从光固化聚硅氮烷到微/纳米图形结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为微机电系统(MEMS)、集成电路(IC)和芯片实验室(LOC)等领域的基本组件,微/纳米图形结构在现代工业社会中处于一个举足轻重的地位。本文合成了可光固化的聚硅氮烷先驱体材料,使之能利用各种先进光学成型技术制备出微/纳米图形结构,并结合硅表面加工、微流控器件、压印技术等应用背景,通过进一步的无机化处理,采用更快捷的路径制备出符合不同领域需求的高性能微/纳米图形结构。
     首先,本文用光敏分子ICMA分别和低分子量的聚乙烯基硅氮烷(PVSZ)和全氢聚硅氮烷(PHPS)反应,获得具有光固化性能的甲基丙烯酸酯化的聚硅氮烷,对应的产物分别记为MPVSZ和MPHPS。经FT-IR,1H-NMR,13C-NMR等手段表征了产物和中间体的化学结构。
     基于MPVSZ,本文首次通过光刻和水解转化路径制备了一种新型的高选择性硅刻蚀掩膜。以甲苯为溶剂,混合光引发剂Irgacure 369和热引发剂Luperox 231配制不同浓度的MPVSZ光固化体系,在6英寸的硅片基底上可获得的最大的涂层厚度~ 6μm。以50 wt%的MPVSZ光固化体系为原料,通过旋涂获得平整涂层,然后经过前烘、I-line光刻、IPA显影、后烘等工艺,制备出了最小特征尺寸1μm的MPVSZ微结构,形态有圆形、方形和线形等。氨气催化下,微结构在80°C可水解转化为silicate陶瓷结构,采用FT-IR,XPS等手段研究了其水解机理。将水解前后的微结构作为硅刻蚀掩膜进行干法刻蚀研究,以SF6/Cl2/Ar为刻蚀剂,发现silicate微结构比MPVSZ微结构表现出更好的抗蚀性能,对硅基底的刻蚀选择性达8-16,并在SF6/Cl2/Ar = 10/0/10时达到最高。另外,通过纳米压印技术,从MPVSZ光固化体系可以制备Sub-100 nm的纳米结构。基于MPVSZ刻蚀掩膜的制备可以和传统MEMS工艺有效结合,同时又能避免传统高选择性刻蚀掩膜材料复杂的多步成型过程,所以该研究工作可以降低硅表面微加工的成本,从而具有较大价值。
     另外,基于MPVSZ本文还开发了一种耐溶剂的刚性微混合器的制备新路径。配制75 wt%的MPVSZ光固化体系,注入经MPTMS表面处理的玻璃模具,通过新型的静态液相光刻方法一步获得通道内包埋P-SHM微混合结构的MPVSZ敞口芯片。讨论了该过程的MPVSZ的光聚合机理。通过80°C水解处理将MPVSZ芯片转化为silicate陶瓷芯片,并与PHPS涂层的PDMSO微通道封接,常温氨气催化水解处理将PHPS涂层转化为Si-O结构,最终获得具有优良的耐溶剂性和机械性能的P-SHM微流控系统。将两支5μL/min流体注入该系统,2.3 cm后实现混合,远小于相同尺寸空白微通道的理论混合长度101.6 cm。基于MPVSZ转化的silicate陶瓷微流控系统拥有良好的机械性能但是制备成本却比传统刚性材料制备微流控芯片低,具有优良的耐溶剂性使它可以作为PDMSO微流控芯片的有效补充,这两点使得该制备路径在LOC领域具有重要意义。
     基于首次合成的MPHPS,制备可用作压印模板的透明高硬微/纳米图形结构。Irgacure500为光引发剂配制MPHPS光固化体系,采用自制的hard-PDMSO微结构压印模板通过紫外压印获得MPHPS微结构。MPHPS的sub-100 nm结构则是从自制的FP模板压印获得,特征尺寸为70 nm和90 nm。在碱性条件下室温水解10 h,MPHPS固化样品原子构成由SiN0.33O0.40C0.57转变为SiO1.5,化学结构从聚合物转变为Si-O无机结构。获得的Si-O微/纳米图形结构为无色透明,硬度提高到4.5 GPa,弹性模量提高到115.1 GPa,机械性能符合实验室和生产实践对高硬压印模板的要求。该路线制备高硬模板的成本远低于传统MEMS路线。
     在本文的MPVSZ光刻法制备微结构及其水解制备Silicate微结构的研究基础上,本文进一步开展了对这些微结构的CNT改性研究。首先,设计了可批量生产适合表面修饰的高纯度高长径比CNT的CVD立式反应炉,对获得的CNT进行化学修饰实现它们在MPVSZ溶液的稳定均匀分散。然后配制CNT含量为0.1 wt%,0.3 wt%,0.5 wt%的MPVSZ光固化混合液,在6英寸硅片上获得平整涂层后,经前烘、I-line非接触模式光刻、显影、后烘等工艺步骤,可以获得CNT/MPVSZ微结构。进一步水解处理获得CNT/silicate复合陶瓷微结构。CNT无论在MPVSZ聚合物基体中还是在MPVSZ转化的silicate陶瓷基体中都起到了增强的作用,且它们的机械性能都随着CNT含量提高而增强。
As the basic blocks in micro-electromechanical systems(MEMS), integrated circuit(IC) and lab on a chip(LOC) fields, micro/nano- patterned structures play a key role in the modern industry society. Towards the application in silicon patterning, microfluidics devices, imprinting lithography etc., this dissertation fabricated micro/nano- structures with good properties from as-synthesized photocurable polysilazane precursors by novel rapid routes using optics lithography techniques and hydrolysis treatment.
     Two photocurable polysilazanes-based resins were obtaind by adding methacrylated units onto the polyvinylsilazane and perhydropolysilazane, whose products were donated MPVSZ and MPHPS respectively. Therein, MPHPS was firstly synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR methods.
     Based on MPVSZ, a novel etch mask with high selectivity for silicon was fabricated in one step photolithography and hydrolytic conversion route. Photocurable MPVSZ mixture liquid containing photo-initiator Irgacure 369 and thermal-initiator Luperox 231 could be spin-coated to smooth films with the thickness up to ~ 6μm. MPVSZ mixture with 50 wt% concentration was spin-coated upon a 6 inches silicon wafer, followed by pre-baking, UV-exposure, developing, post-baking steps, then, the photolithographic MPVSZ microstructures with various shape(dot, square, line, etc.) were obtained, with the smallest feature size of 1μm. A hydrolysis treatment by exposing the MPVSZ microstructures in a 80°C ammonia ambience was taken here to acquire the silicate ceramic microstructures with a denser physical structure. Its hydrolytic conversion mechanism was investigated by FT-IR, XPS methods. SF6/Cl2/Ar mixture gas as the dry plasma etching etchant was used to investigate both of the cured and hydrolyzed MPVSZ patterns as the etch mask. The MPVSZ-derived silicate structure showed a better etching resistance than the microstructues before hydrolysis, its etching selectivity over silicon was achieved 8-16, and attained the highest at SF6/Cl2/Ar = 10/0/10. Besides, sub-100 nm nanostructures were fabricated by nano-imprinting lithography. MPVSZ patterning could be combined well with the conventional MEMS lithography technique, at the same time, the complex multi-steps patterning those conventional etch masks with high selectivities was avoided, thus it largely decreased the fabricating cost for the silicon patterning.
     Besides, based on MPVSZ, a novel technique to fabricate a rigid and chemically resistant micromixer system was developed. MPVSZ photocurable mixture liquid with a concentration of 75 wt% was injected into a MPTMS surface-treated glass mold and followed by a static liquid photolithography(SLP) step, which resulted in a cured MPVSZ open microchip with a built-in protrudent staggered herringbone mixer(P-SHM) structure. Its photo-polymerization mechanism was discussed. The cured-MPVSZ chip was converted to silicate ceramic chip by hydrolyzing in the vaporized ammonia ambiance at 80°C, and binded with the matched PHPS coated PDMSO micro-channel. Then another hydrolysis treatment at room temperature was taken to convert the PHPS coating to silica, resulting in a rigid and chemically resistant P-SHM microfluidics system being obtained. Two fluids were injected into this system, and realized mixing in 2.3 cm which was much shorter than the blank micro-channel at the same dimension of 101.6 cm. The MPVSZ-derived silicate based microfluidics chip owned good mechanical properties but lower fabricating cost compared to the chips from the conventional rigid materials, moreover, due to its good chemically resistance it could be as an effective complementarity of the widely used PDMSO chip, all these advantages make this it valuable in LOC field.
     Based on the firstly synthesized MPHPS, a new route to fabricate transparent and rigid micro/nano- structures towards using as the imprint mold was developed. Photocurable MPVSZ mixture liquid mixed with Irgacure 500 as photo-initiator was UV-imprinted to microstructure by using an as-prepared hard-PDMSO mold. The sub-100 nm cured-MPVSZ nanostructure was fabricated by using an as-prepared FP mold, with the feature size of 70 nm and 90 nm. By exposing the cured MPHPS in basic ambience for 10 h at room temperature, the chemical component was converted from SiN0.33O0.40C0.57 to SiO1.5, and the chemical structure was converted from polymer phase to Si-O inorganic phase. The obtained hydrolyzed micro/nano- structures was transparent, with an increased hardness of 4.5 GPa and an increased elastic elastic modulus of 115.1 GPa, which could meet with the requirement of the hard imprint mold used in both lab and industry, moreover, its fabrication cost was much lower than those conventional rigid materials mold made by MEMS routes.
     Based on the above researches on MPVSZ microstructures and their derived silicate microstructures, this paper made a further investigation on their modified microstructures using carbon nanotubes (CNT). A vertical CVD reactor was firstly designed to fabricate CNT in large scale. The as-prepared CNT with good quality was well dispersed in the photocurable MPVSZ mixture liquid through a designed chemical modification. CNT/MPVSZ solution with series CNT content of 0.1wt%, 0.3wt%, 0.5wt% was fabricated and spin-coated to be smooth film on a 6 inch silicon wafer. After going pre-baking, I-line photolithography, developing steps, MPVSZ microstructures modified by CNT were obtained. The CNT/MPVSZ microstructures were converted to CNT/silicate composite ceramic microstructures by a further hydrolysis treatment. It was concluded that the additive CNT strengthened both of the silicate ceramic matrix and MPVSZ polymer matrix, and the mechanical properties were increased by the increase of the CNT content.
引文
[1]刘立柱,张德庆,张东兴.高分子材料科学导论[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [2] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 2000, 406: 1027-1031.
    [3]周兆英,林立伟,王中林.微系统和纳米技术[M].北京:科学出版社, 2007.
    [4] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442: 368-373.
    [5] Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules[J]. Nature, 2006, 442: 387-393.
    [6] Daw R, Finkelstein J. Lab on a chip[J]. Nature, 2006, 442: 367-418.
    [7]郑金红.光刻胶的发展及应用[J].精细与专用化学品, 2006, 14 (16): 24-30.
    [8]王必本,王万录,廖克俊,肖金龙. SiC在异质衬底生长金刚石膜的作用分析[J].真空科学与技术学报, 2000, 20 (3): 187-189.
    [9]张国彬.聚硅氮烷及超支化聚有机碳硅氮烷的合成与表征[D].西安:西北工业大学, 2006.
    [10] Tyran L W. Silicon-containing polymer[P]. US2532583, 1950.
    [11] Gel I V. Silicon-containing polymers[P]. US3244664, 1966.
    [12] Millward B B. Silicon-containing polymers[P]. US3402069, 1968.
    [13] Mark J E. Silicon-based polymer science[M]. Washington: American Chemical Society, 1989.
    [14]周宁琳.有机硅聚合物导论[M].北京:科学出版社, 2000.
    [15]冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用[M].北京:化学工业出版社, 2004.
    [16] Richter R, Roewer G, B?hme U, Busch K, Babonneau F, Martin H P, Müller E. Organosilicon polymers—synthesis, architecture, reactivity and applications[J]. Appl. Organomet. Chem., 1997, 11 (2): 71-106.
    [17] Kunz R R, Rothschild M, Ehrlich D J, Sawan S P, Tsai Y G. Controlled‐ambient photolithography of polysilane resists at 193 nm [J]. J. Vac. Sci. Technol. B, 1989, 7 (6): 1629-1633.
    [18] Miller R D, Wallraff G M, Baier M E. Process for use of photosensitive polysilanes as photoresist[P]. US005866306A, 1999.
    [19] Okinaka M, Tsukagoshi K, Aoyagi Y. Direct nanoimprint of inorganic-organic hybrid glass [J]. J. Vac. Sci. Technol. B, 2006, 24 (3): 1402-1405.
    [20] Riedel R, Strecker K, Petzow G. In situ polysilane-derived silicon carbide particulates dispersed in silicon nitride composite[J]. J. Am. Ceram. Soc., 1989, 72 (11): 2071-2077.
    [21] Liu L, Li X D, Xing X, Zhou C C, Hua H F. A modified polymethylsilane as the precursor for ceramic matrix composites[J]. J. Organomet. Chem., 2008, 693 (6): 917-922.
    [22] Miller R D, Thompson D, Sooriyakumaran R, Fickes G N. The synthesis of soluble, substituted silane high polymers by Wurtz coupling techniques[J]. J. Polym. Sci., Part A: Polym. Chem., 1991, 29 (6): 813-824.
    [23] Takmizawa M, Kobayashi T, Hayashida A, Takeda Y. Method for the preparation of an inorganic fibercontaining sillicon, carbon, boron and nitrogen[P]. US4604367, 1986.
    [24]唐云.先驱体转化法制备SiBN陶瓷纤维研究[D].长沙:国防科技大学, 2009.
    [25] Qi G, Zhang C, Hu H. High strength three-dimensional silica fiber reinforced silicon nitride-based composites via polyhydridomethylsilazane pyrolysis[J]. Ceram. Int., 2007, 33 (5): 891-894.
    [26] Qi G, Zhang C, Hu H, Cao F, Wang S, Jiang Y. Three‐dimensional silica fiber reinforced silicon nitride‐based composites fabricated via different polysilazanes[J]. Adv. Eng. Mater., 2005, 7 (11): 1043-1046.
    [27] Laine R M, Blum Y D, Tse D, Glaser R. Synthetic routes to oligosilazanes and polysilazanes[J]. J. Inorg. Organomet. Polym., 1988, 360: 124.
    [28] Seyferth D, Wiseman G H, Prud'Homme C. A liquid silazane precursor to silicon nitride[J]. J. Am. Ceram. Soc., 1983, 66: C13.
    [29] Lebrun J J, Porte H. Process for catalytic treatment of a polysilazane containing on average at least two hydrocarbon groups having aliphatic unsaturation per molecule[P]. US4866149, 1989.
    [30] Schwark J M, Lukacs A. Polysilazene thermosets as precursors for silicon carbide and silicon nitride[J]. Inorg. Organomet. Polym. II, ACS Symp. Ser., 1994, 572: 43.
    [31] Bill J, Aldinger F. Precursor‐derived covalent ceramics[J]. Adv. Mater., 1995, 7 (9): 775-787.
    [32] Li G, Wang L, Ni H, Pittman C U. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review[J]. J. Inorg. Organomet. Polym., 2001, 11 (4): 123-154.
    [33] Wang H, Yu J S, Li X D, Kim D P. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template[J]. Chem. Commun., 2004, (20): 2352-2353.
    [34] Blanchard C R, Schwab S T. X‐ ray diffraction analysis of the pyrolytic conversion of perhydropolysilazane into silicon nitride[J]. J. Am. Ceram. Soc., 1994, 77 (7): 1729-1739.
    [35] Becker K J, Jensen J A, Lukacs A. Organic/inorganic polymers[P]. US5612414, 1997.
    [36] Jones Richard G., Ando Wataru, Chojnowski Julian.含硅聚合物——合成与应用[M].北京:化学工业出版社, 2008.
    [37] Seyferth D. Birth, death and transfiguration: the synthesis of preceramic polymers, their pyrolysis and their conversion to ceramics[M]. Ford Belvior: Defense technical information center, 1989.
    [38] Yajima S, Okamura K, Hasegawa Y. Method of producing silicon carbide fibers[P]. US4283376, 1981.
    [39] Yajima S, Okamura K, Hasegawa Y. Polycarbosilane, process for its production, and its use as material for producing silicon carbide fibers[P]. US4220600, 1980.
    [40] Seyferth D, Lang H, Sobon C A, Borm J, Tracy H J, Bryson N. Chemical modification of preceramic polymers: their reactions with transition metal complexes and transition metal powders[J]. J. Inorg. Organomet. P., 1991, 2: 59-77.
    [41] Miele P, Bernard S, Cornu D, Toury B. Recent developments in polymer-derived ceramic fibers (PDCFs): preparation, properties and applications - a review[J]. Soft Mater., 2007, 4 (2): 249-286.
    [42] Lebrun J J, Porte H. Process for a thermal treatment of a polysilazane containing≡SiH groups and≡Si-NH- groups[P]. US4656300, 1987.
    [43] Schwark J M, Incorporated H. Isocyanate-and isothiocyanate-modified polysilazane ceramic precursors[P]. US4929704, 1990.
    [44] Vaahs T, Kleiner H J, Feuckert M, Brück M. Polysilazanes, processes for their preparation, ceramic materials which contain silicon nitride and can be prepared from them, and preparation thereof[P]. US5030702, 1991.
    [45] Vaahs T, Kleiner H J, Feuckert M, Brück M. Protective electronic coatings using filled polysilazanes[P]. US5030702, 1995.
    [46] Ziegler G, Kleebe H J, Motz G, Müller H, Tra?l S, Weibelzahl W. Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers[J]. Mater. Chem. Phys., 1999, 61: 55-63.
    [47] Pang Y, Feng K, Mariam Y H. Pyrolyzability of preceramic polymers[M]. second. New York: Springer.com, 2007.
    [48] Blum Y D, Schwartz K B, Laine R M. Preceramic polymer pyrolysis: part 1 pyrolytic properties of polysilazanes[J]. J. Mater. Sci., 1989, 24: 1707-1718.
    [49] Dismukes J P, Johnson J W, Bradley J S, Millar J M. Chemical synthesis of microporous nonoxide ceramics from polysilazanes[J]. Chem. Mater., 1997, 9: 699-706.
    [50] Dismukes J P, Johnson J W, Corcoran E W, Vallone J. Synthesis of microporous ceramic[P]. US005563212A, 1996.
    [51] Wang H, Hong L Y, Li X D, Kim D P. Fabrication and characterization of ordered macroporous SiCN from sacrificing template method, Gyeongju, Korea, 2004[C].
    [52]王浩.先驱体高分子/模板技术制备有序多孔非氧化物陶瓷[D].长沙:国防科技大学, 2004.
    [53] Vakifahmetoglu C. Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review[J]. 2011, 110: 188-204.
    [54] Pham T A. SiCN-based ceramic microstructures fabricated by novel methacrylated polyvinylsilazane photoresists via lithography techniques[D]. Daejeon: Chungnam National University, 2009.
    [55] Pham T A, Kim P, Kwak M, Suh K Y, Kim D P. Inorganic polymer photoresist for direct ceramic patterning by photolithography[J]. Chem. Commun., 2007, 39: 4021-4023.
    [56] Bauer F, Decker U, Dierdorf A, Ernst H, Heller R, Liebe H, Mehnert R. Preparation of moisture curable polysilazane coatings. Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy[J]. Prog. Org. Coat., 2005, 53 (3): 183-190.
    [57] Park S, Park H, Han O H, Chae S A, Lee D, Kim D. Non-sticky silicate replica mold by phase conversion approach for nanoimprint lithography applications[J]. J. Mater. Chem., 2010, 20: 9962-9967.
    [58] Saito R. Synthesis and properties of organic-silica nanocomposites with perhydropolysilazane[J]. J. Polym. Sc.: Part A: Polym. Chem., 2006, 44: 5174-5181.
    [59] Shibuya T, Higuchi T, Kondo S. Silica-coated laminates with excellent transparency and abrasion resistance[P]. JP2000229384A, 2000.
    [60] Shimizu Y, Suzuki K, Funayama O. Synthesis of HMDS radical terminated perhydropolysilazane[J]. J.Mater. Sci., 1998, 33: 5025-5028.
    [61] Qi G J, Zhang C R, Hu H F, Cao F, Wang S Q, Cao Y B, Jiang Y G. Preparation of three-dimensional silica fiber reinforced silicon nitride composites using perhydropolysilazane as precursor[J]. Mater. Lett., 2005, 59 (26): 3256-3258.
    [62] Qi G J, Zhang C R, Hu H F, Cao F, Wang S Q, Jiang Y G, Li B. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite [J]. J. Cryst. Growth, 2005, 284, (1-2): 293-296.
    [63] Hashimoto H. Feature and application of silica film using polysilazane[J]. Mater. Electron., 1994, 33: 50-55.
    [64] Kamiya K, Tange T, Hashimoto T, Nasu H, Shimizu Y. Formation process of silica glass thin films from perhydropolysilazane[J]. Res. Rep. Fac. Eng., Mie Univ., 2001, 26: 23-31.
    [65] Kubo T, Tadaoka E, Kozuka H. Preparation of hot water-resistant silica thin films from polysilazane solution at room temperature [J]. J. Sol-Gel Sci. Technol., 2004, 31: 257-261.
    [66] Saito R. Synthesis and properties of organic-silica nanocomposites with perhydropolysilazane[J]. J. Polym. Sci., Part A: Polym. Chem., 2006, 44 (17): 5174-5181.
    [67] Saito R, Hosoyaa T. Water vapor barrier property of organic–silica nanocomposite derived from perhydropolysilazane on polyvinyl alcohol substrate [J]. Polymer, 2008, 49 (21): 4546-4551.
    [68] Saito R, Kobayashi S I, Hayashi H, Shimo T. Surface hardness and transparency of poly(methyl methacrylate)-silica coat film derived from perhydropolysilazane[J]. J. Appl. Polym. Sci., 2007, 104 (5): 3388-3395.
    [69] Saito R, Kuwano K, Tobea T. Synthesis of poly(methyl methacrylate)-silica nano-composite [J]. J. Macromol. Sci., A: Pure Appl. Chem., 2002, 39 (3): 171-182.
    [70] Saito R, Moria Y. Synthesis of poly(methyl methacrylate)-silica nano-composites. II. poly[methyl methacrylate-block-(methyl methacrylate-co-2-hydroxyethyl methacrylate)][J]. J. Macromol. Sci., A: Pure Appl. Chem., 2002, 39 (9): 915-934.
    [71] Saito R, Tobe T. Synthesis of poly(vinyl pyridine)–silica nanocomposites using perhydropoly- silazane[J]. J. Appl. Polym. Sci., 2004, 93 (2): 749-757.
    [72] Saito R, Tobe T. Electrical properties of poly(2-vinyl pyridine)/silica nanocomposites prepared with perhydropolysilazane[J]. Polym. Advan. Technol., 2005, 16 (2-3): 232-238.
    [73]聂俊,肖鸣.光聚合技术与应用[M].北京:化学工业出版社, 2009.
    [74]李义和.聚硅氮烷陶瓷先驱体的光固化改性研究[D].长沙:国防科学技术大学, 2007.
    [75] Pham T A, Kim D P, Lim T W, Park S H, Yang D Y, Lee K S. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists[J]. Adv. Funct. Mater., 2006, 16: 1235-1241.
    [76] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 2000, 406: 1027-1031.
    [77] He G S, Xu G C, Prasad P N, Reinhardt B A, Bhatt J C, Dillard A G. Two-photon absorption and optical-limiting properties of novel organic compounds[J]. Opt. Lett., 1995, 20 (5): 435-437.
    [78] Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices[J]. Nature, 2001, 412: 697.
    [79] Lim T W, Park S H, Yang D Y, Pham T A, Lee D H, Kim D P, Chang S I, Yoon J B. Fabrication of three-dimensional SiC-based ceramic micropatterns using a sequential micromolding-and-pyrolysis process[J]. Microelectron. Eng., 2006, 83: 2475-2481.
    [80] Nguyen L H, Straub M, Gu M. Acrylate-based photopolymer for two-photon microfabrication and photonic applications[J]. Adv. Funct. Mater., 2005, 15: 209.
    [81] Wu S, Serbina J, Gu M. Two-photon polymerisation for three-dimensional micro-fabrication[J]. J. Photochem. Photobiol., A, 2006, 181 (1): 1-11.
    [82] Maryer M G. Quan-ternsprungen uber electrentaraktemit zwei[J]. Ann. Phys., 1931, 9: 273-295.
    [83] McClain W M. Two-photo molecular spectroscopy[J]. Accounts Chem. Res., 1974, 7 (5): 129-135.
    [84] Okazaki S. Resolution limits of optical lithography[J]. J. Vac. Sci. Technol. B, 1991, 9 (6): 2829-2833.
    [85] Ma Z, Klymyshyn D M, Achenbach S, B?rner M, Dambrowsky N, Mohr J. An ultra-deep high-Q microwave cavity resonator fabricated using deep X-ray lithography[J]. IEICE Trans. Fund. Electr., 2007, E90-C: 2192-2197.
    [86] Wu B, Kumar A. Extreme ultraviolet lithography: A review[J]. J. Vac. Sci. Technol. B, 2007, 25 (6): 1743-1746.
    [87] Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272: 85-87.
    [88] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol“ink”followed by chemical etching[J]. Appl. Phys. Lett., 1993, 63 (14): 2001-2004.
    [89] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Appl. Phys. Lett., 1995, 67: 3114-3116.
    [90] Bailey T, Smith B, Choi B J, Colburn M, Meissl M, Sreenivasan S V, Ekerdt J G, Willson C G. Step and flash imprint lithography: defect analysis[J]. J. Vac. Sci. Technol. B, 2001, 19 (6): 2806-2810.
    [91] Bender M, Otto M, Hadam B, Vratzov B, Spangenberg B, Kurz H. Fabrication of nanostructures using a UV-based imprint technique[J]. Microelectron. Eng., 2000, 53: 233-236.
    [92] Duan X X, Zhao Y P, Perl A, Berenschot E, Reinhoudt D N, Huskens J. High-resolution contact printing with chemically patterned flat stamps fabricated by nanoimprint lithography[J]. Adv. Mater., 2009, 21 (27): 2798-2802.
    [93] Liu Chang.微机电系统基础[M].北京:机械工业出版社, 2007.
    [94] Tong M, Ballegeer D G, Ketterson A, Roan E J, Cheng K Y, Adesida I. A comparative study of wet and dry selective etching processes for GaAs/AIGaAs/lnGaAs pseudomorphic MODFETs[J]. J. Electron. mater., 1992, 21 (1): 9-15.
    [95] Bean K E. Anisotropic etching of silicon [J]. IEEE Tran. Electron. Dev., 1978, 25 (10): 1185-1193.
    [96] Chabert P, Cunge G, Booth J P, Perrin J. Reactive ion etching of silicon carbide in SF6 gas: Detection ofCF, CF2, and SiF2 etch products[J]. Appl. Phys. Lett., 2001, 79: 916-918.
    [97] Garra J, Long T, Currie J, Schneider T, White R, Paranjape M. Dry etching of polydimethylsiloxane for microfluidic systems[J]. J. Vac. Sci. Technol. A, 2002, 203: 975-982.
    [98] Oehrlein G S. Dry etching damage of silicon: a review[J]. Mater. Sci. Eng., B, 1989, 4: 441-450.
    [99] Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter[J]. Science, 1997, 276: 1401-1404.
    [100] Rossier J, Reymond F, Michel P E. Polymer microfluidic chips for electrochemical and biochemical analyses[J]. Electrophoresis, 2002, 23 (6): 858-867.
    [101] Wang J J, Lambers E S, Pearton S J, Ostling M, Zetterling C M, Grow J M, Ren F, Shul R J. ICP etching of SiC[J]. Solid State Electron., 1998, 42 (12): 2283-2288.
    [102] Yih P H, Saxena V, Steckl A J. A review of SiC reactive ion etching in fluorinated plasmas[J]. Phys. status solidi B, 1997, 202 (1): 605-642.
    [103] Bahloul D, Goursat P, Lavedrine A. Influence of microstructural changes on the oxidation resistance of silicon carbonitrides derived from a polyvinylsilazane[J]. J. Eur. Ceram. Soc., 1993, 11 (1): 63-68.
    [104] Lee H J, Park J H, Jayakumar P, Yoon T H, Hong L Y, Park S H, Kim D P. Characterization and fabrication of nano-sized patterns and microfluidic channels derived from polyvinylsilazane via soft lithographic technique[J]. Mater. Sci. Forum, 2007, 544-545: 677-680.
    [105] Yoon T H, Hong L Y, Lee H J, Lee C S, Kim D P. Novel micro/nanofluidics fabricated by imprint molding of inorganic polymers: SICE-ICASE, 2006. International Joint Conference, Busan, 2006[C].
    [106] Tuan P A, Kim D P. Synthesis and characterization of photocurable epoxy-modified polyvinylsilazane for lithography applications: ???????, ????, 2007[C].
    [107] Pham T A. SiCN-based ceramic microstructures fFabricated by novel methacrylated polyvinylsilazane photoresists via lithography techniques[D]. Daejeon: Chungnam National University, 2009.
    [108] Kozuka H, Fujita M, Tamoto S. Polysilazane as the source of silica: the formation of dense silica coatings at room temperature and the new route to organic–inorganic hybrids [J]. J. Sol-Gel Sci. Technol., 2008, 48: 148-155.
    [109] Lee J S, Oh J H, Moon S W, Sul W S, Kim S D. A technique for converting perhydropolysilazane to SiOx at low temperature[J]. Electrochem. Solid St., 2010, 13 (1): H23-H25.
    [110] Kubo T, Kozuka H. Conversion of perhydropolysilazane-to-silica thin films by exposure to vapor from aqueous ammonia at room temperature[J]. J. Ceram. Soc. Jpn., 2006, 114: 517-523.
    [111] Poulsen R G. Plasma etching in integrated circuit manufacture—A review[J]. J Vac. Sci. Technol., 1977, 14 (1): 266-274.
    [112] Steinmueller W E. The economics of flexible integrated circuit manufacturing technology[J]. Rev. Indus. Org., 1992, 7 (3-4): 327-349.
    [113] Ho C M, Tai Y C. Review: MEMS and its applications for flow control[J]. J. Fluids Eng., 1996, 118 (3).
    [114] Rosen M I, Ryan C, Rigsby M. Motivational enhancement and MEMS review to improve medication adherence[J]. Behaviour Change, 2002, 19 (4): 183-190.
    [115] Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C. Nanoenergetic materials for MEMS: a review [J]. J. Microelectromech. Sys., 2007, 16 (4): 919-931.
    [116] Bogue R. MEMS sensors: past, present and future[J]. Sensor Rev., 2007, 27 (1): 7-13.
    [117] Ho C M. Micro-electro-mechanical-systems (MEMS) and fluid flows[J]. Annu. Rev. Fluid. Mech., 1998, 30: 579-612.
    [118] Judy J W. Microelectromechanical systems (MEMS): fabrication, design and applications[J]. Smart Mater. and Struct., 2001, 10 (6): 1115-1116.
    [119] Bustillo J M, Howe R T, Muller R S. Surface micromachining for microelectromechanical systems [J]. P. Ieee, 1998, 86 (8): 1552-1574.
    [120] Petersen K E. Silicon as a mechanical material [J]. P. Ieee, 1982, 70 (5): 420-457.
    [121] Petersen K E. A new age for MEMS: The 13th International Conference on solid-state sensors, actuators and microsystems, Seoul, 2005[C].
    [122] Jansen H, Gardeniers H, Boer M, Elwenspoek M, Fruitman J. A survey on the reactive ion etching of silicon in microtechnology[J]. J. Micromech. Microeng., 1996, 6 (1): 14-18.
    [123] Sanders D P. Advances in patterning materials for 193 nm immersion lithography[J]. Chem. Rev., 2010, 110 (1): 321-360.
    [124] Wallraff G M, Hinsberg W D. Lithographic imaging techniques for the formation of nanoscopic features[J]. Chem. Rev., 1999, 99 (7): 1801-1822.
    [125] Crouse D, Lo Y H, Miller A E. Self-ordered pore structure of anodized aluminum on silicon and pattern transfer[J]. Appl. Phys. Lett., 2000, 76: 49.
    [126] Macdonald N C, Zhang Z L. RIE process for fabricating submicron, silicon electromechanical structures[P]. US005316979A, 1994.
    [127] Paul A K, Rangelow I W. Fabrication of high aspect ratio structures using chlorine gas chopping technique[J]. Microelectron. Eng., 1997, 35: 79-82.
    [128] Rangelow I W. Dry etching-based silicon micro-machining for MEMS[J]. Vacuum, 2001, 62: 279-291.
    [129] Lin B J. The ending of optical lithography and the prospects of its successors[J]. Microelectron. Eng., 2006, 83 (4-9): 604-613.
    [130] Tsai J S, Shieh J H, Hsu J W, Chen D F, Lin C H, Jang S M. Poly silicon hard mask[P]. US20080122107A1, 2008.
    [131] Grigoras K, Sainiemi L, Tiilikainen J, S?yn?tjoki A, Airaksinen V M. Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique[J]. J. Phys.: Conf. Ser., 2007, 61: 369.
    [132] Perumal J, Lee J J, Kim D P. Fluoropolymer synthesis and its application as a mold material in UV-nano-imprint lithography process[J]. J. Nanosci. Nanotechno., 2008, 8: 5341-5346.
    [133] Choi S J, Yoo P J, Baek S J, Kim T W, Lee H H. An ultraviolet-curable mold for sub-100 nm lithography[J]. J. Am. Chem. Soc., 2004, 126: 7744-7745.
    [134] Wu S, Straub M, Gu M. Single-monomer acrylate-based resin for three-dimensional photonic crystalfabrication[J]. Polymer, 2005, 46 (23): 10246-10255.
    [135]周兆英,林立伟,王中林.微系统和纳米技术[M].北京:科学出版社, 2007.
    [136] Kozuka H, Fujita M, Tamoto S. Polysilazane as the source of silica: the formation of dense silica coatings at room temperature and the new route to organic–inorganic hybrids[J]. J. Sol-Gel Sci. Technol., 2008, 48: 148-155.
    [137] Yokota H, Imanari N, Sugahara Y. Formation of SiON networks from silsesquiazanes[J]. Appl. Organomet. Chem., 2010, 24: 608-611.
    [138] Klein L J, Lewis K L M, Slinker K A, Goswami S, Van der Weide D W, Blick R H, Mooney P M, Chu J O, Coppersmith S N, Friesen M, Eriksson M A. Quantum dots and etch-induced depletion of a silicon two-dimensional electron gas[J]. J. Appl. Phys., 2006, 99 (2): 23509.
    [139] Liptak R W, Kortshagen U, Campbell S A. Surface chemistry dependence of native oxidation formation on silicon nanocrystals[J]. J. Appl. Phys., 2009, 106 (6): 64313.
    [140] Flamm D L. Mechanisms of silicon etching in fluorine-and chlorine-containing plasmas[J]. Pure Appl. Chem., 1990, 62: 1709-1720.
    [141] Hasan I, Pawlowicz C A, Berndt L P, Tarr N G. Low temperature SF6/O2 electron cyclotron resonance plasma etching for polysilicon gates[J]. J. Vac. Sci. Technol. A, 2002, 20: 983-985.
    [142] Obu A K, Chita Y S, Hoi K K, Aiko K K, Narita T S, Anjo S M. Dry etching process for semiconductor[P]. US005423941A, 1995.
    [143] Choi W, Smits J G. A method to etch undoped silicon cantilever beams[J]. J. Microelectromech. S., 1993, 2: 82.
    [144] Lu Y, Ji H F. Fabrication of microcoil/microsprings for novel chemical and biological sensing[J]. Sensor actuat. B-Chem., 2007, 123 (2): 937-941.
    [145]林秉承,秦建华.图解微流控芯片实验室[M].北京:科学出版社, 2008.
    [146] Ismagilov R F, Stroock A D, Kenis P J A, Whitesides G M, Stone H A. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels[J]. Appl. Phys. Lett., 2000, 76: 2376-2378.
    [147] Jeong G S, Chung S, Kim C B, Lee S H. Applications of micromixing technology[J]. Analyst, 2010, 135: 460-473.
    [148] Bhagat A A S, Peterson E T K, Papautsky I. A passive planar micromixer with obstructions for mixing at low Reynolds numbers[J]. J. Micromech. Microeng., 2007, 17: 1017-1024.
    [149] Nguyen N T, Wu Z. Micromixers—a review[J]. J. Micromech. Microeng., 2005, 15: R1-R16.
    [150] Stroock A D, Dertinger S K W, Ajdari A, Mezi? I, Stone H A, Whitesides G M. Chaotic mixer for microchannels[J]. Science, 2002, 295: 647-650.
    [151] Kim S M, Lee S H, Suh K Y. Cell research with physically modified microfluidic channels: A review[J]. Lab Chip, 2008, 8: 1015-1023.
    [152] Lee J N, Park C, Whitesides G M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices[J]. Anal. Chem., 2003, 75: 6544-6554.
    [153] Min K I, Lee T H, Park C P, Wu Z Y, Girault H H, Ryu I, Fukuyama T, Mukai Y, Kim D P. Monolithic and flexible polyimide film microreactors for organic microchemical applications fabricated by laser ablation[J]. Angew. Chem. Int. Edit., 2010, 49: 7063-7067.
    [154] Perumal J, Park S H, Min K I, Zhang X, Haswell S J, Kim D P. Novel inorganic polymer derived microreactors for organic microchemistry applications[J]. Lab Chip, 2008, 8: 1454-1459.
    [155] Hall J R, Westerdahl C A L, Devine A T, Bodnar M J. Activated gas plasma surface treatment of polymers for adhesive bonding[J]. J. Appl. Polym. Sci., 1969, 13: 2085-2096.
    [156] Garoff H, Ansorge W. Improvements of DNA sequencing gels[J]. Anal. Biochem., 1981, 115: 450-457.
    [157] Dyanov H M, Dzitoeva S G. Method for attachment of microscopic preparations on glass for in situ hybridization, PRINS and in situ PCR studies[J]. Biotechniques, 1995, 18: 822-826.
    [158] Hwang C M, Sim W Y, Lee S H, Foudeh A M, Bae H, Lee S H, Khademhosseini A. Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method[J]. Biofabrication, 2010, 2: 45001.
    [159] Hartman R L, Jensen K F. Microchemical systems for continuous-flow synthesis[J]. Lab Chip, 2009, 9: 2495-2507.
    [160] Chiu G L T, Shaw J M. Optical lithography: introduction[J]. IBM J. Res. Dev., 1997, 41 (1-2): 3-6.
    [161]胡晓峰.纳米热压印设备与试验研究[D].武汉:华中科技大学, 2005.
    [162] Kim J, Kim M, Lee M J, Lee J S, Shin K, Kim Y S. Low‐cost fabrication of transparent hard replica molds for imprinting lithography[J]. Adv. Mater., 2009, 21: 1-4.
    [163]金东杓,李义和,王浩,李效东.可紫外光固化的聚乙烯基硅氮烷合成与表征[J].高分子学报, 2008, (4): 350-354.
    [164] Ye G, Wang X. Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups [J]. Biosens. Bioelectron., 2010, 26 (2): 772-777.
    [165] Hwang C M, Sim W Y, Lee S H, Foudeh A M, Bae H, Lee S H, Khademhosseini A. Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method[J]. Biofabrication, 2010, 2: 45001.
    [166] Choi S J, Yoo P J, Baek S J, Kim T W, Lee H H. An ultraviolet-curable mold for sub-100 nm lithography[J]. J. Am. Chem. Soc., 2004, 126 (25): 7744-7745.
    [167]方庆玲.铁填充碳纳米管的制备及其应用研究[D].长沙:国防科技大学, 2005.
    [168] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    [169] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C 60: buckminsterfullerene[J]. Nature, 1985, 318: 162-163.
    [170] Scharff P. New carbon materials for research and technology[J]. Carbon, 1998, 36 (5–6): 481-486.
    [171] BiróL, Horváth Z E, Szalmás L, Kertész K, Wéber F, Juhász G, Radnóczi G, Gyulai J. Continuous carbon nanotube production in underwater AC electric arc[J]. Chem. Phys. Lett., 2003, 372 (3-4): 399-402.
    [172] Demczyk B G, Wang Y M, Cumings J. Direct mechanical measurement of the tensile strength andelastic modulus of multiwalled carbon nanotubes[J]. Mater. Sci. Eng., 2002, A334: 173-178.
    [173] Wong E W, Sheehan P E, Lieber C M. Nanobeam: elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277: 1971-1975.
    [174] Saito S. Carbon nanotubes for next-generation electronics devices[J]. Science, 1997, 278: 77-78.
    [175] Riu J, Maroto A, Rius F X. Nanosensors in environmental analysis[J]. Talanta, 2006, 69: 288-301.
    [176] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. J. Am. Chem. Soc., 1994, 116: 7935-7936.
    [177] Kim P, Lieber C M. Nanotube nanotweezers[J]. Science, 1999, 286: 2148-2150.
    [178] Che G, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 384: 147-148.
    [179] Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice[J]. Science, 1997, 278: 100-102.
    [180] Yun Y H, Shanov V N, Balaji S, Schulz M J, Tu Y, Mall S, Lee J, Burggraf L W, Li G M, Sabelkin V P. Developing a sensor, actuator, and nanoskin based on carbon nanotube arrays[J]. Proc. SPIE, 2006, 6174: 61743Z.
    [181]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003.
    [182] Micropatterned carbon nanotube–gel composite as photothermal material[J]. Adv. Mater., 2009.
    [183] Cannon A H, Allen A C, Graham S, King W P. Molding ceramic microstructures on flat and curved surfaces with and without embedded carbon nanotubes[J]. J. Micromech. Microeng., 2006, 16 (12): 2554-2556.
    [184] Cong H, Hong L, Harake R S, Pan T R. CNT-based photopatternable nanocomposites with high electrical conductivity and optical transparency[J]. J. Micromech. Microeng., 2010, 20: 25002-25007.
    [185] Ning J, Zhang J, Pan Y. Fabrication and mechanical properties of SiO2-matrix composites reinforced by carbon nanotubes[J]. Mater. Sci. Eng., A, 2003, 357: 392-396.
    [186] Kim H H, Kim H J. The preparation of carbon nanotubes by dc arc discharge using a carbon cathode coated with catalyst[J]. Mater. Sci. Eng., B, 2006, 130 (1-3): 73-80.
    [187] Xu J, Zhang X, Chen F, Li T, Li Y, Tao X, Wang Y, Wu X. Preparation and modification of well-aligned CNTs grown on AAO template[J]. Appl. Surf. Sci., 2005, 239 (3-4): 320-326.
    [188] Zheng Y, Zhang M, Gao P. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors[J]. Mater. Res. Bull., 2007, 42 (9): 1740-1747.
    [189]慈立杰,魏秉庆,梁吉,吴德海.碳纳米管的制备[J].新型碳材料, 1998, 13 (2): 65-71.
    [190] Chai S P, Zein S H, Mohamed A R. Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane[J]. Chem. Phys. Lett., 2006, 426: 345-350.
    [191] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220-222.
    [192] Cho W S, Hamada E, Kondo Y. Synthesis of carbon nanotubes from bulk polymer[J]. Appl. Phys. Lett., 1996, 69 (2): 278-280.
    [193] Kyotani T, Tsai L F, Tomita A. Preparation of ultrafine carbon tubes in nanochannels of anodic Aluminum Oxide film[J]. Chem. Mater., 1996, 8 (8): 2109-2113.
    [194] Chernozatonskii L A, Val'Chukb V P, Kiselevc N A, Lebedevc O I, Ormontb A B, Zakharovc D N. Synthesis and structure investigations of alloys with fullerene and nanotube inclusions[J]. Carbon, 1997, 35 (6): 749-753.
    [195] Laplaze D, Bernier P, Flamant G, Lebrun M, Brunelle A, DellaNegra S. Solar energy: application to the production of fullerenes[J]. J. Phys. B: At., Mol. Opt. Phys., 1996, 29 (21): 4943-4954.
    [196] Jiang Y, Wu Y, Zhang S Y, Xu C Y, Yu W C, Yie Y, Qian Y T. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature[J]. J. Am. Chem. Soc., 2000, 122: 12383-12384.
    [197] Hernadi K, Fonseca A, Nagy J B, Siska A, Kiricsi I. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Appl. Catal. A: Gen., 2000, 1999 (2): 245-255.
    [198] http://www.nanotubes.com.cn.
    [199] http://www.nanopowder.cn.
    [200] http://www.xfnano.com.
    [201]马军.碳纳米管的化学修饰及在材料增强中的应用初探[D].长沙:国防科技大学, 2009.
    [202]孟庆昌.透射电子显微学[M].哈尔滨:哈尔滨工业大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700