拖曳线列阵用光纤水听器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拖曳线列阵的工作方式、环境条件和结构安装等特点对光纤水听器的性能提出了许多特殊的要求,特别是加速度灵敏度,它关系到拖曳线列阵声纳能否有效地抑制由拖缆抖动及拖曳力变化等引起的振动噪声的干扰,因此降低拖曳线列阵用光纤水听器加速度灵敏度是光纤水听器拖曳线列阵系统性能的重要保障。
     本论文对拖曳线列阵用光纤水听器基元性能进行了深入的理论及实验研究。从降低光纤水听器加速度灵敏度的结构设计入手,运用有限元方法,建立理论模型,分析其降低加速度灵敏度的机理,深入研究了结构和材料参数对加速度和声压灵敏度的影响,并建立了理论仿真平台。根据理论设计结果,制作了光纤水听器样品,实验与理论分析结果相一致。在解决了低加速度光纤水听器制造的工艺技术问题的基础上,成功研制出基于全保偏光纤技术的高性能拖曳阵用光纤水听器。对所研制的光纤水听器进行了声压和加速度灵敏度测试,并对其温度和压力特性进行了实验研究。在国防水声一级计量站对所研制的拖曳线列阵光纤水听器的综合性能指标进行了全面测试,测试结果表明本论文研制的拖曳线列阵用光纤水听器具有很低的加速度灵敏度和很好的综合性能,已能满足光纤水听器拖曳线列阵的应用要求,这为光纤水听器拖曳线列阵的发展奠定了基础。
     本论文的主要成果和创新在于:
     1、提出了耦合器内嵌、带加速度灵敏度微调补偿的低加速度灵敏度光纤水听器结构,最大程度保证了工艺结构的对称性,实现了对工艺误差的有效补偿,提高了低加速度灵敏度光纤水听器研制的成品率。
     2、采用弹性力学和有限元方法建立了拖曳线列阵光纤水听器理论设计平台,实验与理论分析结果相一致,这为优化光纤水听器的结构设计提供了有效的技术手段。
     3、解决了拖曳线列阵用光纤水听器制造的关键技术问题,研制出声压灵敏度为-143.0dB,加速度灵敏度低于-30dB的拖曳线列阵用光纤水听器,其加速度灵敏度优于国际上已报导的结果,并在国防水声一级计量站对其进行了性能指标测试。
Acceleration sensitivity, which determines the noise level of sensing array induced by cable dithering and towing instability, as a result of the special working scheme, circumstance and structure installation of the towed linear array, is a key parameter of the fiber optic hydrophone (FOH) for the towed linear array application. Therefore, the reduction of FOH acceleration sensitivity is important for the towed linear hydrophone array to achieve an excellent performance.
     This dissertation presents both theoretical and experimental studies on reducing FOH acceleration sensitivity for towed linear array application. The structure of FOH is carefully studied. A theoretical model is established, utilizing finite element method, to analyze the principle of FOH acceleration sensitivity reduction. The influence on the acceleration and acoustic sensitivity of various structures and material parameters is thoroughly studied and a theoretical simulation platform is established. A practical FOH is made under theoretical instruction, and the experimental result is in good agreement with that of the theoretical analysis. Based on the reduction of the acceleration sensitivity, a novel FOH, with all polarization-holding optical fiber, is made for high quality towed linear array application. The acoustic and acceleration sensitivity of the novel FOH are measured, and its performances under different temperatures and pressures are also tested. The test results obtained by National Defense Underwater Acoustic Metrology center show that, the FOH presented in this dissertation has extremely low acceleration sensitivity and excellent performance, which can completely satisfy the towed linear array application.
     The main results and the creative points of the present dissertation are as follows:
     1. A novel FOH structure is presented. With coupler embedded and acceleration sensitivity compensation design, the structure symmetry is insured, which can induce the acceleration sensitivity effectively. The acceleration sensitivity compensation design also improves the production efficiency of FOH for towed linear array application.
     2. A good theoretical simulation platform, utilizing the method of elastic mechanics and the finite element method, is established, which can provide an effect predictive design for FOH. The experimental results are in good agreement with the theoretical analysises.
     3. Some key technology problems in the making of FOH for towed linear array application are conquered. The new developed FOH, with an acoustic sensitivity of -143.0dB, has acceleration sensitivity less than -30dB, which exceeded to results from other international reports. The performance is tested by National Defense Underwater Acoustic Metrology center.
引文
[1]李启虎,声呐信号处理引论,北京:海洋出版社,2000
    [2]余华兵 孙长瑜 李启虎,第四讲 探潜先锋—拖曳线列阵声纳,物理,2006(5):420-423
    [3]单秉彝,潜用拖曳线列阵声呐的发展及战术使用,声学与电子工程,1991(1):24-29
    [4]Tyler G D.Johns llopkins APL Technical Digest 1992,13(1):145
    [5]M.Lasky,R.D.Doolittle,B.D.Simmons,and S.G.Lemon,Recent progress in towed hydrophone array research,IEEE J.Oceanic Eng.,vol.29(2):374-387,Apr.2004
    [6]Stanley G.Lemon,Towed-Array History,1917-2003,IEEE J.Oceanic Eng.,vol.29(2):365-373,Apr.2004
    [7]Potter J R,Delory E,Constantin S et al The thin array:a lightweigh,ultra-thin(8 mm OD) towed array for use from small vessels of opportunity.In Underwater technology 2000,Tokyo,Japan,June 2000
    [8]王炳辉,陈敬军,声纳换能器的新进展,声学技术,2004,.Vol.23,No.1:67-71.
    [9]韩泽,干涉型光纤水听器研究,国防科技大学硕士论文,1999年3月
    [10]倪明,光纤水听器关键技术研究,中科院博士论文,2003年7月
    [11]孟洲,基于光频调制PGC解调的光纤水听器研究,国防科技大学博士论文,2003年12月
    [12]T.G.Giallorenzi,J.A.Bucaro,and A.Dandridge,et al.,Optical Fiber Sensor Technology,IEEE J.Quantum Electronics,1982,Vol.QE-18(4):626-633
    [13]高学民,光纤水听器及阵列的发展状,光纤与电缆及其应用技术,1996,No.1.48-51
    [14]杨家德等,纤维光学技术在军事中的应用,科学技术文献出版社,1998,108-120
    [15]COLE,J.H.,LAGAKOS,N.and BUCARO,J.A.,Advances in fiber optic based acoustic sensors,SPIE,1982,326:116-126
    [16]P.Nash,Review of interferometric optical fiber hydrophone technology,IEE Proc.-Radar,Sonar Navig.,1996,143(3):204-209
    [17]J.A.Bucaro,H.D.Dardy,E.Carome,Fiber-optic Hydrophone,J.Acoust.Soc.Am.,1977,Vol.62(5):1302-1304
    [18]Myron Struck,Naval Research Laboratory-Developing Future Technology Today,Defense Electronics,March,1991,27-46
    [19]Specification for fiber optic hydrophone system,AD-A197662,1988.
    [20]A.Dandridge,Development of fiber optic sensor systems,1994,10~(th)Optical Fiber Sensors Conference,154-161.
    [21]C.K.Kirkendall,A.R.Davis,A.Dandridge,and A.D.Kersey,64-Channel All-Optical Deployable Array,1997 NRL Review,63-65
    [22]H.Kamata,Series:Realizing Dreams-Yesterday,Today,Tomorrow-An Acoustics/ Environmental Sensing Technology Based on Optical Fiber Sensors,OKI Technical Review 189,April 2002,43-47
    [23]D.J.Hill,P.J.Nash,S.D.Hawker,and I.Bennion,Progress toward an ultra thin optical hydrophone array,SPIE 3483,1998,301-304
    [24]P.Nash,G.Cranch,L.K.Cheng,et al.,A 32 element TDM optical hydrophone array,SPIE Vol.3483,1998,238-242
    [25]F.Su,Developing large-scale multiplexed fiber optic arrays for geophysical applications,an interview with Mark Houston(Litton) and Philip Nash(DERA),OE Report,p.5,Sept.2000
    [26]G.B.Havsagard,G.Wang,P.Skagen,et al.,Four Channel Fiber Optic Hydrophone System,SPIE Vol.4185(ofs2000),2000,122-125
    [27]φ.Farsund,C.Erbeia,C.Lachaize,et al.,Design and Field Test of a 32-element Fiber Optic Hydrophone System,15th Optical Fiber Sensors Conference Technical Digest(ors2002),Portland,USA,2002,329-332
    [28]P.J.Nash,J.Latchem,G.Cranch,et al.,Design,Development and Construction of Fibre-Optic Bottom Mounted Array,15thOptical Fiber Sensors Conference Technical Digest(of s2002),Portland,USA,2002,333-336
    [29]Remotely pumped and interrogated 96 channel fibre-optic hydrophone array
    [30]Geoffrey A.Cranch and Philip J.Nash.,Large-Scale Multiplexing of Interferometric Fiber-Optic Sensors Using TDM and DWDM,IEEE, Journal of LightWave Technology,2001,19(5):687-699
    [31]Robert Jordan,Robert Ober,and Alex Tselnik,A Fiber Optic Hydrophone(Final report),University of Washington,Electrical Engineering,March 12,1996
    [32]Thomas J.Hofler,Steven L.Garrett,Flexural disk fiber optic hydrophone,United States Patent,Patent number:4959539,1990
    [33]Hofler,T.Brown,D.A.,and Garrett,S.L.,Fiber optic accelerometer with centrally supported flexural disk,United States Patent,Patent number:5369485,1994
    [34]Nicholas Lagakos,Joseph A.Bucaro,Mandrel based embedded planar fiber-optic interferometeric acoustic sensor,United States Patent,Patent number:5825489,1998
    [35]Lun K.Cheng and Dick de Bruijn,A high sensitivity flatted mandrel hydrophone,SPIE Vol.2070 Fiber Optic and Laser Sensors XI(1993),pp.24-29
    [36]Gerald L.Assard,Waterford,Conn.,Complementary interferometric hydrophone,United States Patent,Patent number:4799202,1989
    [37]Michael R.Layton,A.Douglas Meyer,Bruce A.Danver,High performance fiber optic hydrophone,United States Patent,Patent number:5363342,1994
    [38]Ole Henrik Waagaard,Geir Bjarte Havsgard,and Gunnar Wang,An investgation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones,IEEE,Journal of LightWave Technology,Vol.19,No.7,2001,pp.994-1003
    [39]Karlheine vonBieren,Ploarization insensitive hydrophone,United States Patent,Patent number:5394377,1995
    [40]DonaldA.Frederick,JohnF.Cappi,Fiberoptichydrophonehavingrigid mandrel,United States Patent,Patent number:5625724,1997
    [41]罗洪,熊水东,胡永明,倪明,拖曳线列阵用光纤水听器的研究.应用声学.2006,Vol.25,No.2:65-68.
    [42]罗洪,熊水东,胡永明,倪明,孟洲,基于相位载波调制解调技术的全保偏光纤水听器.半导体光电2006,Vol.27,No.1:12-15.
    [43]S.L.Garrett,D.A.Brown,B.L.Beaton,K.Wetterskog,J.Seracki,A General Purpose Fiber Optic Hydrophone Made of tastable Epoxy,SPIE,1990,Vol.1367,Fiber Optic Laser Sensors Ⅷ:13-29
    [44]D.A.Brown,S.L.Garrett,T.Hofler,High-sensitivity,fiber-optic,Flex ural Disk Hydrophone with Reduced Acceleration Responce,Fiber and Integrated Optics,1989,Vol.8:169-191.
    [45]Ole Henrik Waagaard,An investgation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones,FEI/RAPPORT/Ol153,1999
    [46]Ole Henrik Waagaard,G.B.Havsgard,Gunnar Wang,The acceleration responsivity of fiber optic mandrel ydrophones,SPIE,1998,Vol.3480:708-711
    [47]李丁山,曹家年,刘云涛,降低光纤水听器加速度灵敏度的研究,哈尔滨工程大学学报,2002,Vol.22,No.6:32-35
    [48]刘阳,光纤Mach-Zehnder干涉仪的应用研究,国防科大硕士论文,2001年2月
    [49]孟洲、胡永明、熊水东等,全保偏光纤水听器阵列,中国激光,2002,A29(5):415-417
    [50]胡永明,孟洲,熊水东等,干涉型全保偏光纤水听器阵列的研制,声学学报,2002,Vol.28,No.2:155-158
    [51]T.K.Lim,Y.Zhou,Y.Lin,Y.M.Yip,Y.L.Lam,Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation,Optics Communications,1999,Vol.159,No.:301-308
    [52]Paul J.Kuzmenko,Donald T.Davis,Fiber optic hydrophone,United States Patent,Patent number:5311485,1994
    [53]Francs T.S.Yu,Shizhuo Yin,Fiber Optic Sensors,New York:Marcel Dekker,Inc.2002,419-423
    [54]王智元,周福洪,王文芝,法布里-珀罗干涉型光纤水听器的特性,传感器技术,1998,V01.17(2):9-12
    [55]T.Iida,K.Nakamura,S.Ueha,A microphone array using fiber Bragg gratings,15th Optical Fiber Sensors Conference Technical Digest(ofs2002),Portland,USA,2002,239-242
    [56]康崇,F-P干涉式光纤水听器的研究,哈尔滨工程大学硕士论文,2001年6月
    [57]B.J.Vakoc,M.J.F.Digonnet,and G.S.Kino,Demonstration of a folded configuration of a fiber Sagnac-based sensor array,Conference on Fiber Optic Sensor Tech.and Appl.,SPIE Vol.3860,1999,538-542
    [58]Vakoc,Benjamin A.,San Mateo,Folded sagnac sensor array,United States Patent,Patent number:6278657,2001
    [59]王小宁,王光明,Sagnac效应在光纤水听器中的应用,应用声学,1995,15(5):20-23
    [60]Benjamin J.Vakoc,Michel J.F.Digonnet,Gordon S.Kino,A novel fiber-optic sensor array based on the Sagnac interferometer,J.Lightwave Technol.,1999,17(11):2316-2326
    [61]G.S.Kino,B.Vakoc,and M.J.F.Digonnet,A polarization-based folded Sagnac fiber-optic sensor array for acoustic waves,Fiber Optic Sensor Tech.and Appl.2001,Proc.SPIE Vol.4578,2002,336-345
    [62]A.N.Chester,S.Martellucci,and A.M.Verga Scheggi,Optical Fiber Sensor,Boston:Martinus Nijhoff Publishers,1987
    [63]M.L.Henning,S.W.Thornton,Optical Fiber Hydronphones with Downlead Insensitivity,Proc.of first international conference on optical fibre sensors,London,1983,23-27
    [64]G.B.Hocker,Fiber optic acoustic sensors with composite structure:an analysis,Appl.Opt.,1979,Vol.18(21):3679-3683
    [65]N.Lagakos,E.U.Schnaus,J.H.Cole,et al.,Optimizing fiber coatings for interferometric acoustic sensors,IEEE JQE.,1982,Vol.QE-18,683-689
    [66]J.H.Cole,C.Sunderman,A.B.Tveten,et al.,Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,15th Optical Fiber Sensors Conference Technical Digest(ofs2002),Portland,USA,2002,317-320
    [67]GUO Ke,ZHANG Min,LIAO Yanbiao,LAI Shurong,WANG Zehan,TANG Jin,Fiber-optic hydrophone with increased sensitivity,Proc.of SPIE,2006,Vol.6293,No.12:1-9,
    [68]Colin E Webb,Julian D C Jones,Handbook of Laser Technology and Applications,IOP Publishing Ltd,2005,
    [69]David A.Brown.Fiber Optic Accelerometers and Seismometers[J].1996, American Institute of Physice,260-273.
    [70]R.D.Pechsted and D.A.Jackson.Design of a compliant-cylinder-type fiber-optic accelerometer:theory and experiment[J].Applied Optics,1995,Vol.34(16):3009-3017.
    [71]R.D.Pechsted and D.A.Jackson.Transducer mechanism of an optical fiber accelerometer based on a compliant cylinder design[C].Optical fiber Sensors Conference,10th:380-383.
    [72]R.D.Pechsted,D.J.Webb and D.A.Jackson.optical fiber accelerometer for high temperature applications[C].SPIE VOl.2070.
    [73]R.D.Pechsted and D.A.Jackson.Performance analysis of a fiber optic accelerometer based on a compliant cylinder design[J].American institute of Physice,1995,Vol.66(1):207-214.
    [74]曹家年,张立昆等.芯轴式干涉型光纤加速度传感器相位灵敏度特性分析[J].仪器仪表学报,2000,Vol.21(6):584-587.
    [75]丁桂兰,刘振富等.顺变柱体型全光纤加速度检波器[J].光学学报,2002,Vol.22(3):340-343.
    [76]丁桂兰,刘振富等.三分量全光纤加速度地震检波器的设计[J].光电子激光,2000,Vol.13(1):50-52.
    [77]LuoHong,XiongShui-Dong,HuYong-Ming,Meng Zhou,Ni Ming Research On All Polarization-maintaining.Proc.of SP[E.2005,Vol.6004:60040R1-7.
    [78]罗洪,熊水东,胡永明,倪明,三分量全保偏光纤加速度传感器研究.中国激光.2005,Vol.32,No.10:1382-1386.
    [79]罗洪,陈儒辉,熊水东,胡永明,孟洲,倪明,芯轴型干涉型保偏光纤加速度传感器研究.光电子激光.2004,Vol.15,No.6:242-245
    [80]罗洪,熊水东,陈儒辉,胡永明,倪明,孟洲,全保偏光纤加速度矢量传感器的设计与实验.半导体光电.2004,vol.25,No.3:675-678.
    [81]罗洪,熊水东,胡永明,倪明,拖曳线列阵用光纤水听器的研究.应用声学.2006,Vol.25,No.2:65-68.
    [82]熊水东,罗洪,胡永明,孟洲,干涉型保偏光纤微振动矢量传感器研究.中国激光.2004,Vol.31(7):843-847
    [83]熊水东,罗洪,胡永明,孟洲,倪明,基于加速度传感的三维光纤矢量水听器实验研究.压电与声光.2005.Vol.27(5):483-489
    [84]V.S.Sudarshanam and K.Srinivasan.Static phase change in a fiber optic coil hydrophone.Applied Optics,Vol.29,No.6.20 February 1990:855-863
    [85]崔三烈,周福洪,徐彦德.单模光纤水听器声压灵敏度的研究.光子学报.Vol.24,No.1,Feb.1995:72-77
    [86]张哲,沈兴旺,马恒坚.光纤水听器声灵敏度的理论分析.应用光学.Vol.15,No.6,1994:41-46
    [87]Ole Henrik Waagaard,Geir Bjarte Havsgard and Gunnar Wang.An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones.2001IEEE:994-1003
    [88]Aileen.M.Yurek.Status of fiber optic acoustic sensing.F1.1:339-341
    [89]A.B.Tveten,A.M.Yurek,Y.Y.Chao,andDandridge.Ahigh frequency fiber optic hydrophone.F1.4:350-353
    [90]V.Wilkens,Ch.Koch,W.Molkenstruck.Frequency response of a fiber-optic dielectric multilayer hydrophone.2000 IEEE Ultrasonics Symposium:1113-1116
    [91]J.A.Bucaro,N.Lagakos,B.H.Houston,and A.Dandridge.High frequency response of fiber-optic planar acoustic sensors.Journal of lightwave technology.Vol.9,No.9,September 1991:1195-1199
    [92]Wieland Weise,Volker Willkens,and Christian Koch.Frequency response of fiber-optic multilayer hydrophones:experimental investigation and finite element simulation.2002 IEEE:937-945
    [93]J.Jarzynski,R.Hughes,T.R.Hickman,and J.A.Bucaro.Frequency response of interferometric fiber-optic coil hydrophones.J.Acoust.Soc.Am.69(6),June 1981:1799-1808
    [94]Paul C.Beard,Andrew M.Hurrell,and Tim N.Mills.Characterization of a polymer film optical fiber hydrophone for use in the rage 1 to 20MHz:A Comparison with PVDF needle and membrane hydrophones.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,Vol.47,No.1,January 2000:256-264
    [95]Ch.Koch,G.Ludwig,W.Molkenstruck.Calibration of a fiber tip ultrasonic sensor up to 50MHz and the application to shock wave measurement,Ultrasonics 36(1998):721-725
    [96]Jong-In Im,Yong-rea Roh.A finite element analysis of an interferometric optical fiber.J.Acoust.Soc.Am.103(5),Pt.1,May 1998:2425-2431
    [97]Jong-In Im,Yongrea Roh.A finite element analysis of an interferometric optical fiber hydrophone with a concentric composite mandrel including a foaming layer,J.Acoust.Soc.Am.106(3),Pt,11,September,1999:1363-1368
    [98]Graham F,Mcdearmon.Theoretical analysis of a push-pull fiber-optic hydrophone[J].Journal of lightwave technology.1987 IEEE:647-652
    [99]李秋实,罗洪,孟洲,胡永明,同轴干涉型光纤水听器声压灵敏度特性分析.测试技术学报.2005,Vol.19,No.4:402-407.
    [100]徐芝纶.弹性力学.高等教育出版社
    [101]廖延彪.光纤光学.清华大学出版社
    [102]周效东,光纤水声传感器及其偏振控制技术的研究,浙江大学博士论文,1995
    [103]罗记成,光纤水听器动念范围及消偏振衰落技术的研究,哈尔滨工程大学硕士论文,2000
    [104]沈梁,干涉型光纤水听器阵列消偏振衰落技术的研究,浙江大学博士论文,2000
    [105]Francs T.S.Yu,Shizhuo Yin,Fiber Optic Sensors,New York:Marcel Dekker,Inc.2002,438-440
    [106]胡永明,孟洲,熊水东等,干涉型全保偏光纤水听器阵列研制,声学学报,2003,Vol.28(2):155-158
    [107]孟洲,胡永明,熊水东等,全保偏光纤水听器阵列,中国激光,2002,Vol.A29(5):415-417
    [108]N.J.Frigo,A.Dandridge,A.B.Tveten,Technique for elimination of polarization fading in fibre interferometers,Electronics Letters,1984,vol.20(8):319-320
    [109]周效东,汤伟中,干涉型光纤传感器的分集检测消偏振衰落技术的研究与改进,光通信技术,1996,Vol.20(1):70-74
    [110]周效东,周文,干涉型光纤传感器及阵列的分集检测消偏振衰落技术的研究,光学学报,1998,Vol.18(6):773-778
    [111]C.K.Kirkendall,A.Dandridge,Polarization Induced Phase Noise in Fiber Optic interferometers with Polarizer Based Polarization Diversity Receivers,15th Optical Fiber Sensors Conference Technical Digest(ors2002),Portland,USA,2002,375-378
    [112]D.Keysey,M.J.Marrone,a.Dandridge et al,Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control,IEEE J.Lightwave Technology,1998,Vol.6(10):1599-1609
    [113]D.Keysey,A.Dandridge and A.B.Tveten,Dependence of visibility on input polarization in interferometric fiber-optic sensors,Opt.Lett.,1988,Vol.13(4):288-290
    [114]D.Keysey,R.J.Marrone,A.Dandridge,Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,Opt.Lett.,1988,Vo1.13(10):847-849
    [115]周效东,干涉型光纤传感器输入偏振态反馈控制的理论分析,光学学报,1997,Vol.17(6):794-798
    [116]Moshe Tur,Yuval S.Boger and H.J.Shaw,Polarization-Induced Fading in Fiber-Optic Sensor Arrays,Journal of Lightwave Technology,Vol.13(7):1269-1276
    [117]Y.S.Boger,M.Tur,Polarisation-induced visibility limits in interferometric fibre-optic sensor arrays,Electronics Letters,1991,Vol.27(8):622-623
    [118]D.Keysey,M.J.Marrone,A.Dandridge,Experimental Investigation of Polarization-Indeed Fading in Interferometric Fibre Sensor Arrays,Electronics Letters,1991,Vol.27(7):562-563
    [119]周效东,赵长春,汤伟中,周文,干涉型光纤传感器复用系统的消偏振衰落技术,中国激光,1998,Vol.25(4):294-298
    [120]周效东,汤伟中,周文,干涉型光纤传感器阵列的偏振态反馈叠加控制,光学学报,1998,Vol.18(9):1243-1248
    [121]潘英俊,古渊,黄尚廉,光纤偏振控制器的原理、结构及特点分析,半导体光电,1994,Vol.15(3):237-244
    [122]胡正荣,毛秀华,吴卫刚,1.3um单模光纤偏振控制器的研究,光电子激光,1994,Vol.5(3):148-153
    [123]D.Kersey,M.J.Marrone,Input-polarisation scanning technique for overcoming polarisation-induced signal fading in interferometric fibre sensors,Electronics Letters,1988,Vol.24(15):931-933
    [124]周效东,汤伟中,偏振态调制的偏振无关干涉型光纤传感器,光学学报,1996,Vol.16(2):236-239
    [125]周效东,杜春仁,汤伟中,偏振态调制的消偏振衰落干涉型光纤传感器,中国激光,1996,Vol.23(6):500-504
    [126]李志能,沈梁,周效东,偏振态调制干涉型光纤传感器,浙江大学学报(工学版),2002,Vol.36(1):56-59
    [127]D.Kersey,M.J.Marrone,M.A.Davis,Polaisation-insensitive fibre optic Michelson interferometer,Electronics Letters,1991,Vol.27(6):518-520
    [128]Shinji Yamashita,and Kazuo Hotate,polarization-Independent Depolarizers for Highly Coherent Light Using Faraday Rotator Mirrors,Journal of Lightwave Technology,1997,Vol.15(5):900-905
    [129]J.T.ihn and B.Y.Kim,Polarization switching approach to the suppression of polarization induced signal fading in fiber-optic sensor array,Proc.lOth Intl.Optical Fiber Sensor Conf.,Glasgow,Scotland,ofs1994,p.502
    [130]J.T.ihn and B.Y.Kim,Fiber-optic sensor array without polarization-induced signal fading,Optics Letter,1995,Vol.20(4):416-418
    [131]曹荣,郑震宇,拖线阵新型压电陶瓷水听器,声学与电子工程,1991,Vol.21(1):7-13
    [132]Wang,Joo Lee,Bong Kyu Kim,Ki Ho Han,and Byoung Yoon Kim,Dual heterodyne polarization diversity demodulation for fiber-optic interferometers,IEEE Photonics Technology Letters,Vol.11(9):1156-1158
    [133]D.A.Jackson,i.Dandridge,and S.K.Sheem,Measurement of small phase shifts using a single mode optical-fiber interferometer,Optic Letters,1980,5:139-142
    [134]D.A.Jackson,R.Priest,A.Dandridge,et al.,Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,Applied Optics,1980,19(17):926-929
    [135]I.J.Bush,Accurate phase measurement system for a fiber optic interferometer,IEEE OSi Dig.Tech.Pap.Conf.Lasers and Electrooptics,Washington,DC,1981
    [136]J.L.Santos,F.Farahi,T.Newson,et al.,Multiplexing of remote all-fiber Michelson interferometer with lead insensitivity,SPIE,1991,1511:179-189
    [137]王泽锋,罗洪,胡永明,干涉型光纤传感器信号检测方法研究.应用光学.2007,28(1):86-91.
    [138]倪明,张仁和,胡永明等,干涉型光纤水听器闭环工作点控制的实现与信号的获取,应用声学,2001,20(6):13-18
    [139]王泽锋,罗洪,熊水东等,基于光频调节的干涉型光纤水听器闭环工作点控制检测方法.光学学报.2007,27(4):654-658
    [140]王泽锋,黄磊,罗洪等,干涉型光纤传感器闭环工作点控制检测方法的改进及研究.光电子激光.2007,18(8):977-980
    [141]J.H.Cole,B.A.Danver,and J.A.Bucaro,Synthetic-heterodyne interferometric demodulation,IEEE Journal of Quantum Electronics,1982,18(4):694-697
    [142]J.L.Brooks,B.Moslehi,B.Y.Kim,et al.,Time-domain addressing of remote fiber-optic interferometric sensor arrays,J.Lightwave Technol.,1987,5(7):1014-1023
    [143]Bush,Ira J.,Phase-lock fiber optic interferometer,United States Patent,Patent number:4486657,1984
    [144]S.K.Sheem,Optical fiber interferometers with 3×3 directional couplers:analysis,J.Appl.Phys.,1981,Vol.52(6):3865-3872
    [145]K.P.Koo,A.B.rveten,and A.Dandridge,Passive stabilization scheme for fiber interferometer using 3×3 fiber directional couplers,Appl.Phys.Lett.,1982,Vol.41(7):616-618
    [146]Keolian,Robert M.,Garrett,Steven L.,Cameron,Charles B.,Demodulators for optical fiber interferometers with[3×3]outputs,United States Patent,Patent number:5313266,1994
    [147]Lim,T.K.;Lin,Y.;Yip,Y.M.;Lam,Y.L.;Zhou,Y.,Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation,Optics Communications,1999,Vol.159(4-6):301-308
    [148]J.L.Brooks,B.Y.Kim,M.Tur,et al.,Sensitive fiber-optic interferometric sensor arrays,SPIE,1986,718:174-181
    [149]D.lnaudi,A.Elamari,L.Pflug,et al.,Low-coherence deformation sensors for the monitoring of civil-engineering structures,Sensors and Actuators,1994,A44:125-130
    [150]Anthony Dandridge,Alan B.Tveten,and Thomas G.Giallorenzi,Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,IEEE Journal of Quantum Electronics,Vol.QE-18,No.10,Oct.1982,1647-1653
    [151]周效东,汤伟中,周文,PGC调制-解调光纤水声传感器的研究与实现,中国激光,1998,Vol.A25(5):411-414
    [152]李绪友,张立昆,张兴周,干涉型光纤传感器的PGC检测方法的分析与研究,哈尔滨工程大学学报,1999,Vol.20(2):58-64
    [153]倪明,熊水东,孟洲,张仁和,数字化PGC解调方案在光纤水听器系统中的实现,
    [154]Meidun Zhang,A development of all optical fiber hydrophones with coincident performances,SPIE,1998,3666:589-597
    [155]A.D.Kersey,A.Dandridge,and A.B.Tveten,Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation,Optics Letters,1987,12(10):775-777
    [156]Dandridge,A.B.Tveten,A.D.Kersey,et al.,Multiplexing of interformetric sensors using phase carrier techniques,J.Lightwave rechnol.,1987,5(7):947-952
    [157]曹家年,张立昆,李绪友等,干涉型光纤水听器相位载波调制及解调方案研究,光学学报,1999,19(11):1536-1540
    [158]曹家年,李绪友,张立昆等,采用PGC零差检测方案的Mach-Zehnder光纤水听器干涉仪动态范围分析,哈尔滨工程大学学报,1998,19(5):78-84
    [159]熊水东,光纤矢量水听器研究,国防科大博士论文,2003年
    [160]倪明,张仁和,胡永明,孟洲,关于光纤水听器灵敏度的讨论,应用声学,2002,Vol.21(6):18-21
    [161]中华人民共和国国家标准,声学 水听器低频校准方法,标准号:GB/T 4130-2000
    [162]中华人民共和国国家标准,声学高频水听器校准,标准号:GB/T 15611-1995
    [163]国防科工委科技与质量司组织编写,《声学计量》,原子能出版社,2002 年
    [164]中华人民共和国国家标准,声学 标准水听器,标准号:GB/T 4128-1995
    [165]中华人民共和国国家标准,声学 水听器加速度灵敏度校准方法,标准号:GB/T 17251-1998
    [166]薛耀泉,马永其,光纤水听器灵敏度测量,声学与电子工程,1995,Vol.40.No.4:40-42
    [167]薛耀泉,赵涵,干涉型光纤水听器灵敏度校准方法研究,航空计测技术,1999,Vol.19,No.4:3-6
    [168]陈毅,贝塞尔函数比值法求定干涉型光纤水听器相移幅值的模拟试验和精度分析,声学与电子工程,2006,Vol.76,No.4:6-9
    [169]中华人民共和国国家标准,水听器相位一致性测量方法,标准号:GB/T 16165-1996
    [170]中华人民共和国国家标准,声学 水声换能器测量,标准号:GB/T7965-2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700