6-TPS并联平台型数控铣床关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现5坐标加工能力,充分利用大量传统立式铣床的资源,同时积累相应的铣床数控改造的经验,本文提出了两种改造方案,并对方案的可行性及相关理论进行了研究分析,最终采用其中的一种方案,研制出6-TPS并联平台型数控铣床,为以后传统立式铣床的多自由度数控改造提供一种可行方案。
     建立了6-TPS并联平台型数控铣床需要的三个必要的坐标系(工件、上平台、基座坐标系),给出了坐标系之间的转化关系,采用合适的上平台姿态角表示方法,实现了从刀位文件到最终支路驱动量之间的转变,同时也给出了由支路驱动量到刀具加工点位姿的求解,针对刀位文件速度校验的需要,进行了数控铣床的运动学分析,针对结构参数的设计需要,对铣床进行了姿态灵活度、位置灵活度的推导求解。
     考虑到倒置和正置式铣床布局结构的不同,采用刀头点在上平台上的可达空间作为铣床的工作空间。为了快速对刀位文件进行校验,本文采用记录不同高度对应的工作空间的内切圆柱体的半径、高度、刀具姿态角,形成相应刀具对应的工作空间表单,利用极坐标求解的方法确定工作空间具有求解速度快,数据存储量小的特点,而且有利于数据量大的刀位文件进行快速校验,提高工作效率。合理设计并联平台的结构参数,在工作空间范围内考虑驱动支路的惯量、上平台质量及主轴质量对动力学性能的影响。
     针对6-TPS并联平台型铣床刀具刀头点位置参数与并联工作台的结构参数存在较大的耦合性,采用了加权分类隔离的标定方法,把结构参数分为两大类,在工作台上加工一辅助工艺孔,借助该工艺孔,固定一类参数,标定另一类参数,在并联工作台的结构参数标定过程中,采用了二次优化和改进后的共轭梯度法进行标定,提高了标定效率。通过多轮标定,最终可以提供一套结构参数,使其能够保证工件的加工精度,考虑立式铣床的主轴独立于并联平台,获取主轴中心线的倾斜方向角,采用修正刀位文件姿态参数的方法,消除刀具加工过程中可能产生的“搓板”现象。
     为了改进传统数控软件存在的诸如软件结构复杂、升级困难、不易维护等缺点,考虑目前用软件复用,软件重构等软件开发新技术对开放式数控系统进行研究的趋势,采用了COM组件技术,开发一系列铣床加工需要的底层组件、中间组件,形成由文档与数据库层、中间自动化组件层、上层数控软件应用层组成的三层结构。中间组件层采用了聚合技术,可以实现组件的高效应用,这种结构有利于数控软件的快速并行开发、组件的快速替换、便于升级和维护,可在较高层次上满足开放式数控系统的要求。
     对第二种数控改造方案XY-RPS型铣床本文第二章也进行了相关理论的分析推导,其中推导出合理的姿态角表示方式,给出了RPS并联机构简洁的约束方程,利用约束方程可以方便地进行运动学分析求解,文章还提出了改进的杆长逼近正解算法,该算法较传统数值算法以及封闭正解算法更加方便快捷。分析了加工过程中离散时间、步长对两种铣床上平台运动性能的影响,另外也对两种方案刀具的工作空间进行了分析比较。
     本文最终采用6-TPS并联平台型数控铣床作为改造方案,成功实现了铣床必需的手控模块、定位模块、过程监控等模块,完成了铣床50个结构参数的标定工作,验证了各章节理论推导的正确性。
In order to achieve the ability of five-axis milling, make full use of traditional milling machines, and gain some experience in amending traditional machines, two kinds of augment schemes are introduced. The feasibilities and correlative theories are discussed in detail. The 6-TPS parallel platform milling machine is designed and fabricated finally.
     Three coordinate frame(workpiece frame, upper platform frame, base frame) are assigned for the convenience of the programming and calculating, the translation relationships between them are derived. The proper Euler orientation angles are adopted, and the translation from the cutter’s position and orientation in workpiece frame to the lengths of six driven struts is analyzed, while the translation from the latter to the former is also discussed. To satisfy the requirement of the velocity checkout for the cutter location data file(CLDFILE), the kinematics problems of the milling machine are analyzed in detail, and the position sensitivity and orientation sensitivity are derived to optimize the structure parameters of the milling machine.
     The workspace of traditional Stewart machine tool is the reachable space of the movable platform, but it is not the same in these schemes. In this paper, the reachable space of the cutter in the upper platform frame is considered as the workspace of the milling machine. In order to verify the CLDFILE rapidly, a new approach is adopted. The radius and height parameters of the inscribed cylinder at different cutter tip height are recorded in the data sheet of the workspace database, the cutter oblique angle parameters are also recorded. With the help of these datasheets, the efficiency is improved evidently. On the other hand, the dynamics problems are analyzed with a view to the influence caused by the inertia of six driven struts, mass of upper platform and mass of main axis.
     Because of the coupling relationships between the cutter position parameters and the structural parameters of parallel mechanism, a new verification approach is necessary. This paper presents an approach adopting classifiable verification with weight value. With the help of a hole with certain radius on the upper platform, the cutter position parameters are coarsely verified using the parameters of parallel mechanism, then the parameters of the latter are also verified using the former. The twice optimization method and amended Fletcher-Reeves algorithm are presented for improving the efficiency of verification. After several rounds verifications, the structural parameters of 6-TPS milling machine are verified to meet the requirement of machining precision. Through amending the orientation parameters of CLDFILE, the phenomenon of“washboard”is disappeared.
     The paper introduces some problems of traditional NC software, such shortcomings as complex structure, difficult upgrade and difficult maintenance, and presents realizing component programming with the help of COM technique. The new NC software adopted three level structure, including application level, COM components level, database level. The component aggregation technique is introduced, and The NC software data stream among the components is discussed. This software structure is be propitious to the rapid programming, rapid substitution, rapid upgrade of COM component, and meets the requirement of Open NC system.
     The related theory analyses on XY-RPS milling machine are derived. The paper presents RPS constrain equations, amended forward kinematics solution and compares XY-RPS milling machine with 6-TPS parallel platform milling machine with regard to cutter workspace , kinematics simulation.
     The 6-TPS parallel platform milling machine is designed and fabricated. Hand-control module, workpiece locating module and trouble hunting module are introduced respectively. The 50 structural parameters are verified successfully and proved the theory validity.
引文
1 曲义远, 黄真. 空间六自由度并联机构位置的三维搜索方法. 机器人. 1989, 3(5):25-29
    2 C. Innocenti, V. Parenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: An Exhaustive Numerical Approach Via a Mono-Dimensional-Search Algorithm. Transactions of the ASME, J. of Mech. Des..1993,115932-937
    3 刘安心, 杨廷力. 空间并联机构位置分析的连续法. 机械科学与技术. 1994,51:19-25
    4 Cheok K C, Overhoit J L, Bech R R. Exact Method for Determining the Kinematics of a Stewart Platform Using Additional Displacement Sensors. J. of Rob. Sys. 1993,10(5):689-707
    5 Stoughton R, Arai T. Optimal Sensor Placement for Forward Kinematics Evaluation of a 6-DOF Parallel Link Manipulator. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, Osaka, Japan:785-790
    6 C. Innocenti, V. Parenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: An Exhaustive Numerical Approach Via a Mono-Dimensional-Search Algorithm. Transactions of the ASME, J. of Mech. Des..1993,115932-937
    7 Cheok K C, Overhoit J L, Bech R R. Exact Method for Determining the Kinematics of a Stewart Platform Using Additional Displacement Sensors. J. of Rob. Sys. 1993,10(5):689-707
    8 Stoughton R, Arai T. Optimal Sensor Placement for Forward Kinematics Evaluation of a 6-DOF Parallel Link Manipulator. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, Osaka, Japan:785-790
    9 Zannganch K E, Angeles J. Real-Time Direct Kinematics of General Six-Degree of Freedom Parallel Manipulators with Minimum-Sensor Data. J. ofRob. Sys.. 1995,12(12):833-844
    10 Merlet J P. Closed-Form Resolution of the Direct Kinematics of Parallel Manipulators Using Extra Sensors Data. Proceedings of the IEEE Int. Rob. and Aut. Conference, Atlanta, 1993:200-204
    11 Parenti-Castelli, Gregorio R D. Real-Time Computation of the Actual Posture of the General Geometry 6-6 Fully-Parallel Mechanism Using Two Extra Rotary Sensors. ASME Journal of Mech. Des 1998,120:549-554
    12 Sreentvasan S V, Waldron. Closed-Form Direct displacement Analysis of 6-6 Stewart Platform. Mach. Mech. Theory. 1994, 29(2):855-864
    13 梁崇高, 荣辉. 一种Stewart平台型机械手位移正解. 机械工程学报. 1991,27(2):26-30
    14 Choon sng Yee,Kah-bin Lim. Forward kinematics solution of Stewart platform using neural networks .Neurocomputing ,1997, 16: 333-349
    15 Lee Hyung Sang, Myung-Chul Han. The Estimation for Forward Kinematic Solution of Stewart Platform Using the Neural Network. Proceeding of the 1999 IEEE/RSJ, International Conference on Intelligent Robots and Systems. 1999:501-506
    16 Wen,F.A.,Liang,C.G. Displacement Analysis of the 6-6 Stewart Platform Mechanism, Mech.Mach.Theory, 1994,29(4):547-557
    17 Wampler C.W.,Forward Displacement Analysis of General Six-In-Parallel SPS Platform Manipulators Using SOMA Coordinates, Mech.Mach.Theory, 1995,31(3):331-337
    18 赵明扬,陈文家.混合型4自由度并联机构及其运动学建模. 机械工程学报.2002,38(1):123-126
    19 余晓流.五轴并联铣床设计与误差建模及相干问题的研究.东北大学博士论文.2000,5
    20 余晓流,潘紫微,储刘火.三自由度并联姿态测量机构及其位姿显示解.安徽工业大学学报. 2003,20(1):35-37
    21 Liu X-J,Wang J,Cao F. On the analysis of a new spatial three degrees of freedom parallel manipulator. IEEE Transactions on Robotics and Automation. 2001,17(6): 959-968
    22 Kong X,Gosselin CM. Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. The International Journalof Robotics Research.2002,21(9):791-798
    23 Liu X-J,Wang J. Some new parallel mechanisms containing the planar four-bar parallelogram. International Journal of Robotics Research.2003,22(9):717-732
    24 Fang Y,Tsai L-W.Structure synthesis of a class of 4-DOF and 5-DOF parallel manipulators with identical limb structures. International Journal of Robotics Research,2002,21(9):799-910
    25 余晓流,王启义,赵明扬. 四坐标位姿测量仪研究与误差分析.东北大学学报.2000,(4):380-382
    26 郭 涛 , 李 斌 , 周 云 飞 . 五 坐 标 虚 拟 轴 数 控 机 床 运 动 控 制 算 法 的 研究.2000,28(3):22-23
    27 K.M.Lee,D.K.Shan. Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE Transactions on Robotics and Automation. 1998, (4):361-367
    28 Jeng-Shyong Chen, Wei-Yao Hsu. Design and analysis of a tripod machine tool with an integrated Cartesian guiding and metrology mechanism. Precision Engineering. 2004 (28):46-57
    29 李树军,王阴,王晓光. 3-RPS并联机器人机构位置正解的杆长逼近法. 东北大学学报. 2001 22(3):285-287
    30 王进戈,范丽华,徐礼钜.3-RPS并联平台机构的位置正解与奇异构性分析的数值-符号解.机械设计. 2005 22(5):15-18
    31 孔令富,张世辉,肖文辉. 基于牛顿-欧拉方法的6-PUS并联机构刚体动力学模型.机器人.2004 26(5):395-399
    32 王启明,胡明,孙希龙等.三自由度并联机器人机构动力学研究.机械科学与技术.1999 18(4):596-598
    33 Imme Ebert-Uphoff, Clement M.Gosselin. Dynamic Modeling of a Class of Spatial Statically-Balanced Parallel Platform Mechanisms. Proceedings of the 1999 IEEE International Conference on Robotics & Automation. May 1999:881-889
    34 杨灏泉,吴盛林,曹键. 考虑驱动分支惯量影响的Stewart平台动力学研究.中国机械工程. 2002 13(12):1009-1012
    35 李鹭扬,吴洪涛,朱剑英. Gough-Stewart平台高效动力学建模研究.机械科学与技术. 2005 24(8): 887-889
    36 Ji Zhining. Workspace analysis of Steward platforms via vertex space.The journal of Robotic Systems. 1994, 11(7):631-639
    37 FallahiB. A study of the workspace of five bar closed loop manipulator. Mech.Mach.Theory.1994, 29(5):759-765
    38 Pennock G P, Kassner D J. The workspace of general geometry planar 3-DOF platform type manipulator. ASME J Mech.1993 (115):269-276
    39 Jo,D.Y.,Haug,E.J. Workspace analysis of closed loop mechanisms with unilateral constrains.ASME DE Advances in Design Automation. 1989,19(3):53-60
    40 Gosselin,C. Determination of the Workspace of 6-DOF Parallel Manipulators. ASME Journal of Mechanical Design.1990 (112):331-336
    41 伞红军,于红英,王知行. 一种混合型并联平台机构的工作空间分析.机械设计.2004,21(6):51-53
    42 徐东光,吴盛林,袁立鹏. 一种增大6-UPS并联机构工作空间的有效方法的研究.机床与液压. 2005,(8):27-29
    43 Gosselin. Determination of the workspace of 6-DOF parallel manipulators. J of Mech. 1990,112:331-336
    44 许意华,刘德忠,费仁元. 3-PTT并联微操作机器人工作空间分析.机械科学与技术. 2003,22(1):102-104
    45 周兵,毛泰祥,杨汝清.3自由度RPS并联机构的工作空间分析.湖南大学学报.2003,30(1):59-61
    46 张顺心,范顺成,肖汾阳.并联机床主运动机构工作空间分析.机械设计.2003,20(3):39-42
    47 苏玉鑫,魏强,段宝岩.大射电望远镜精调Stewart平台工作空间分析.西安电子科技大学学报.2003,30(2):243-246
    48 孟祥志,赵静宜,蔡光起.3-RRR并联机床的工作空间分析.组合机床与自动化加工技术.2003,(10):9-12
    49 M.M.Svinin, S. Hosoe, M.Uchiyama. On the Stiffness and Stability of Gough-Stewart Platforms.Proceedings of the 2001 IEEE International Conference on Robotics & Automation. May 2001.3268~3273
    50 Yu-Wen Li, Jin-Song Wang. Stiffness analysis of a stewart platform-based parallel kinematic machine. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002,3672~3677
    51 El-Khasawneh B S,Ferreira P M. Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators. Internaltional Journal of Machine tools & Manufacture,1999,39:321-342
    52 Lee K M, Shan D K. Dyanmic Analysis of a Three-Degrees-Freedom In-Parallel Actuated Manipulator. IEEE Transactions on Robotics and Automation,1998,4(3):361-367
    53 Ferraresi C, Pastorelli S, Sorli M. Static and Dynamic Behaviour of a High Stiffness Stewart Platform-Based force/torque Sensor. Journal of Robotic Systems,1995,12(12):883-893
    54 Gosselin C. Stiffness Mapping for Parallel Manipulators. IEEE Transactions On Robotics and Automation,1990,6(3):377-382
    55 黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,1997
    56 Yoshikawa T., Manipulability of Robotic Mechanisms. International Journal of Robotic and Research.,1985,4(3):3-9
    57 绕 青 . 6-6 型 Stewart 机 器 人 的 可 操 作 性 分 析 及 其 定 义 . 机 器人,1994,16(6):345-349
    58 Gosselin.C., Angeles.J. A global performance index for the kinematic optimization of robotic manipulators. Transaction of ASME, Journal of Mechanical Design,1991,113(9):220-226
    59 韩先国. 并联机床相关理论及设计方法研究. 2002.12
    60 H.Zhuang,O. Masory, J.Yan. Kinematic Calibration of Stewart Platforms Using Pose Measurements Obtained by a Single Theodolite. Proc. Of IROS,Pittsburgh, PA, USA. 1995,(2):329-335
    61 P. Vischer, R. Clavel. Kinematic Calibration of the Parallel Delta Robot. Robotica. 1998, 16:207-218
    62 Gao Meng, Li Tiemin, Yin Wensheng. Calibration Method and Experiment of Stewart Platform Using a Laser Tracker. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2003,3:2797-2802
    63 G. Legnani, C. Mina, J. Trevelyan. Static Calibration of Industrial Manipulators: Design of an Optical Instrumentation and Application to SCAR Robots. Journal of Robotics Systems. 1996:13(7):445-460
    64 H. Zhuang, J.Yan, O.Masory. Calibration of Stewart Platforms and Other Parallel Manipulators by Minimizing Inverse Kinematic Residuals. Journal of Robotic Systems. 1998,15(7):395-405
    65 唐国宝,黄田. Delta并联机构精度标定方法研究. 机械工程学报. 2003,39(8):55-60
    66 Hai Wang, Kuang_Chao, Fan. Identification of Struct and Assembly Errors a 3-PRS Serial-Parallel Machine Tool. International Journal of Machine Tools and Manufacture. 2004,44(11): 1171-1178
    67 Shaoping Bai, Ming yeong Teo. Kinematic Calibration and Pose Measurement of a Medical Parallel Manipulator by Optical Position Sensors. Journal of Robotics System.2003,20(4):201-109
    68 黄田,唐国宝,李思维等. 一类少自由度并联构性装备运动学标定方法研究. 中国科学. 2003,33(9):830-838
    69 高锰,李铁民,唐晓强. 少自由度并联机床标定试验研究. 中国机械工程学报. 2003,39(9): 118-122
    70 YuKitoshiIhara, TaKahiro Ishida. Kinematic Calibration of a Hexapod Machine Tool By Using Circular Test. Proceedings of the 2000 Japan-USA Flexible Conference, July 23-26,2000,Ann Arbor,Michigan.2000,(1):1-4
    71 Dayong Yu, Junwei Han. Kinematic Calibration of Parallel Robots. Proceedings of the IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada, July 2005: 521-525
    72 Pierre Renaud, Nicolas Andreff, Philippe Marinet, Grigore Gogu. Kinematic Calibration of Parallel Mechanisms: A Novel Approach Using Legs Observation. IEEE Transactions on Robotics. Vol.21, NO.4, August 2005: 529-538
    73 Pierre Renaud, Nicolas Andreff, Jean-Marc Lavest, Michel Dhome. Simplifying the Kinematic Calibration of Parallel Mechanisms Using Vision-Based Metrology. IEEE Transaction on Robotics. Vol.22, No.1, Feb 2006: 12-22
    74 钟诗胜,杨晓钧,王知行. 基于6-TPS型并联机床的标定方法研究. 计算机集成制造系统-CIMS. 2005,11(10):1469-1474
    75 Yang Xiao-jun, Zhong Shi-sheng, Wang Zhi-xing. Calibration of Parallel Kinematic Machine Using Generalized Distance Error Model. Journal ofHarbin Insitute of Technology.2007.
    76 M. Hollerbach, D.M. Lkhorst. Closed-loop Kinematic Calibration of the RSI 6-DOF Hand Controller. IEEE Transactions on Robotics and Automation. 1995,11(3):353-359
    77 C.W. Wampler, J.M. Hollerbach, T.Arai. An Implicit Loop Method for Kinematic Calibration and Its Application to Closed-Chain Mechanisms. IEEE Transactions on Robotics and Automation. 1995,11(5):710-724
    78 H. Zhuang, L. Liu. Self-calibration of a Class of Parallel Manipulators. Proceedings of the IEEE International Conference on Robotics and Automation. 1996,(2):994-999
    79 H. Zhuang. Self-calibration of Parallel Mechanisms with a Case Study on Stewart Platforms. IEEE Transactions on Robotics and Automation.1997,13(3):387-397
    80 Nahvi, J.M. Hollerbach, V.Hayward. Calibration of a Parallel Robot Using Multiple Kinematic Closed Loops. Proceednigs of the IEEE International Conference on Robotics and Automation. 1994,n pt 1:407-412
    81 A.J.Patel. K.F.Ehmann. Calibration of a Hexapod Machine Tool Using a Redundant Leg. International Journal of Machine Tools & Manufacture.2000,40:489-512
    82 Yu-Jen Chiu, Ming-Hwei Perng. Self-calibration of a General Hexapod Manipulator with Enhanced Precision in 5-DOF Motions. Mechanism and Machine Theory. 2004,39:1-23
    83 Dacheng Cong, Dayong Yu, Junwei Han. Kinematic Calibration of Parallel Robots Using CMM. Proceedings of the 6th World Congress on Intelligent Control and Automation. June 21-23, 2006 Dalian, China: 8514-8518
    84 S. Besnard, W. Khalil. Calibration of Parallel Robotic Using Two Inclinometers. Proceedings of the IEEE International Conference on Robotics and Automation.1999,(3):1758-1763
    85 Abdul Rauf, Aslam Pervez, Jeha Ryu. Experimental Results on Kinematic Calibration of Parallel Manipulators Using a Partial Pose Measurement Device. IEEE Transactions on robotics. Vol.22, No.2, April, 2006:379-384
    86 Philipp Last, Christoph Budde, Carlos Biew. Hexa-Parallel-Structure Calibration by means of Angular Passive Joint Sensors. Proceedings of theIEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada, July 2005: 1300-1305
    87 Philipp Last, Christoph Budde. Self-Calibration of the Hexa-Parallel-Structure. Proceedings of the 2005 IEEE International Conference on Automation Science and Engineering. Edmonton, Canada, August 1&2, 2005:393-398
    88 Tej Dallej, Hicham Hadj-Abdelkader, Nicolas Andreff. Kinematic Calibration of a Gough-Stewart Platform Using an Omnidirectional Camera. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. October 9-15, 2006, Beijing, China: 4666-4671
    89 Y.J.Chiu, M.H.Perng. Total Self-Calibration of a General Architecture Hexapod Manipulator. Parallel Kinematic Machines International Conference. Chemnitz, Germany, 23-25 April,2002:469-490
    90 Y.J.Chiu, M.H.Perng. Self-calibration of a General Hexapod Manipulator Using Cylinder Constraints. Machine Tool & Manufacture. 2003, 43: 1051-1066
    91 D. Daney. Self calibration of Gough Platform Using Leg Mobility Constraints. 10th International Federation for the Theory of Machines and Mechanisms (IFToMM) ,Oulu,Finland,20-24 June 1999:104-109
    92 W.Khali, S. Besnard. Self-calibration of Stewart-Gough Parallel Robots Without Extra Sensors. IEEE Transactions on Robotics and Automations.1999,15(6):1116-1121
    93 A. Rauf, J.Ryu. Fully Automations Calibration of Parallel Manipulators by Imposing Position Constrain. Proceedings of the IEEE International Conference on Robotics and Automation. 2001,(3):2389-2394
    94 Hongjun Liu, Bin Liu, Cuilian Sun. Calibration of a 4-dof Parallel Manipulator. Proceedings of the 6th World Congress on Intelligent Control and Automation. June 2123, 2006, Dalian, China: 7958-7962
    95 H. Zhuang, S.H.Motaghedi, Z.S.Roth. Robot Calibration with Planar Constraints. Proceedings of the IEEE International Conference on Robotics and Automation. 1999,(1): 805-810
    96 Wataru Tanaka, Tatsuo Arai, Kenji Inoue. Calibration Method for Parallel Mechanism using Micro Grid Pattern. Proceedings of the 2006 InternationalConference on Robotics and Automation, Florida, May 2006:763-768
    97 Soichi Ibaraki, Takeshi Yokawa, Yoshiaki Kakino. Kinematic Calibration on a Parallel Kinematic Machine Tool of the Stewart Platform by Circular Tests. Proceeding of the 2004 American Control Conference. Boston, Massachusetts June 30- Junly 2 ,2004: 1394-1399
    98 张曙, Uwe Heisel. 并联运动机床. 机械工业出版社, 2003:157-158
    99 Phillipp Last, Nicolae Plitea. An Extended Inverse Kinematic Model of the Hexa-Parallel-Robot for Calibration Purposes. Proceedings of the IEEE International Conference on Mechatronics &Automation, Niagara Falls, Canada, July 2005:1294-1299
    100 Ludovic Savoure, Patrick Maurine,David Corbel. An Improved Method for the Geometrical Calibration of Parallelogram-based Parallel Robots. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006:769-776
    101 石 宏 , 蔡 光 起 , 史 家 顺 . 开 放 式 数 控 系 统 的 现 状 与 发 展 . 机 械 制造.2005,43(490):18-21
    102 梁丰, 何国金, 刘俊英. 开放式数控系统的研究现状及趋势. 装备制造技术. 2006,4: 17-18
    103 孟淑娟, 高世一, 刘建伟. 基于PMAC开放式数控系统软件开发. 机械设计与制造. 2006,11:49-51
    104 董平, 潘建锋. 基于PMAC多轴运动控制器的数控系统的二次开发. 浙江水利水电专科学校学报.2005,17(3):52-55
    105 孙宏昌, 张建民, 牛志刚. PRS-XY型混联数控机床系统软件开发. 机床与液压. 2007,35(1):33-35
    106 张 明 亮 . 开 放 式 数 控 体 系 结 构 的 初 步 研 究 . 中 国 机 械 工程.2001,12(11):1242-1245
    107 兰诗涛. 基于模块化思想的可重构数控系统初步研究. 机电工程. 2001,18(5):97-99
    108 段黎明, 周安华, 王延伦. 基于COM技术的开放型数控系统组件间数据流关系分析. 制造业自动化. 2005,27(9): 38-41
    109 朱晓春, 汪木兰, 王令其. 基于组件技术的可重构数控系统研究和开发.航空制造技术. 2004.4:64-66
    110 石勇, 王知行, 卓桂荣. 基于组件的集成化并联机床数控软件设计. 计算机集成制造系统CIMS.2003,9(6):460-464
    111 石勇,刘文涛,王知行. 基于PC机的并联机床数控系统的研究. 机械与电子. 2003.2: 23-25
    112 臧泽帅, 金海波, 丁运亮. 基于COM/DCOM的分布式优化设计系统. 计算机工程. 2006,32(19): 94-96
    113 方跃法, 黄真. 三自由度3-RPS并联机器人机构的运动分析.机械科学与技术. 1997,16(1):82-88
    114 林福泳. 3-RPS并联机构运动分析. 机械科学与技术. 1998,17(3):408-409
    115 叶敏,肖龙翔.分析力学. 机械工业出版社.2001:80-90
    116 孙靖民. 机械优化设计. 机械工业出版社.1998:66-73
    117 余英. Visual C++ COM和COM+篇. 中国铁道出版社. 2001:195-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700