六自由度并联液压伺服机械手的力觉双向伺服控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主-从遥操作机器人系统能代替人完成危险场合、极限环境的作业任务,力反馈技术可以大大地提高其作业精度和工作效率。因此,进行力反馈主-从遥操作机器人系统控制理论的研究具有非常重要的理论和现实意义。
     本文结合国家自然科学基金项目(50475011)“遥操纵6自由度液压并联机械手的力觉双向伺服控制”及教育部优秀青年教师资助计划项目“遥操纵工程机器人的新型力觉双向伺服控制”,在国内首次系统地研究了6自由度(简称6-DOF)并联液压伺服遥操纵机械手的力觉双向伺服控制问题。
     本文提出一种新型液压伺服力反馈双向伺服控制策略,它在理论上突破了传统的“从动机械手总是跟随操纵杆运动”的主-从双向伺服控制的思维定式,其被动式力反馈方法可以有效解决国际上现有液压伺服力反馈双向伺服控制方法所存在的“从动机械手接触到刚性较大物体时反馈力冲击过大”及“主-从控制的随动性差”等问题。
     推导了逆混合参数矩阵理想透明度条件,结合二端口网络理论,对新型力反馈双向伺服控制策略的稳定性和透明度进行了研究。揭示了遥操作系统稳定性和透明度与系统硬件结构参数的定性和定量关系,证明了新型力反馈双向伺服控制策略的可行性。
     搭建了6-DOF并联液压伺服遥操纵机械手力反馈双向伺服控制系统试验台架并进行了力反馈性能试验。结果表明,新型液压伺服力反馈双向伺服控制策略具有一定的位置跟踪精度和力反馈精度,解决了国际上现有控制策略存在的反馈力冲击过大的问题,具有较好的随动性。所搭建的6-DOF并联液压伺服力反馈双向伺服控制系统具有响应速度快、刚度大、操纵方便、稳定性较好的特点。在资源开发、排险救灾、社会服务和军事、航天等领域具有广泛的应用前景。
The master slave robot teleoperation system can fulfill the complicated task which is unreachable or hazardous for human beings, it is a remote operated system which involves human’s intelligent interference. The main technology is called telepresence, which demand the instant exchange of information between operator and the telerobot. The operator, who stays in the safe place, needs to perceive the magnitude of counterforce and other haptic informations to better control the telerobot to perform the task more precisely and accurately. So that the security of the operator is guaranteed and the work efficiency is improved. Force telepresence is the most crucial research in concerning with the telepresence. It uses the force feedback technology to realize telepresence. First the counterforce of the robot and the environment was detected by the force sensor. Then it was feedback to the operator through haptic master to let the operator feel as if he is operating the environment directly. So the task was performed with the force feeling presented. Hence the study of performance of the haptic devices, the control theory, the control architectures and the control strategies of the master and slave teleoperation sysytem is paying more and more attentions by many researchers. And it is of great significance in theory and practice to the improvement of the human machine information exchange.
     This Ph.D. dissertation developed under the project named“Force bilateral servo control technology of the teleoperational 6 -DOF hydraulic parallel manipulator (No.50475011)”supported by National Natural Science Foundation of China and“Study on new type force sense bilateral servo control of teleoperation construction robotic”supported by Excellence Youth Teacher State Program of Ministry of Education (2003). The first time in china a systematic study of a 6-DOF parallel hydraulic force feedback haptic device with bilateral servo control strategy is performed.
     The haptic device is the key to sense the environmental information, and to realize the teleoperation with force feedback. It plays the role of man-machine interface. Their performance will have a direct impact on the overall quality of the teleoperation system, the research of its structure and performance characteristics can let us get an in-depth study of its operation mechanism and operation properties in order to design manipulator under scientific standards and with a good performance, and to enhance the overall performance of teleoperation system. At present, the average force feedback controller is electrical equipment more often than not, its shortcomings are poor rigidity, the poor ability to provide sufficient force feeling,the complex structure of multiple DOFs haptic devices, the serial type are large in size. To make up for these shortcomings, using hydraulic parallel robot, with high-speed, high precision, high rigidity, and efforts, small and simple structure characteristics to develop the Stewart-6-DOF parallel hydraulic force feedback haptic device, to achieve the control of all six degrees of translation and rotation at the same time such, as well as to provide adequate force feedback to operator.
     Force feedback bilateral control architectures and control strategies are keys for the bilateral teleoperation system design. The teleoperation system’s performance is different with different control strategies and control architectures. The studies of these strategies and architectures reveal the intrinsic relationship of the structural parameter of force feedback device, the remote robot and performance index. It provides the theoretical reference for choosing the control architectures and control strategies. At present, scholars all over the world have been using a wide range of the bilateral servo control strategies, the main shortcoming of the present methods of control is that the performance is not satisfactory, and there is the impact force in the course of the operation. To this end, through in-depth theoretical study, a new hydraulic force feedback control strategy to improve the 6-DOF parallel hydraulic manipulator performance is proposed.
     This article first take two-port network theory as a analysis foundation, mainly under two channel architecture, established four kind of two port network model of tele-operation control architecture, established five kind of two-port network model of the hydraulic pressure servo force feedback teleoperation control strategies. An in-depth study of the internal relations of the next three factors is made. First is the overall system’s performance and stability, next is the existing control architectures and control strategies, the third is the structural parameters of the force feedback teleoperation control system’s components. The ideal transparency condition is derived based on the anti hybrid parameter matrices. The influence of the control parameters’scaling between the passive stability condition and Llewelyn absolute stability condition is contrasted. It is analyzed also that the system’s performance and stability are affected when the delay causes the system to be latent active. With the application of the anti hybrid parameter matrices ideal transparency condition and hybrid parameter matrices ideal transparency condition and Llewelyn absolute stability condition, the stability and performance of different existing control architectures and control strategies are analyzed. The advantages and disadvantages of various existing control strategies is evaluated, the internal qualitative or quantitative relationship of the component structural parameters of teleoperation system, the overall system performance and stability of the system is derived. It has laid a theoretical foundation for the two channel architecture teleoperation control system design
     Next based on the summary of the performance’s advantages and disadvantages of the existing control strategies, proposed one kind of new control strategy, which broke through the traditional thought format of "slave robot always follow the master’s movement", there is innovation in theory. Under the two channels architecture, established the two-port network model of the new hydraulic servo control strategy for force feedback teleoperation control system. With the application of the anti hybrid parameter matrices ideal transparency condition and Llewelyn absolute stability condition, the stability and performance of the new hydraulic servo control strategy is analyzed. the advantages and disadvantages of various existing control strategies and the new one is compared, the feasibility of the new control strategie, which applied in the Bilateral Servo Control system of the 6-DOF Parallel Electro-hydraulic Tele-Manipulators with Force-feedback, is proved to be fully valid. Analysis showed that the new control strategy can overcome the existing control strategies’shock and impact, it forms the theoretical foundation to improve the performance of the 6-DOF parallel Electro-hydraulic Tele-Manipulators’control system with Force-feedback. Once again the Bilateral Servo Control system of the 6-DOF Parallel Electro-hydraulic Tele-Manipulators with Force-feedback is designed. Elaborated the structural features and working principles of the system’s components. The digital simulation is applied to tune the PID control parameters of the system. The hardware of the bilateral servo control system of the 6-DOF parallel electro-hydraulic tele-manipulators with force-feedback is designed. Prepared the control software, using multi-threaded and messages technology solved the customer procedures blocking problem, it overcome the process operation difficulty which usually blocked by the cycling procedure. It laid a good foundation for the teleoperation system performance test.
     Finally, a master-slave teleoperation system test bench is set up by using two 6-DOF Parallel Electro-hydraulic Tele-Manipulators with same structure. Under the no-load, the elastic load and the hard object contact circumstance, applied the various bilateral Servo control strategies, the experiment of the control performance and the force telepresence performance is carried out on the master-slave teleoperation system test bench. It verified that the control strategies design is right; the new strategy has some advantage over other existing control strategies. It provides the experimental basis for the application of the new control strategy and the improvement of the performance of tele-manipulator with force feedback.
     The following results are yielded:
     (1) In this paper, a new type of hydraulic force feedback control strategy in bilateral servo control tele-manipulates system is raised. It uses the operator’s operating force, which is detected by master’s force sensor, to multiply a certain coefficient, and then minus the resistant force of the slave, finally use the result as a control reference to control the slave’s motion. And the motion of the slave detected by its motion sensor is reflected to the master side as a motion reference to control the master’s motion. And the master will follow the slave’s motion. One can feel the resistant force of the slave by apply force on the master when it does or doesn’t move. The new strategy abandoned the current control strategies’control method of "the slave always follows the movement of the master". It introduced theoretically the important innovation to bilateral servo control system strategy design.
     (2) An ideal transparency condition was deduced in the form of an anti-hybrid matrix by taking the transparency as the performance index and using the two-port network model of the teleoperation system. A detailed study is directed to the control architectures and strategies of the master and slave robot teleoperation system based on the stability theory and the anti-hybrid matrix ideal transparency condition. The internal relationship between the entire system’s stability, the transparency and the haptic devices’models and its controllers was studied in depth. The impact of the scaling and the communication time delay to the stability and performance is also analyzed. Based on the summarization of present control architectures and strategies, apply the new strategy, under the two channel architecture, the internal relationship between the entire system’s stability, the transparency and the haptic devices’models add its controllers for the new control strategy was studied in depth. It proved that the new strategy has the advantage over the existing ones in eliminating the impact of the communication time delay to the stability and performance. the new force feedback control strategy further improved the performance of the tele-operation control system, and has laid a theoretical foundation for the in-depth study of the electro hydraulic servo tele-operation system.
     (3) This paper pioneered domestically to use a 6-DOF hydraulic parallel manipulator as the haptic device in the bilateral servo control system with force feedback, an isomorphic master-slave teleoperation system is adopted, the mapping of master-slave is simple and intuitionistic, and the problems can be discovered easily. In order to verify the performance of the electro-hydraulic servo 6-DOF force-feedback manipulator and the validity of the bilateral servo control strategies, test-bench is built up by two 6-DOF devices. The hardware and software of measure and control system of the master-slave teleoperation system are designed to constitute the force telepresence system. The experiment is achieved under the zero load, elasticity load and hard contact by using different bilateral servo strategies respectively, and results shown that the 6 -DOF force-feedback manipulator developed in this dissertation can provide large control stiffness, stable performance, rapid response. Displacement control and force-feedback precision as well as the feedback force range is relatively fine and can be adjusted to satisfy the requirements of the teleoperation robot. It is also verified that the new strategy has the advantage over the existing ones in eliminating or overcoming the shock and impact of the existing control strategies’, when the slave is contact with hard environment. The new force feedback control strategy further improved the performance of the tele-operation control system, and has laid a theoretical foundation for the in-depth study of the electro hydraulic servo tele-operation system.
     Theoretical analysis and experimental study showed that: the 6-DOF Parallel Electro-hydraulic force feedback Tele-Manipulator proposed in this paper can effectively solve the problem of small force feedback stiffness and inconspicuous force feedback effect, which is prevailing in the existing electric driving force feedback devices. It obtains a more good force feedback effects. The track precision and force feedback accuracy of the new control strategy is superior to other control strategies, the tracking property is good. The new control strategy solved the problem of the impact of excessive feedback force of the current control strategies internationally existed at the same time. It has an important theoretical and practical significance in the effective improvement of the overall force Feedback performance of the teleoperated systems and widening its application fields.
     The 6-DOF parallel hydraulic force feedback manipulator bilateral servo control system can be used in resource exploration, disaster risk schedule, social services and the military, aerospace and other fields, its future has broad application prospects.
引文
[1] J. O. Gray. Recent development in advanced robotics and intelligent system [J].Computer Control Engineering, Vo1.7 (6), 1996:267-276
    [2]岩田等.フォースディスプレイによる力覚フィードバック[J].コンピュータ科学. 3-1, 22/29 ,1993.
    [3] G. C. Burdea. Force and Touch Feedback for Virtual Reality[J], Wiley-Interscience, New York, 1997.
    [4]内山等.パラレルマニピュレータの機構と特性[J],日本ロボット学会誌 10-6, 715/720 ,1992.
    [5] S. Kudomi, H. Yamada, T. Muto. Development of a Hydraulic Force Display of Parallel Link Type. Proceedings of 6th International Conference on Virtual Systems and Multimedia[C], pp.381-386, 2000.
    [6] S. Kudomi, H. Yamada, T. Muto. Development of a hydraulic parallel link type of force display. Proc. 5nd JHPS Inter. Symp. on Fluid Power[C], pp. 471-476, 2002.
    [7] S. Kudomi, H. Yamada, and T. Muto. Development of a Hydraulic Parallel Link Force Display -Improvement of Manipulability Using a Disturbance Observer and its Application to a Master-slave System[J]. Journal of Robotics and Mechatronics,Vol.15 No.4 ,391-397,Aug. 2003
    [8]倪涛.有力觉及视觉临场感的遥操作机器人系统研究[D]吉林大学机械学院, 2006
    [9]王爱民力觉临场感的应用基础研究[D]。东南大学仪器科学与工程学院,2001
    [10]巩明德,赵丁选,宫文斌, et. al.电液伺服遥操作机器人的力觉临场感研究[J]南京理工大学学报(自然科学版), 2004(08)
    [11] Ueda, J. and T. Yoshikawa, Force-reflecting bilateral teleoperation with time delay by signal filtering[J]. IEEE Transactions on Robotics and Automation, 2004. 20(3): p. 613-619.
    [12] T. B. Sheridan. Telerobotics[J]. Automatica, 25(4):487-507, 1989.
    [13] Y. Strassberg, A.A. Goldenberg, and J.K. Mills. Stability analysis of a bilateral teleoperating system[J]. Trans-ASME Jour-Dyn. Sys. Meas., 6 Cont.115:419-425, Sept 1993.
    [14] A. G. Kelkar, S. M. Joshi.“Robust control of non-passive systems via passification”. American Control Conference (ACC) [C], Albuquerque, New Mexico, June 4-6, 1997
    [15] R. Lozano, N. Chopra, M.W. Spong, Passivation of force reflecting bilateral teleoperators with varying time delay[J]. in: Mechatronics’02, Entschede, Netherlands, 24–26 June, 2002.
    [16] R. C. Goertz. Mechanical master–slave manipulator[J]. Nucleonics 12 (1954) (11), pp. 45–46.
    [17] W. Burgard, A. B. Cremers, D. Fox, et al. The interactive museum tour-guide robot. In Proceedings of the fifteenth national conference on artificial intelligence[C],1998
    [18] Ken Goldberg, Steve Gentner, Carl Suter, et al. The Mecury Project: A Feasibility Study for Internet Robots[J]. IEEE Robotics and Automation Magzine. Mar, 2000:35-40.
    [19] Ning Xi, Bill Hermal, T. J. Tam, Max Meng. A Review of Theory and Applications of Internet-Based Robotics.IEEE 18th International Mechatronics Forum[C]. 1999:137-146
    [20] T. B. Sheridan. Teleoperation, Telerobotics and Telepresence: A Progress Report[J]. Control Engineering Practice, Vol.3, No.2, 1995:205-214.
    [21] Jacobson, S. C., Iversen, E. K., Davis, C. C.,et. al. Design of a multiple degree-of freedom, force-reflective hand master/slave with a high mobility wrist. Proceedings of ANS/IEEE/SMC 3rd Topical Meeting on Robotics and Remotr Systems[C], 1989, March 13-16, Charleston, Sc.
    [22] Hirabayashi, T., et al., Teleoperation of construction machines with haptic information for underwater applications[J]. Automation in Construction, 2006. 15(5): p. 563-570.
    [23] Lumina R. Using NASREM for real-time sensory interactive robot control[J]. Robotica, 1994, 12(2): 127-135.
    [24] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX the first remotely controlled robot in space. Proc. of IEEE Int. Conf. on Rob. And Auto[C]. San Diego,CA,USA, 1994: 2604-2611.
    [25] G, Landzettel K, Fagerer C. Telerobotics with large time delays the ROTEX experience[A]. Proc. of IEEE/RSJ/GI Int. Conf on Intelligent Robots and Systems[C].Munich, Germany, 1994: 571 -578.
    [26] Hirzinger G. Robot in space: a survey[J].Advanced Robotics, 1995, 9(6): 625-651.
    [27] Oda M, Inaba N, Fukushima Y. Space robot technology experiments on NASDA’s ETS-VII satellite[ J]. Advanced Robotics, 1999, 13(3):335-336.
    [28] Burdea G C. Invited review: the synergy between virtual reality and robotics[J]. IEEE Trans. on Rob. and Auto., 1999, 15(3): 400-410.
    [29] M. C. Cavusoglu, F. Tendick, and S. S. Sastry. Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments[C]. In McLaughlin, M. L. Hespanha, J. P. and Sukhatme, G. editors. Touch in virtual environments. IMSC Series in Multimedia. Prentice-Hall. 2001.
    [30] M. C. Cavusoglu, W. Williams, F. Tendick, S. S. Sastry. Robotics for Telesurgery:Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking towards the Future Applications. In the Proceedings of the 39 Allerton Conference on Communication, Control and Computing[C], Monticello, IL ,October3-5, 2001.
    [31] T. Arai, E. Nakano. Bilateral Control for Manipulators with Different Configurations[C]. Proceedings of International Conference on Electronics, Control Instrument. 1984: 40-45
    [32] Murat Cenk Cavusoglu, Alana Sherman, Frank Tendick. telemanipulation of soft environments. IEEE Transactions on Robotics and Automation[C]. New York: Aug 2002. Vol. 18, Iss. 4; pg. 641
    [33] Baezynski J,Baezynski M.SimPle low cost computer module for controlling teleoperators dependently on weight of manipulated objects. Proeeedings Of IEEE International Conferenee On Industrial Technology[C],2004,12:959-962.
    [34] D. Ryu, S. Kang, M. Kim, J. B. Song: Multi-modal user interface for teleoperationof ROBHAZ-DT2, field robot system. In: 2004 IEEE/RSJ InternationalConference on Intelligent Robots and Systems(IROS)[C], 28 Sept.-2 Oct. 2004
    [35] Perret J. Service robots for nuelear safety: new developments By CYBERNETIX[A]. Proeeedings of IEEE International Conference On Roboties and Automation[C],1999,5:2106-2109.
    [36] F. J. Rubio-Sierra,R.W. Stark, S. Thalhammer, W.M. Heckl. Force-feedback joystick as a low-cost haptic interface for an atomic-force-microscopy nanomanipulator[J]. Appl. Phys. 2003(76):903-906.
    [37]刘劲松,孙立宁,程树康,蔡鹤皋.基于力反馈机器人宏/微操作系统的研究[J].电工技术学报,1996,11(3):37-41.
    [38]孙立宁,荣伟彬,刘品宽,蔡鹤皋.主从式遥微操作机器人力反馈控制系统的研究[J].机器人,2002,24(4):346-351.
    [39] J. S. Albus, R. Quintero, R. Lumia. Overview of NASREM: NASA/NBA Standard Reference Model for Telerobot Control System Architecture[J]. PB94-194560/HDM,1-9.
    [40]崔建伟.力觉临场感系统中的异构式手控制器设计[D].南京:东南大学仪器科学与工程系, 2004.
    [41]朱清峰.力觉临场感系统中监控技术的研究[D].南京:东南大学仪器科学与工程系,1999.8
    [42]罗杨宇.力觉交互系统建模分析与设计方法研究[D].北京:北京航空航天大学机械工程及自动化学院, 2003,9.
    [43]胡海鹰. HIT/DLR机器人灵巧手遥操作系统的研究[D].哈尔滨工业大学机电工程学院, 2006,4.
    [44]戴炬,异机构遥控主从手的双向力反映,控制理论与应用[J] Vol 13,1996, pp259-261.
    [45]汤宇松,刘景泰.利用远程网络技术的机器人遥操作系统分析.机器人[J], 2000, 022(001): 67-72.
    [46]邓启文,韦庆,李泽湘.大时延力反馈双边控制系统.机器人[J]. 2005, 27(5):410-413
    [47]邓乐.电液力反馈操纵杆及其双向伺服控制技术研究[D]吉林大学机械学院,2007
    [48] Fong, T., Conti, F., Grange, S., and Baur, C., "Novel Intefaces for Remote Driving: Gesture, Haptic and PDA". SPIE 4195-33, SPIE Telemanipulator and Telepresence Technologies VII[C], Boston, MA, November 2000
    [49] Kulik A., "Nanomanipulation of carbon nanotubes"[J], CTI Projet no 4941.1, 1999.
    [50] Baur C., Guzzoni D., and Georg O., "VIRGY, A Virtual Reality Force Feedback Based Endoscopic Surgery Simulator". Proc. Medicine Meets Virtual Reality 6[C], San Diego, CA, January 28-31, 1998 pp 110-116.
    [51] Ruspini D., Kolarov K., Khatib O., "The Haptic Display of Complex Graphical Environments. ". SIGGRAPH 97 Proceedings[C], pp. 345-352, August 1997.
    [52] Srinivasan M. A., Chen J., "Human Performance in Controlling Normal Forces of Contact With Rigid Objects"[C]. in Kazerooni H., Colgate J. E., Adelstein B. D. (Eds.), Advances in Robotics, Mechatronics, and Haptic Interfaces,ASME, DSC-49, pp. 119-125, 1993.
    [53] Jandura L., M. A. Srinivasan, "Experiments on Human Performance in Torque Discrimination and Control"[J], in Radcliffe C. J. (Ed.), Dynamic Systems and Control, ASME, DSC-55, Vol.1, pp. 369-375, 1994.
    [54] Adelstein B. D., Rosen M. J., "Design and Implementation of a Force Reflecting Manipulandum for Manual Control Research"[C]. in Kazerooni H. (Ed.), Advances in Robotics, ASME, DSC-42, pp. 1-12, 1992.
    [55] Rosenberg L. B., How to Assess the Quality of Force-Feedback Systems, in Morgan K., Satava R., Sieburg H. B., Mattheus R., Christensen J. P. (Eds.),Medicine Meets Virtual Reality - Interactive Technology and the New Paradigm for Healthcare[C], IOS Press, Amsterdam, 1995.
    [56] Tan H. Z., N. I. Durlach, Y. Shao, M. Wei, "Manual Resolution of Compliance When Work and Force Cues Are Minimized", in Kazerooni H., Colgate J. E., Adelstein B.D. (Eds.), Advances in Robotics, Mechatronics, and Haptic Interfaces, ASME[C], DSC-49, pp. 99-104, 1993.
    [57] Shimoga K., "Finger Force and Touch Feedback Issues in Dexterous Telemanipulation", Proceedings NASA-CIRSSE International Conference onIntelligent Robotic Systems for Space Exploration[C], pp. 159-178, Greenbelt, MD, 1992.
    [58] Sieber, A., et al., A novel haptic platform for real time bilateral biomanipulation with a MEMS sensor for triaxial force feedback[J]. Sensors and Actuators A: Physical. In Press, Corrected Proof: p. 454.
    [59] Kim, H.W., et al., Comparative study and experimental verification of singular-free algorithms for a 6 DOF parallel haptic device[J]. Mechatronics, 2005. 15(4): p. 403-422.
    [60] Zhu, W. and Y. S. Lee, Five-axis pencil-cut planning and virtual prototyping with 5-DOF haptic interface[J]. Computer-Aided Design, 2004. 36(13): p. 1295-1307.
    [61] Zhu, W. and Y. S. Lee, Dexel-based force-torque rendering and volume updating for 5-DOF haptic product prototyping and virtual sculpting[J]. Computers in Industry, 2004. 55(2): p. 125-145.
    [62] Kwon, T. B. and J. B. Song, Force display using a hybrid haptic device composed of motors and brakes[J]. Mechatronics, 2006. 16(5): p. 249-257.
    [63] Garcia-Valdovinos, L.G., V. Parra-Vega, and M.A. Arteaga, Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay[J]. Robotics and Autonomous Systems, 2007. 55(8): p. 609-617.
    [64] Polushin, I., et al. Position-error based schemes for bilateral teleoperation with time delay: Theory and experiments[J]. 2006. Luoyang, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States.
    [65] Cho, H.C. and J.H. Park, Stable bilateral teleoperation under a time delay using a robust impedance control[J]. Mechatronics, 2005. 15(5): p. 611-625.
    [66] Azorin, J.M., et al., Generalized control method by state convergence for teleoperation systems with time delay[J]. Automatica, 2004. 40(9): p. 1575-1582.
    [67] Arcara, P. and C. Melchiorri, Control schemes for teleoperation with time delay: A comparative study[J]. Robotics and Autonomous Systems, 2002. 38(1): p. 49-64.
    [68] Slama, T., et al. Robust bilateral generalized predictive control for teleoperation systems. 2007. Athens, Greece: Institute of Electrical and Electronics EngineersComputer Society[C], Piscataway, NJ 08855-1331, United States.
    [69] Tanner, N.A. and G. Niemeyer. Improving perception in time delayed teleoperation[J]. 2005. Barcelona, Spain: Institute of Electrical and Electronics Engineers Inc. Piscataway, NJ 08855-1331, United States.
    [70] Ferrell, W. R., & Sheridan, T. B. (1967). Supervisory control of remote manipulation[J]. IEEE Spectrum, 81–88.
    [71] Fong, C., Dotson, R., & Bejczy, A. (1986). Distributed microcomputer control system for advanced teleoperation. In Proceedings of the IEEE international conference on robotics and automation[C] (Vol. 3, pp. 987–995).
    [72] Bejczy, A. K., Kim, W. S., & Venema, S. C. (1990). The phantom robot: Predictive displays for teleoperation with time delay. In Proceedings of the IEEE international conference on robotics and automation[C] (Vol. 1, pp. 546–551).
    [73] G. Calcev, R. Gorez, M. De Neyer.“Passivity approach to fuzzy control systems”[J]. Automatica, Vol 34, No. 3, 1998, 339~344
    [74] V. Santibanez, R. Kelly.“Energy shaping Based controllers for rigid and elastic joint robots: analysis via passivity theorem”. Proceedings of the IEEE international conference on Robotics and Automation[C], Albuquerque, New Mexico, Apr. 1997, 2225~2231
    [75] A. Loria, E. Panteley, H. Nijmeijer.“A remark on passivity-based and discontinuous control of uncertain nonlinear system”[J]. Automatica, Vol 37, 2001, 1481~1487
    [76] E. Fridman, U. Shaked.“On delay-dependent passivity”[J]. IEEE trans. Automatic Control, Vol 47, No. 4, Apr. 2002, 664~669
    [77] S. I. Niculescu, R. Lozano.“On the passivity of linear delay systems”[J]. IEEE trans. Automatic control, Vol 46, No. 3, Mar. 2001, 460~464
    [78] Nuno, E., L. Basanez, and R. Ortega. Passive bilateral teleoperation framework for assisted robotic tasks. Proceedings IEEE International Conference on Robotics and Automation[C],2007. Piscataway, NJ 08855-1331, United States.
    [79] Ye, Y. and P.X. Liu. Improving force feedback fidelity in wave-variable-based teleoperation. 2008. Pasadena, CA, United States: IEEE International Conference on Robotics and Automation Institute of Electrical and Electronics Engineers Inc[C].,Piscataway, NJ 08855-1331, United States. p.194-199
    [80] Kaber, D.B., M.C. Wright, and M.A. Sheik-Nainar, Investigation of multi-modal interface features for adaptive automation of a human-robot system[J]. International Journal of Human-Computer Studies, 2006. 64(6): p. 527-540.
    [81] Park, H. and J. Lee, Adaptive impedance control of a haptic interface[J]. Mechatronics, 2004. 14(3): p. 237-253.
    [82] Huang, J.-Y. and C.-Y. Gau, Modelling and designing a low-cost high-fidelity mobile crane simulator[J]. International Journal of Human-Computer Studies, 2003. 58(2): p. 151-176.
    [83] Gauthier, G.M., et al., Adaptive control of teleoperators in response to visuo-manual relationship alteration[J], Advances in Psychology. 1996, North-Holland. p327-346.
    [84] Tzafestas, S.G. and P.A. Prokopiou, Compensation of teleoperator modeling uncertainties with a sliding mode controller[J]. Robotics and Computer-Integrated Manufacturing, 1997. 13(1): p. 9-20.
    [85] Krishnaswamy, K. and P.Y. Li, Bond graph based approach to passive teleoperation of a hydraulic backhoe[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006. 128(1): p. 176-185.
    [86] Hernandez, J. and J. P. Barbot, Sliding observer-based feedback control for flexible joints manipulator[J]. Automatica, 1996. 32(9): p. 1243-1254.
    [87]徐涛,曾庆军.时延下遥操作机器人系统H_∞鲁棒控制研究,计算机仿真,25(1):2008,01。
    [88] G.M.H. Leung, B.A. Francis and J. Apkarian, Bilateral controller for teleoperators with time delay viaμ-synthesis[J]. IEEE Transactions on Robotics and Automation 11 (1995) (1), pp. 105–116.
    [89] Chen, Q., S. Fei, and A. Song, Predictive control of teleoperation robot systems[J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2003. 33(2): p. 177-181.
    [90] Chen, Q. H., et al., Predictive control of teleoperation systems based on observers[J]. Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2004. 21(3): p. 439-442.
    [91] Slama, T., et al., Experimental analysis of an Internet-based bilateral teleoperation system with motion and force scaling using a model predictive controller[J]. IEEE Transactions on Industrial Electronics. 2008, 55(9): p3290-3299.
    [92] Wang, S., et al. Real-time mobile robot teleoperation over IP networks based on predictive control. 2008. Guangzhou, China: Institute of Electrical and Electronics Engineers Inc[C]. Piscataway, NJ 08855-1331, United States.
    [93]曾庆军,徐涛、徐晶晶,et al.时延力觉临场感遥操作机器人系统预测控制研究[J],东南大学学报(自然科学版)(34) 2004,11.
    [94] B. Hannaford. Stability and performance tradeoffs in bi-lateral telemanipulation. In Proc. IEEE Int. Conf. Rob. & Aut[C]o. pages 1764-1767, Scottsdale, AZ, May 1989.
    [95] D.A. Lawrence. Stability and transparency in bilateral teleoperation[J]. IEEE Trans. Rob.& Auto. 9 (5) :624-637, October 1993.
    [96] K. Hashtrudi-Zaad and S.E. Salcudean. On the use of local force feedback for transparent teleoperation. In Proc. IEEE Int. Conf. Rob.& Auto[C], pages 1863-1869, Detroit, MI, May 1999.
    [97] G. J. Raju G. C. Verghese and T.B. Sheridan. Design issues in 2-port network models of bilateral remote manipulation. In Proc. IEEE Int. Conf Rob. & Auto[C], pages 1316-1321, Scottsdale, AZ, May 1989.
    [98] H. Kazerooni, T. I Tsay and K. Hollerbach. A Controller Design Framework for Telerobotic Systems[J]. IEEE Transactzons on Control System Technology, 1(1): 50-62, 1993.
    [99] Strassberg, A. A. Goldenberg, and J. K. Mills. A new control scheme for bilateral teleoperating systems: Lyapunov stability analysis. In Proc. IEEE Int. Conf Rob. & Aut[C]o, pages 837-842, Nice, France, May 1992.
    [100] W. H. Zhu and S. E. Salcudean. Teleoperation with adaptive motion/force control. In Proc. IEEE Int. Conf. Rob. & Auto[C]. pages 231-237, Detroit, MI May 1999.
    [101] R.J. Anderson and M.W. Spong. Bilateral control of teleoperators with time delay[J]. IEEE Trans. Auto. Cont., 34(5):494-501, May 1989.
    [102] G. Niemeyer and J. E. Slotine. Stable adaptive teleoperation[J]. IEEE Jour Occeanic Eng, 16(1):152-162, January 1991.
    [103] K. Hashtrudi-Zaad and S.E. Sdcudean . Analysis and evaluation of stability and performance robustness for teleoperation control architectures. In Proc.IEEE int. Conf.. Ro6. 6 Auto[C]. pages 3107-3113, San Francisco, CA, April 2000.
    [104] S. Lee and H. S. Lee. Modeling, design, and evaluation of advanced teleoperator control systems with short time deIay[J]. IEEE Trans. Rob. 43 Auto., 9(5):607-623, October 1993.
    [105] R. W. Daniel and P. R. McAree. Fundamental limits of performance for force reflecting teleoperation[J]. Int. Jour. Rob. Res., 17(8) :811-830, August 1998.
    [106] C. Melchiorri and A. Eusebi. Telemanipulation: System aspects and control issues. In C. Melchiorri and A. Tornambe, editors, (Proc. Int. Summer School in Modelling and Control of Mechanisms and Robots) [C], pages 149-183. World Scientific, Bertinoro, Italy, 1996.
    [107] B. Hannaford, L. Wood, D.A. McAffee, and T.B. Sheridan. Performance evaluation of a six-axis generalized force-reflecting teleoperator[J]. IEEE Trans. Sys. Man. & Cyber., 21(3):620-633, May-June 1991.
    [108] W . R. Ferrell. Remote manipulation with transmission delay[J]. IEEE Trans. Human Factors in Electronics., HFE6:24-32, September 1965.
    [109] G. F. McLean, B. Prescott, and R. Podhorodeski. Teleoperated system performance evaluation[J]. IEEE Trans. Sys. Man. & Cyber., 24(5):796-804. May 1994.
    [110] T. J. Brooks. Telerobotics response requirements. In proc. IEEE int . Conf. Sys. Man. & Cyber[C], pages 113-120, 1990.
    [111] Y. Yokokohji and T. Yoshikawa. Bilateral control of master-slave manipulators for ideal kinematic coupling-formulation and experiment[J]. IEEE Trans. Rob,& Auto., lO(5) 505-620, October 1994.
    [112] M. Zhu and S.E. Salcudean. Achieving transparency for teleoperator systems under position and rate control. In Proc. IEEE RSJ Int. Conf. Intel. Rob. & Sys.[C], pages 7-12, Pittsburgh, PA, August 1995.
    [113] Z. Hu, S. E. Salcudean, and P. D. Loewen. Optimization-based controller design for teleoperation systems. In Proc- IFAC World Congress[C], pages 405-410, San Francisco, CA, June 1996.
    [114] http://www.sensegraphics.com/categories_info.php?categories_id=30&osCsid
    [115] M. Bergamasco, et al. An Arm Exoskeleton System for Teleoperation and Virtual Environments Applications. Proceedings of International Conference On robotics and Automation[C], San Diego, California,pp.1449-1454,1994.
    [116] http://www.hitl.washington.edu/scivw/scivw-ftp/publications/IDA-pdf/
    [117] http://www.cs.utah.edu/classes/cs6360/Nahvi/haptic.html#pbfd
    [118] Brooks, F. P. Jr., M. Ouh-Young, J. J. Batter, et. al. 1990.“Project GROPE- Haptic Displays for Scientific Visualization[J].”Computer Graphics, 24(4), pp. 177-185.
    [119] Burdea, G. C., Zhuang J. A., Rosko, E.,et.al,‘A portable dextrousmaster with force feedback[C]. Presence: Teleoperators and Virtual Environments, Vol. 1, pp. 18-28. 1992.
    [120] Gomez, D., Burdea. G., Langrana, N. Modeling of the Rutgers master II haptic display. Proc. of Fourth Annual Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems[C], ASME, pp. 727-734. 1995.
    [121] http://wwwrobot.gmc.ulaval.ca/recherche/theme03_a.html
    [122] http://intron.kz.tsukuba.ac.jp/vrlab_web/hapticmaster/hapticmaster_e.html
    [123] http://brl.ee.washington.edu/Research_Active/Haptics/Device_04_LHD/LHD.html
    [124] http://users.aber.ac.uk/dpb/haptic.html
    [125] K. Y. Woo, B. D. Jin and D. S. Kwon. A 6 DOF force-reflecting hand controller using the. verbar parallel mechanism. Proc. IEEE Int. Conf. on Robotics and Automation’98[C]. Leuven, Belgium, 1998:1597-1602.
    [126] J. H. Lee, K. S. Eom, B. J. Yi. Design Of A New 6-DOF Parallel Haptic Device. International Conference on Robotics&Automation[C] Seoul, Korea May 21-26, 2001:311-316
    [127] http://www.msl.ri.cmu.edu/projects/haptic/
    [128] L. Ni Position-error-based force-reflecting teleoperation[D], University of Waterloo, Ontario, Canada, 2003
    [129] G. Niemeyer and J. J. E. Slotine. "Using Wave Variables for System Analysis and Robot Control". In Proceedings of the 1997 IEEE International Conference on Robotics and Automation[C], pages 1619-1625, Albuqerque, KM, April 1997.
    [130] Y. Yokokohji, T. Imaida and T. Yoshikawa. "Bilateral Teleoperation under Time- Varying Communication Delay". In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C], pages 1854-1859, Kyongju, Korea, 1999.
    [131] McIntyre, M., et al., Passive coordination of nonlinear bilateral teleoperated manipulators[J]. Robotica, 2006. 24(4): p. 463-476.
    [132] Haykin, S. S., Active Network Theory[M]. Readiing: Addison-Wesley, 1970.
    [133] J.E. Colgate and J-LM. Brown. Factors affecting the z-width of a haptic display. In Proc. IEEE Int. Conf. Rob- &Auto.[C], pages 3205-3210, San Diego, CA, May 1994.
    [134] Aracil, R., et al. ROBTET: A new teleoperated system for live-line maintenance. 1995. Columbus, OH, USA: IEEE[C], Piscataway, NJ, USA.
    [135] Y. Yokokohji, T. Imaida and T. Yoshikawa. "Bilateral Control with Energy Balance Monitoring under Time-Varying Communication Delay". In Proceedings of the IEEE International Conference on Robotics and Automation[C], pages 2684-2689, San Francisco, CA, 2000.
    [136] J. Yan and S.E. Salcudean. Teleoperation controller design using h-optimization with application to motion-scaling[J]. IEEE Trans. Cont. Sys. Tech., 4(3) :244-258, May 1996.
    [137] S.E. Salcudean. Control for teleoperation and haptic interfaces[J]. In B. Siciliano and K-P. Valavanis, editors, Control Problems in Robotics and Automation, LNCIS-230, pages 51-66. Springer-Verlag, New York, 1998.
    [138] Lau, H.Y.K. and L.C.C. Wai, Implementation of position-force and position-position teleoperator controllers with cable-driven mechanisms [J]. Robotics and Computer-Integrated Manufacturing, 2005. 21(2): p. 145-152.
    [139] Hidetoshi KATO, Hironao YAMADA and Takayoshi MUTO. Master-Slave Control for a Tele-Operation System for a Construction Robot[J]. transactions of the japan fluid power system society, Vol. 34 (2003) No. 4 pp.85-91
    [140] Shigeki Kudomi, Kenji Chihara, Hironao Yamada and Takayoshi Muto. Development of a Bilateral Master-slave System for Grinding. SICE DivisionConference Program and Abstracts[C], Vol.si2002 (2002)No. SPACE pp.563-569
    [141] Boukhnifer, M. and A. Ferreira, Wave-based passive control for transparent micro-teleoperation system. [J] Robotics and Autonomous Systems, 2006. 54(7): p. 601-615.
    [142] Furuta, K., Kosuge, K., Shiote, Y., & Hatano, H. (1987). Master–slave manipulator based on virtual internal model following control concept. In Proceedings of the IEEE international conference on robotics and automation[C] (Vol. 4, pp. 567–572).
    [143] J. H. Park and H. C. Cho. "Sliding-mode Controller for Bilateral Teleoperation with Varying Time Delay". In Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics[C], pages 311-316, 1999.
    [144] P. D. Lawrence, S. E. Salcudean, N. Sepehri, D. Chan, S. Bachmann, N. Parker, M. Zhu, and R. Frenette. Coordinated and force-feedback control of hydraulic excavators. In Proc. Int. Symp. Exp. Rob. [C], pages 114-121, Stanford, CA, June 1995.
    [145] W.S. Kim, F. Tendick, S.R. Ellis, and L.W. Stark. A comparison of position and rate control for telemanipuiations with consideration of manipulator system dynamics[J]. IEEE Jour. Rob. & Auto., RA-3(5) :426-436, October 1987.
    [146] C. R. Flatau. SM 229, a New Compact Servo Master-Slave Manipulator. In Proceedings of the 25th Remote Sys. Tech. Div. Conference[C], page 169, 1977.
    [147] Hidetoshi KATO, Hironao YAMADA and Takayoshi MUTO. Master-Slave Control for a Tele-Operation System of Construction Robot[J]. transactions of the japan fluid power system society, Vol. 34 (2003) No. 2 pp.27-33
    [148] T. Yoshikawa and J. Ueda. Analysis and control of master-slave systems with timedelay. In Proc. IEEE/IZSJInt. Conf. Intel. Rob. & Sys. [C], pages 1366-1373, Osaka, Japan, November 1996.
    [149] A. Eusebi and C. Melchiorri. Force reflecting telemanipulators with with time-delay: Stability analysis and control design[J]. IEEE Trans. Rob. 6 Auto,14(4):635-640, August 1998.
    [150] R. J. Adams and B. Hannaford. "Stable Haptic Interaction with VirtualEnvironments". IEEE Transactions on Robotics and Automation[C], 15(3):465-474,1999.
    [151]赵丁选,黄海东,宫文赋,山田宏尚;武藤高义.遥操作工程机器人系统临场感技术研究—6自由度临场运动感觉反馈技术的研究进展[J].工程设计学报2002(03).
    [152]黄真.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997。
    [153]熊有伦.机器人学[M].北京:机械工业出版社,1993
    [154]王洪瑞液压6-DOF并联机器人操作手运动和力控制研究[M].超星图书1,2001。
    [155]李洪人.考虑阀口误差的阀控非对称液压缸系统建模、仿真与试验[J].机械工程学报, 2007,(43):33-38
    [156]黄俊,刘慎久,罗伟. PID在温控模块设计中的应用[J].机械制造与自动化, 2008,(4)
    [157]韩广兴.电子元器件与实用电路基础[M].北京:电子工业出版社, 2003.
    [158]徐敬广,李刚.电液力伺服控制系统设计与动态仿真[J].宿州学院学报,2008:23(4)
    [159]张永相.机电控制理论及应用[M].重庆:重庆大学出版社,2002.
    [160]张为春,曾祥军.基于模糊PID控制的汽车底盘模拟测功机测控系统[J].农业机械学报2006, 37(12): 17~19.
    [161]陈在平.控制系统计算机仿真与CAD:MATLAB语言应用[M].天津:天津大学出版社,2001。
    [162]汪小龙,《Visual C++与Windows编程》学习参考[M].南京:南京大学出版社, 2003。
    [163]张星, Windows 98/2000/XP常见问题与技巧1000例详解[M].北京:中国铁道出版社,2003
    [164] [美]布朗编著,刘涛,李一舟译. Windows安全性编程[M].北京:中国电力出版社2004。
    [165] William Buchanan. PC接口通讯与windows编程[M].北京:中国电力出版社,2001。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700