energy for High Ductility and HighStrength in Ultrafine Grained Cu and its Alloy[J]. Appl.Phys. Lett.,2006,89(12):121906.
    [80] Wu X, Tao N, Hong Y, et al. γ→ε Martensite Transformation and Twinning Deformation in FccCobalt during Surface Mechanical Attrition Treatment[J]. Script. Mater.,2005,52(7):547-551
    [81] Ma Y Q, Jin J E, Lee Y K. A Repetitive Thermomechanical Process to Produce nano-crystalline ina Metastable Austenitic Steel[J]. Script. Mater.,2005,52(12):1311-1315.
    [82] R sner H, Markmann J, Weissmüller J. Deformation Twinning in Nanocrystalline Pd[J]. Philos.Mag. Lett.,2004,84(5):321-334.
    [83] Karimpoor A A, Erb U, Aust K T, et al. High Strength Nanocrystalline Cobalt with High TensileDuctility[J]. Script. Mater.,2003,49(7):651-656.
    [84] Meyers M A, V hringer O, Lubarda V A. The Onset of Twinning in Metals: a ConstitutiveDescription[J]. Acta Mater.,2005,49(19):4025-4039.
    [85] Wang Y M, Ma E. Temperature and Strain Rate Effects on the Strength and Ductility ofNanostructured Copper[J]. Appl. Phys. Lett.,2003,83(15):3165.
    [86] Wang Y M, Ma E, Valiev R Z, et al. Tough Nanostructured Metals at Cryogenic Temperatures[J].Adv. Mater.,2004,16(4):328-331.
    [87] Wang Y M, Ma E. Three Strategies to Achieve Uniform Tensile Deformation in a NanostructuredMetal[J]. Acta Mater.,2004,52(6):1699-1709.
    [88] Wang Z W, Wang Y B, Liao X Z, et al. Influence of Stacking Fault Energy on DeformationMechanism and Dislocation Storage Capacity in Ultrafine-grained Materials[J]. ScriptaMaterialia,2009,60(1):52–55.
    [89] Ungar T, Balogh L, Zhao Y H, et al. Influence of Stacking-fault Energy on MicrostructuralCharacteristics of Ultrafine-grain Copper and Copper–zinc Alloys[J]. Acta Mater.,2008,56(4):809-820.
    [90] Zhao Y H, Liao X Z, Horita Z, et al. Determining the Optimal Stacking Fault Energy forAchieving High Ductility in Ultrafine-grained Cu–Zn Alloys[J]. Mater. Sci. Eng.,2008,493(1-2):123-129.
    [91] Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher Ultrafine Grain Cu via High-angle GrainBoundaries and Low Dislocation Density[J]. Appl. Phys. Lett.,2008,92(8):081903.
    [92] Gutkin M Y, Ovid’ko I A, Skiba N V. Emission of Partial Dislocations from Triple Junctions ofGrain Boundaries in Nanocrystalline Materials[J]. Journal of Physics D: Applied Physics,2005,38(21):3921.
    [93] Care S, Bretheau T. Plastic Flow and Damage of α-Zirconium Polycrystals[J]. J Phys IV,1993,3:533-536.
    [94] Jiang L, Ruano O A, Kassner M E, et al. The Fabrication of Bulk Ultrafine-grained Zirconium byAccumulative Roll Bonding[J]. JOM,2007,59:42-45.
    [95] Jiang L, Pérez-Prado M T, Gruber P A, et al. Texture, Microstructure and Mechanical Properties ofEquiaxed Ultrafine-grained Zr Fabricated by Accumulative Roll Bonding[J]. Acta Mater,2008,56(6):1228-1242.
    [96] Sarma D S, Al-Otaibi K M, Murty K L. Tensile Properties and Deformation Mechanisms inZirconium[J]. Mater Trans JIM,1992,33:596–603.
    [97] Brunstetter D R, Kling H P, Alexander B H. The Tensile Properties of Zirconium at ElevatedTemperatures[M]. New York: Sylvania Electric products Inc.,1950:7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700