激光微喷丸强化的压力模型及冲击效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光微喷丸技术(μLSP)利用μJ量级能量、ns量级脉宽和μm量级光斑的短脉冲激光束,与材料相互作用诱导冲击波压力进行表面改性,能够在微器件表层或局部产生适度残余压应力分布,增加处理区域的硬度及弹性模量,改善零件表面的耐磨损和耐腐蚀性能,提高零件的抗冲击能力,从而延长金属构件的疲劳寿命,从制造源头解决金属微结构及器件的失效问题。然而目前对微尺度激光喷丸中的尺度效应问题、强化表面力学性能及形貌的有效表征方式、激光微喷丸导致的晶粒细化机制与微观强化机理,以及实现零件表面强化处理的工艺准则尚缺乏系统的研究。本文在详细分析激光微喷丸强化机理的基础上,采用理论、数值模拟和实验相结合的方法,对纯铜试样进行激光微喷丸强化研究,主要工作如下:
     (1)微尺度冲击波压力传播的理论分析。在分析脉冲激光—能量转换体—冲击波压力模型的基础上,考虑高应变率条件和材料物性的非线性效应,根据微分几何、爆轰波理论、应力波基础等理论,得到了冲击波压力的二维时空分布,建立了适合微尺度下激光喷丸强化的二维压力加载模型。采用椭球波传播理论,在现有一维压力模型的基础上,根据椭球的几何特性,给出波阵面上任意一点任意时刻的径向压力与轴向压力的比值K(t,r),推导了冲击波在典型介质水中传播时的径向压力简化模型,获得了径向压力的时空分布曲线,得到了微尺度下冲击波压力的作用规律。
     (2)激光微喷丸强化纯铜的数值模拟。以ABAQUS软件为平台,建立了高应变率条件下激光微喷丸过程的有限元分析模型,编制专用的分析模块,考虑微尺度下材料的各向异性作用,引入了单晶体材料模型,开展了单点激光微喷丸诱导的表面动态应力和塑性变形数值模拟研究,分析了工艺参数对残余应力分布的影响规律;进行了多点搭接激光微喷丸强化纯铜的数值模拟。根据圆形光斑的搭接特性,选取过光斑中心和到光斑中心线0.5R的剖线为典型路径,表征了受喷表面及深度方向上的残余应力及塑性变形分布,探讨了不同工艺条件及喷丸方案对残余应力及表面形貌的影响。
     (3)工艺过程控制与参数优化。引入形状因子σSF描述了单晶体不同晶面取向下残余应力场的形状特征,更加合理地表征材料强化层的残余应力分布特性;采用Mintab软件中的Taguchi设计方法对模拟方案进行实验设计,提取各种工艺参数下的残余应力表征值数据进行处理,通过信噪比分析和方差分析确定各因素对残余应力各表征值影响的显著程度,为激光微喷丸强化过程的参数优化和残余应力控制提供指导。
     (4)激光微喷丸强化纯铜实验。通过测量单点激光微喷丸强化区域的表面轮廓和粗糙度,分析了工艺参数对纯铜塑性变形的影响规律;通过测量激光微喷丸区域的纳米硬度、弹性模量以及接触深度,研究了单点强化区域内力学性能的变化规律,探讨了激光微喷丸提高纯铜硬度和弹性模量的机制,并给出了影响材料表面性能变化的关键因素;在此基础上研究了多点激光微喷丸搭接条件下,能量、搭接率等主要工艺参数对表面残余应力、表面形貌及粗糙度的影响规律,获得了不同条件下合适的激光微喷丸参数和工艺准则。
     (5)激光微喷丸强化纯铜塑性变形层的微观组织变化及其强化机理研究。采用透射电镜(TEM)、光学显微镜(OM)等设备观察激光微喷丸后纯铜沿深度方向的晶粒大小、微观结构。在多次激光微喷丸条件下,观察微观结构演变的基础上,分析了纯铜塑性变形过程中的微观组织演化机理,系统的揭示了激光微喷丸纯铜晶粒细化机制和微观强化机理,并探讨了微观组织结构在强化处理中所起的作用。
     本文的研究成果,丰富了激光诱导冲击波压力的基础理论,对研究高应变率条件下,动态塑性变形过程中的微观组织演化规律有重要的理论意义,为激光微喷丸强化工艺效果的评价提供了参考和指导。
Micro scale laser shock peening (μLSP) has been proposed to improve the fatigue durability, corrosion and wear resistance of metals with laser beam diameter at the order ofμm, pulse duration at ns and laser energy at pJ, during which shock wave pressure generated by the interaction between laser beam and material can introduce moderate residual stress distribution and enhance surface nano-hardness and elastic modulus. It fundamentally resolves the failure problem of micro metal components. Nevertheless, up to now, problems of scale effect, response of mechanical properties, efficient characterization of surface morphology, micro strengthening mechanism and technological criterion ofμLSP are still stacking. After detailed analyzing the strengthening mechanism ofμLSP, theory, numerical simulation and experiments were adopted to research the copper specimen treated byμLSP. The main work are as follows:
     (1) Theoretical analysis of the shock wave propagation in micro scale. According to differential geometry, detonation wave theory and stress wave basis theory,2-D shock pressure distribution was obtained.2-D pressure model was established based on the analysis of pulse laser-energy transfer medium-shock wave pressure model with high strain rate conditions and material property of nonlinear effects. Comprehensively considering properties of shock wave ellipsoidal propagation in time and spatial distribution and geometric features of ellipse, ratio of pressure in axial direction and radial direction K(t, r) were put forward, and spatial pressure distribution in radial direction at different time was derived.
     (2) Numerical simulation of copper treated byμLSP. Based on ABAQUS software, the finite element models ofμLSP under high strain ration condition was established. The special analytic module forμLSP was generated. The influence of material anisotropy was considered, material model for single crystal was introduced. Surface dynamic stress and plastic deformation under single spotμLSP were analyzed, and influences of processing parameters on residual stress were researched. Meanwhile, simulation of multi-spotμLSP was also conducted. Typical paths with profile across laser spot centre and 0.5R away from laser spot centre were selected to characterize the distribution of residual stress and plastic deformation according to characteristic of overlapping circle spot. Residual stress and plastic deformation distribution at surface and along depth direction were explored, and the influence of processing conditions on residual stress and surface morphology were also discussed.
     (3) Technical process control and parameters optimization. Shaper factorσSF was introduced to precisely describe shape feature of residual stress under different crystal orientations. Taguchi method of Minitab software was used to carry out experimental design according to derived simulated results, the characteristics of residual stress measured under various processing parameters were extracted and treated, the influence degree were determined by the analysis of signal-to-noise ratio and variance, which provides good guidance for optimizing the processing parameters and controlling residual stress duringμLSP.
     (4) Experiments ofμLSP were conducted. After measuring surface profile and roughness of single spotμLSP region, influence of processing parameters on copper plastic deformation were analyzed. Mechanical properties in single shot region, enhancement mechanism ofμLSP on copper nano-hardenss and elastic modulus afterμLSP were explored by discussing the measured nano-hardenss, elastic modulus and contact depth inμLSP region. Key factor of surface performance was proposed. Multi-spotμLSP experiments were conducted to study the influence of main processing parameters (laser energy and overlapping rate) on residual stress and surface morphology. Appropriate processing parameter and processing rule were obtained under different conditions.
     (5) The microstructure evolution of copper and micro strengthening mechanism in plastic deformation region treated byμLSP was investigated. The grain size and microstructure of copper in depth direction were observed by transmission electro microscopy (TEM) and optical microscope (OM) technique. The microstructure evolution mechanism of copper was investigated based on the analysis of microstructure change under multipleμLSP treatment. Grain refinement mechanism and micro strengthening mechanism was proposed systematically, and the effects of microstructure in strengthening treatment were discussed.
     The researches enrich the basic theory of pressure induced by laser, which is theoretical significant for microstructure evolution in dynamic plastic deformation under high strain rate, and also provide the helpful reference and guidance to evaluation of enhanced result.
引文
1. Wang A H, Tao Z Y, Zhu B D. Laser modification of plasma sprayed Al2O3-13 wt% TiO2 coationgs on a low carbon steel [J]. Surface and Coating Technology,1992,52:141-144.
    2. Shen Y F, Feng Zhong, Chao C J. Surface modification on steel by rareearthe and laser treatment. Trans [J]. NonferrousMet Soc China,1997,7(4):75-79.
    3. Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys [J]. Applied Surface Science,2005,247(1-4):347-353.
    4. Abbas G, LI L, Ghazanfar U. Effect of high power diode laser surface melting on wear resistance of magnesium alloys [J]. Wear,2006,260(1-2):175-150.
    5. C. Rubio-Gonzaleza, J.L. Ocana, G Gomez-Rosas et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Materials Science and Engineering: A.2004,386(1-2):291-295.
    6. Zhiming Shi, Guangling Song, Andrej Atrens. The corrosion performance of anodized magnesium alloys[J]. Corrosion Science,2006,48(11):3531-3546.
    7.程国义,程念贫等.硅基片材料激光表面改性的实验研究.中国激光,1994,21(8):688-692.
    8.王志奇,刘长瑛等.GCr15钢激光表面改性表面硬化层残余奥氏体测定及研究.天津理工学院学报,2003,19(1):65-68.
    9.陈菊芳,张永康,许仁军.AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光.2007,A35(2):307-310.
    10. Bo Gao, Shengzhi Hao, Jianxin Zou,et al. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy [J]. Surface & Coatings Technology,2007,201(14):6297-6303.
    11.钱苗根.现代表面技术.机械工业出版社,2002.
    12. Wang D F, Kato K. Effect of friction cycles on wear particle generation of carbon nitride coating against a spherical diamond [J]. Tribology International,2000,33:115-122.
    13. Linfa Peng, Xinmin Lai, Hye-Jin Lee, et al. Friction behavior modeling and analysis in micro/meso scale metal forming process [J]. Materials and Design,2010,31(2):1953-1961.
    14. Nakamaru, Y, Honma, H. Fabrication of three-dimensional microstructure by nickel plating and photolithography [J].Transactions of the Institute of Metal Finishing,2009,87(5):259-263.
    15. S.W. Han, H.W. Lee, H.J. Lee. Mechanical properties of Au thin film for application in MEMS/NENS using microtensile test [J]. Current Applied Physics,2006,6:81-85.
    16. Ta-Hsuan Lin, Stephen Paul, Susan Lu, et al. A study on the performance and reliability of magnetostatic actuated RF MEMS switches [J]. Microelectronics Reliability,2009,49:59-65.
    17.王庆良,葛世荣.微机电系统(MEMS)纳米摩擦学研究进展.润滑与密封,2003,3:88-94.
    18. J. Kimberley, I. Chasiotis, J. Lambros. Failure of microelectromechanical systems subjected to impulse loads [J]. International Journal of Solids and Structures,2008,45:497-512.
    19. Maboudian Roya. Adhesion and friction issues associated with reliable operation of MEMS [J]. MRS Bulletin,1998,23(6):47-51.
    20. KomvOPoulos K.. Surface engineering and microtribology for microelectric mechanical systems. Wear,1996(200):305-327.
    21. Chii-Wann Lin, Ming-Fung Lee et al. Surface Modification of Bio-MEMS Micro-device with Conductive Polymer. IEEE EMBS 2005, Shanghai, China.
    22. Miyamoto T, Miyake S, Kaneko R. Wear resistance of C+-implanted silicon investigated by scanning probe microscopy [J]. Wear,1993,162-164:733-738.
    23.邓昭,饶文琦,任天辉,等.微机电系统的微观摩擦学研究进展[J].摩擦学学报,2001,21(6):494-498.
    24. Ander S, Komvopoulos K. Effect of vacuum are deposition parameters on the properties of amorphous carbon thin films [J]. Surf Coat Techno,1994,68-69:388-393.
    25. Houston M R, HoweR T, Komvopoulos K. Diamond-like carbon films for silicon passivation in microelectro mechanical devices [J]. MaterRes Soc Symp,1995,383:391-402.
    26. John F, Read Y. Laser-produced Shocks and Their Relation to Material Damage. IEEE J.Q.E.1978, QE-14(2):79-84.
    27. Beethe L, Fabbro R et al. Shock wave from a water-confined laser-generated plasma. J. Appl.Phs.1997,82(6):2826-2832.
    28. O. Calin. Investigations involving shock waves generation and shock pressure measurement in direct ablation regime and confined ablation regime. Shock Waves,2002,11:393-397.
    29. A.M. Chumakov, A.M. Petrenko, N.A. Bosak. Dynamics of a shock wave in Laser-induced surface air breakdown. Journal of Engineering Physics and Thermophysics,2002,75(3):725-731.
    30. R.F. Chen, Y.Q. Hua, J.C. Yang, Y.K. Zhang. Research on thickness of the free confinement medium in laser shock processing. Materials Science Forum,2004,471-472:811-815.
    31. V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, S. Medveduk. Jet and vortex flow induced by anisotropic blast wave:experimental and computational study. Shock Waves,1997,7:325-334.
    32. Y.K. Zhang, L. Cai. Measurements of laser-induced shock pressures using PVDF transducer. Chinese Journal of Lasers,1997, B6 (1):81-85.
    33. A.M. Chumakov, A.M. Petrenko, N.A. Bosak. Dynamics of a shock wave in laser-induced surface air breakdown. Inzhenerno-Fizicheskii Zhurnal,2002,5(3):161-165 (in Russian).
    34. R. Fabbro, J. Fournier, P. Ballard. Physical study of laser induced plasma in confined geometry. Journal of Applied Physics,1990,68(2):755-784.
    35. P. Peyre, R. Fabbro, L Berthe, C. Dubouchet. Laser shock processing of materials, physical processes involved and examples of applications. Journal of Laser Application,1996,8:135-141.
    36. P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A,1996,210: 102-113.
    37. T. Thorslund, F.J. Kahlen, A. Kar. Temperatures, pressures and stresses during laser shock processing. Optics and Lasers in Engineering,2003,39:51-71.
    38. Zhou J Z,Yang J C,Zhang Y K,et al. A Study on Super Speed Forming of Sheet Metal by Laser Shock Waves. Journal of material processing technology.2002, vol.129/1-3:243-246.
    39.张永康,周建忠,杨继昌等,基于激光冲击波技术的板料塑性成形新技术.中国机械工程2002,Vol(13),22:1938-1940.
    40. Jianzhong ZHOU, Yujie FAN, Shu HUANG et al. Numerical Simulation on Laser Peen Forming of sheet Metal. Materials Science Forum Vols.575-578 (2008) pp 572-578.
    41.周建忠,杨小东,黄舒等.双面激光喷丸强化ZK60镁合金的残余应力数值研究.中国激光,2010 vol:37(8).
    42. S. Huang, J.Z. Zhou, J.J. Du etal. Visual Study on Surface Micro-topography and Residual Stress of Sheet Metal after Pulsed Laser Peening. Key Engineering Materials Vols.373-374 (2008) pp 334-337.
    43. Michael R.Hill, Jon Rankin, Lloyd Hackel, etal. Engineering and Economic Considerations for Life-Extension by Laser Peening. Aging Aircraft Conference,2002.
    44.周建忠,张永康,周明.金属板料的激光冲击成形研究.应用激光,2002,Vo1.22(2):165-168.
    45.杜建钧,基于数值模拟的板料激光喷丸成形工艺研究.江苏大学硕士论文,2006.
    46. Arnie Heller. Laser process forms thick, curved metal parts. Science & Technology Review. October 2003.
    47. Lloyd A.Hackel and Hao-Lin Chen. Laser Peening-A Processing Tool to Strength Metals or Alloys to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking [R]. Laser Science and Technology,2003.
    48. Sinisa. Vukelic, Jeffrey W. Kysar and Y. Lawrence Yao. Grain boundary response of aluminum bicrystal under micro scale laser shock peening. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES,2009,46,3323-3335.
    49. A. King, A. Steuwer, C. Woodward, P.J. Withers. Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Materials Science and Engineering A,2006, (435-436):12-18.
    50. C.S. Montross, T. Wei, L. Ye, G Clark, Y.W. Mai. Laser shock processing and its effects on microstructure and properties of metal alloys:a review. International Journal of Fatigue,2002, 24(10):1021-1036.
    51. X. Scherpereel, P. Peyre, R. Fabbro et al. Modifications of mechanical and electrochemical properties of stainless steels surfaces by laser shock processing. The International Society for Optical Engineering,1997,3097:546-557.
    52. http//:www.chinaha.net/html/200902/20090249997.php 中国军事 2009年02月02日.
    53.姚振强.激光冲击处理工艺过程数值建模与冲击效应研究[D].上海交通大学,2008.
    54. Ando Yasuhisa, Ino Jiro. Friction and pull-off force on silicon surface modified by FIB [J]. Sensors and Actuators, A,1996,57(2):83-89.
    55. Zhang Wenwu, Yao Y.Lawrence. Micro Scale Laser shock Processing of Metallic Components [J]. Journal of Manufacturing Science and Engineering,2002,124:369-378.
    56. Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan. Microscale Laser Shock Peening of Thin Films:High Spatial Resolution Material Characterization [J]. Journal of Manufacturing Science and Engineering.2004,126:18-23.
    57. Michael P., Sealy, Y.B.Guo. Fabrication and finite element simulation of micro-laser shock peening for micro dents [J]. International Journal of Computational Methods in Engineering Science and Mechanics,2009,10(2):134-142.
    58. FABBRO R, FOURNIER J, BALLARD P, et al. Physical Study of Laser-Produced Plasma in Confined Geometry [J]. Journal of Applied Physics,1990,68(2):775-782.
    59. Zhang W., Yao Y. L. Microscale Laser Shock Processing:Modeling, Testing and Microstructure Characterization [J]. Journal of Manufacturing Processes,2002,3(2):128-143.
    60. Vogel A, Busch S et al. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical break down in water [J]. Joumal of the Acoustical Society of America,1996, 100(01):148-165.
    61. X Chen, R Q Xu et al. Propagation of shock wave and oscillation of cavitation bubble by Nd:YAG laser ablation of a metal in water. Applied Optics-OT.2004,43(16):3251-3257.
    62. Wang Min, Zhou Jian Zhong. Research on Modeling of Shock Wave Pressure in Micro-scale Laser Shot Peening [J]. Journal of Harbin Institute of Technology (New Series),2010,17(S1):119-122.
    63. Fan Yujie, Zhou Jianzhong, Huang shu, et al. Study on Strengthening Mechanism of Microscale Laser Shock Peening. Key Engineering Materials,2010,431-432:221-224.
    64. Chen H, Wang Y, Kysar J W, et al. Advances in microscale laser shock peening [J]. Tsinghua Science and Technology,2004,9(5):506-518.
    65. Chen H, Kysar J W, Yao Y L. Characterization of plastic deformation induced by micro-scale laser shock peening [J]. Journal of Applied Mechanics,2004,71:713-723.
    66. Chen Hong Qiang, Yao Y Lawrence, Kysar Jeffrey W. Spatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening [J]. Journal of Manufacturing Science and Engineering,2004,126:226-236.
    67. Vukelic S, Wang Y, Kysar J W, et al. Dynamic material response of aluminum single crystal under microscale laser shock peening [J]. Journal of Manufacturing Science and Engineering,2009, 131(5):031015-1-031015-10.
    68. Chen Hong Qiang, Yao Y Lawrence, Kysar Jeffrey W, et al. Fourier analysis of X-ray micro-diffraction profiles to characterize laser shock peened metals [J]. International Journal of Solids and Structures,2005,42:3471-3485.
    69. Hongqiang Chen, Youneng Wang,Yao Y.L. Study of anisotropic character induced by microscale laser shock peening on a single crystal aluminum [J]. Journal of Applied Physics,2007, 101(2):024904-1-024904-8.
    70. Youneng Wang, Hongqiang Chen, Jeffrey W. Kysay, et al. Response of Thin Films and Substrate to Micro Scale Laser Shock Peening [J]. J. Manuf. Sci. Eng.,2007,129(3):485-496.
    71. Kysar, J.W. Addendum to "A User-material Subroutine Incorporating Single Crystal Plasticity in the Abaqus Finite Program, Mesh Report 178," Harvard University, Cambridge M.A., Division of Applied Sciences,1997.
    72. Warren A W, Guo Y B, Chen S C. Massive parallel micro laser shock peening:simulation, validation, and analysis [J]. Int. J. Fatigue,2008,30:188-197.
    73. M.P. Sealy, Y.B. Guo. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium [J]. Journal of the mechanical behavior of biomedical materials, 2010,3:488-496.
    74. Y. B. Guo, R. Caslaru. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6l-4V surfaces [J]. Journal of Materials Processing Technology,2011, 211:729-736.
    75.车志刚,微尺度激光冲击强化金属靶材数值模拟与实验研究.华中科技大学,2009.
    76. Che Zhigang, Xiong Liangcai et al. Experimental analysis of microscale laser shock processing on metallic material using excimer laser [J]. Journal of Materials Science and Technology,2009,25: 829-834.
    77. Fairand B P,Wilcox B A,Gallagher W J,et al.Laser shock-induced microstructural and mechanical property changes in 7075 aluminum.Journal of Applied Physics,1972,43(9):3893-3895.
    78.孙承伟,陆启生,范正修等.激光辐照效应.第一版,北京:国防工业出版社,2002.
    79.周建忠等.激光冲击波技术用于材料加工的研究进展[J].应用激光,2005,25(1):27-44.
    80.邹世坤.激光冲击处理技术的最新发展.新技术新工艺,2005(04):44-47.
    81.陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社1996.
    82.徐荣青.高功率激光与材料相互作用力学效应与分析[D].南京:南京理工大学,2004.
    83.陈陶.激光与物质热作用过程的数值模拟研究[M].南京:南京理工大学,2004.
    84. Bayand S H, Maher W E, Hall R B.Laser-Target Interaction near the Plasma-Formation Threshold, J. Appl. Phys.1980,51(11):5699-5707.
    85. S.Amorus. Modeling of UV pulsed-laser ablation of metallic targets. Appl. Phys. A.1999,69, 323-332.
    86. Meyers, M.A. and Murr, L. E. Shock Waves and High Strain Rate Phenomena in Metal. Concepts and Applications. New York:Plenum Press,1981.
    87. Fairand B P, Clauer A H, Jung R G, Wilcox B A. Quantitative Assessment of Laser-Induced Stress Waves Generated at Confined Surfaces, Applied Prysics Letters.1974,25(8):431-432.
    88. Masse J E, Barreau G-Laser Generation of Stress Waves in Metal-Surface and Coatings Technology. 1995,70:231-234.
    89.宁建国,王成等,爆炸与冲击动力,国防工业出版社,2010.
    90.袁钢.强激光作用下金属材料在等离子体点燃阈值附近力学效应研究[D].中国科技大学,1986.
    91. Pirri A N. Analytic Solutions for Laser-Supported Combustion Wave Ignition above Surfaces-AIAA Journal.1977,15(1):83.
    92. Walters C T, Barnes R H, Beverly R E·Initiation of Laser Supported-Detonation(LSD) Waves·J. Appl. Phys.1978,49(5):2937.
    93. Weyl G., Pirri A N, Root R. Laser Ignition of Plasma of Aluminum Surfaces. AIAA Journal.1981, 19(4):460.
    94. Pirri A N, Root R G, Wu P K S. Plasma Energy Transfer to Metal Surface Irradiated by Pulsed Lasers-AiAA Journal.1978,16(12):1296.
    95. Kuriki K, Kitora Y. Momentum Transfer to Target from Laser Produced Plasma. Appl. Phys. Lett. 1977,30(9):443-446.
    96. Assay, J. R. and Shahinpoor, M. High-Pressure Shock Compression of Solids. New York: Springer-Verlag,1992, pp78-82.
    97. Simons, GA. Momentum transfer to a surface when irradiated by a high-power laser. AIAA Journal, 1984, Vol.22, pp 1275-1280.
    98. Root, R.G Modeling of post-breakdown phenomena, Laser Induced Plasmas and Application. New York:marcel Dekker, inc.,1989, pp 95-99.
    99. X Chen, B M Bian et al. The equation of laser-induced plasma shock wave motion in air. Microwave and Optical Technology Letters.2003,38(1):75-79.
    100.X Chen, R Q Xu et al. Optical investigation of cavitation erosion by laser-induced bubble collapse. Optics & Laser Technology.2004,36(3):197-203.
    101.X Chen, R Q Xu et al. Experimental investigation of the impact to nearby solid boundary during laser-generated bubble collapse. Chinese Physics.2001,13(4):505-509.
    102.李翼祺,马素贞.爆炸力学.第1版.北京:科学出版社,1992:318.
    103.Tayor G I. The deformation of a blast wave by a very intense expolsion. Proceedings of the Royal Society, London, Ser. A 201,1950.
    104. Ridah S. Shock waves in water. J. Appl. Phys.1988,64:152-158.
    105. Rice M H, Walsh J M. Equation of state of water to 250kilobars. J. Chem. Phys.1957,26: 824-830.
    106.谢多夫JI.Ⅵ.[苏]力学中的相似方法与量纲理论.第1版.北京:科学出版社,1982.
    107.陈笑.高功率激光与水下物质相互作用过程与机理研究[D],南京理工大学,2004.
    108.LI Zhi-yong, ZHU Wen-hui, CHEN Jin-yi. Experimental study of high-power pulsed laser induced shock waves in aluminum targets. Chinese journal of laser,1997,24(3):259-262.
    109.王仁智,姚枚.弹簧表层优化喷丸残余应力场的工程计算方法.材料热处理学报.2003,24(4):1-7.
    110.黄舒,受控激光喷丸强化中残余应力的表征与实验研究,江苏大学2008.
    111. Asaro R.J., Needleman, A., Texture development and strain hardening in rate dependent polycrystals [J], Acta Metall.33 (1985) 923-953.
    112.张驰.MINITAB六西格玛解决方案.广东经济出版社,2003.
    113.Chen Hao Li, Ming Jong Tsai, Ciann Dong Yang. Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method. Optica&Laser Technology,2007,39(4):786-795.
    114.王珉.抗疲劳制造原理与技术.南京:江苏科学技术出版社,1999.3.
    115.王仁智,姚枚.疲劳裂纹萌生的微细观过程理论与内部疲劳极限理论[J].金属热处理学报,1995,16(4):26.
    116.J P Chu, J M Rigsbee, G Banas, et al. Laser-shock processing effets on surface microstrueture and mechanical properties of low carbon steel. Materials Science and Engineering,1999,260A: 260-268.
    117.段志勇.激光冲击波及激光冲击处理技术的研穷[D].中国科学技术大学,2000.
    118.S. B. Brown. Unresolved Issues in the Material ProPerties of MEMS (Invited PaPer) [A]. MEMS Relibaility for Critical and Space Applications. SPEI's 1999 Symposium and Education Program on Micromachining and Microafbrication [C]. USA.1999:529.
    119.W.C.Oliver, GM. Pharr. Measurement of Hardness and Elastic Modulus by Instrumented Indentation:Advance in Understanding and Refinements to Methodology. J. Mater. Res.2004,19(1): 3-20.
    120.A. Alex. Volilnsky, W. William. Gerbrich. Nanoindentation Techniques for Assessing Mechnical Reliability at the Nanoscale, Microelectronic Engineering.69(2003):519-527.
    121.张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用.仪器技术与应用,2002,32-37.
    122.J.L. Hay, GM. Pharr. Instrumented Indentation Testing. Kuhn H, Medlin D, eds. ASM Handbook Bolume 8:Mechanical Testing and Evaluation (10th edition). Ohio:ASM International, Materials Park.2000,232-243.
    123.1. N.Sneddon.The Relation bewteen Load and Penetration in the AXisymmetric Boussinesq Problem for a Punch of Abrirtary Profile. Int. J. Eng. Sci.1965,3:470.
    124.C. M. Cheng, Y. T. Chent. On the Initial Unloading Slope in Indentation of Elastic-Plastic by an Indenter with Axisymmetric Smooth Profile. Appl. Phys. Lett.1997,71:262.
    125.A.Bolshakov, G M. Pharr. Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques [J]. Mater. Res.1998,13:1049-1058.
    126.朱瑛,姚英学,周亮.纳米压痕技术及其试验研究.工具技术,2004,Vol.38:13-16.
    127.A.X. Feng, Y.K. Zhang. Study on the Testing Technology of Main Residual Stress of Metal Sheet Based on Soft X-Ray Diffraction Stress Analyzer. Key Engineering Material,2005,315-316(11): 264-268.
    128.J. Takamura, S. Miura. Grain Boundary-Hardening due to Piled-up Dislocations [J]. Journal of the Physical Society of Japan,1958,13:1421-1423.
    129.A. E. Giannakopoulos, S. Suresh. Determination of Elastoplastic Properties by Instrumented Sharp Indentation [J]. Scr. Mater.,1999,40 (10), pp.1191-1198.
    130. P.G Sanders, J.A. Eastman, J.R. Weertman. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia,1997,45, (10):4019-4025.
    131. Bhatt RT, Choi SR, Cosgriff LM et al.. Impact resistance of uncoated SiC/Sic composites [J]. Mater Sci Eng A,2008,476:20-28.
    132. X Chen, R Wang, N Yao et al.. Foreign object damage in a thermal barrier system:mechanisms and simulations [J]. Mater Sci Eng A,2003,352:221-231.
    133. GAO Y X, YI J Z, LEE P D, et al. Amicro-cellmodel of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys [J].Acta Mater,2004,52:5435-5449.
    134. The technical staff of the Machinability Data Center, Machining Data Handbook,1980.
    135. AROLA D, WILLIAMS C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue,2002,24:923-930.
    136. Zhigang Che, Liangcai Xiong, Tielin Shi, et al. FEM Calculation of Microscale Laser Shock Processing on MEMS Material with Excimer Laser, International Conference on Advanced Designand Manufaeture(ICADAM2008):785-792.
    137.M. Suraratchai, J. Limido, C. Mabru, R. Chieragatti. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue,2008,30(12): 2119-2126.
    138. S. Kyrre, B. Skallerud, B.W. Tveiten. Surface roughness characterization for fatigue life predictions using finite element analysis. International Journal of Fatigue,2008,30(12):2200-2209.
    139.张鲁阳.工程材料,华中理工大学出版社,1990.
    140. L. Harold, R. H. Michael. The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy. Materials Science and Engineering A,2008,477(1-2):208-216.
    141. M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y.Q. Chen, H.Kusuda, M. Mabuchi. Relationship between hardness and grain size in electrodeposited copper films. Materials Science and Engineering A,2007,457:120-126.
    142.杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色金属学报,2002,12(3):401-408.
    143.Andrade, Umberto Ramos De. High- srtain, hgih- strain-rate deformation of copper (shock loading)[D].University of California, San Diego,1993.
    144.Derby B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metallurgica et Materiallia,1991,39(5):955-962.
    145.Meyers M A, Nesterenko V F, Lasalvia J C, et al. Shear localization in dynamic deformation of materials:microstructural evolution and self-organization. Materials Science and Engineering,2001, 317(1/2)A:204-225.
    146.M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu. Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science,2009,255(12):6097-6102.
    147.K. Ding, L. Ye. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering,2003,19:351-358.
    148.J.Z. Lu, K.Y. Luo, Y.K. Zhang, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiplc laser shock processing impacts. Acta Materialia,2010,58: 3984-3994.
    149.鲁金忠,罗开玉, 冯爱新等.激光单次冲击LY2铝合金微观强化机制研究,中国激光,2010,Vol.37:2662-2666.
    150.朱向群,周明,戴起勋等.激光冲击奥氏体不锈钢表面的亚结构变化,中国激光,2005,Vol.16:1581-1585.
    151.T.R. Malow, C.C. Koch. Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metallurgical and Materials Transactions A,1998, (9): 2285-2295.
    152.Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Landon. The process of grain refinement in equal-channel angular pressing. Acta Materialia,1998,46(9):3317-3331.
    153.师昌绪,李恒德,材料科学与工程手册[M].北京:化学工业出版社,2004.
    154.杨德庄编著.位错与金属强化机制.哈尔滨工业大学出版社,1991.
    155.Chu Jinn P. Microstrueture and mechanieal properties of laser shoeked iron based alloys.1992: 88-173.
    156.程晓农,戴起勋,邵红红.材料固态相变与扩散[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700