X射线荧光光谱法测定铜矿石主次成分和铝土矿的生物冶金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代X射线荧光光谱分析是对各种物料进行多元素同时测定的一种通用测量方法。由于其快速分析、制样简单、重现性好、准确度高、非破坏性和对环境无污染等特点,被广泛应用于多领域的样品分析,但应用于铜矿石的分析研究较少。作者通过试验,拟定了粉末压片法和熔融法样品制备条件,采用国家标准样品和人工合成标准样品来绘制标准曲线,分别用波长色散XRF仪测定铜矿石样品中主次成分。发现采用压片法时,样品粉碎至74μm以下(通过200目筛子),硼酸粉末粘结剂镶边衬底,压片后进行检测,主量组分的分析结果稍差,微量组分的精密度和准确度能满足铜矿石分析要求;采用熔融法时:选择四硼酸锂-偏硼酸锂(m/m=12:22)混合熔剂,硝酸钠做氧化剂,样品与氧化剂的比例为1:4,混合样品与混合熔剂的比例为1:7,样品在600℃预氧化后加入2滴饱和的溴化锂脱模剂,在1050℃下熔融15min,制成熔片进行测定,在选定条件下,样品的分析结果与认定值相符,主量组分的精密度能够满足铜矿石中主次成分的分析需要。
     一些微生物通过代谢产物中的有机酸对矿物的浸蚀和对被溶解金属的螯合作用,可以从铝土矿中浸出铝和铁。在本研究中进行了生物一化学联合法浸出铝土矿中的铁和铝土矿中的铝的研究。发现,用黑曲霉素YJY-1#菌株的发酵液在80℃-90℃下浸出含铁铝土矿石,矿石中的Fe203含量可以由4.96%下降到2.87%。如果用2%的硫酸将微生物发酵液酸化到pH为0.5左右,然后浸出含铁铝土矿石,矿石中Fe203含量下降到0.39%。采用同样的方法浸出某低品位三水铝石,发现矿石在525℃下焙烧4小时后,在80℃-90℃下浸出10小时,每2小时后更换新的浸矿剂,矿石中铝的浸出率可达到90.99%。
Modern X-ray fluorescence spectroscopy is a common measurement method of multi-elements simultaneous determination from various materials.Due to its rapid speed, simple sample preparation, reproducible, accurate, non-destructive, and environmental, it is widely used to analyzed sample in a variety of areas, but less applied to the analysis of copper ore. Powered press and fusion condition was provided to prepare samples.The major and minor components of the copper ore samples were determined by Wavelength dispersive XRF.It was Found that when powered press were selected, samples crushed to 74μm below (through 200 mesh sieve) and pressed with boric acid as margin band and underlaying the substrate, tested, the major components analysis results were somewhat unreasonable. But the precision and accuracy of minor components could meet the analytical requirements of copper ore. With fusion method, lithium tetraborate-lithium metaborate(m/m=12:22)as flux,sodium nitrate as oxidant, sample and oxidant ratio 1:4, mixed sample and flux ratio 1:7, sample pre-oxidation at 600℃after adding 2 drops of saturated lithium bromide as releasing agent, fused at 1050℃for 15min, the made glass disc was determined. Based on the selected conditions, the sample analysis results accorded with the certified values.And the precision of major components could meet the analysis needs of the copper ore components.
     Biometallurgy is a new technology, which mineral is used as energy substance of microorganism by metabolize action or value metals are leached from mineral by the metabolite,Iron or aluminum was leached from different bauxite by some microorganism in the way of organic acid of metabolite etching ore and chelating dissolved metalline ions.The calibration curve was plotted with national standard sample and artificially synthesized standard sample. In this study, the iron of the bauxite containg iron was removed by biochemistry leaching method, while alluminum of low-grade bauxite was leached. It was found that when the bauxite containing iron was leached by the Aspergillus niger numered YJY-1# zymotic fluid under temperture 80℃-90℃,the Fe2O3 content can be removed from 4.96% to 2.87%. If using 2% sulfuric acid added to the zymotic fluid and pH lowed to 0.5, then the Fe2O3 content in the ore decreased to 0.39%. The same method used to leach aluminum in low-grade gibbsite ore, it was found that when the ore was calcined under temperture 525℃for 4 hours, then leached for 10 hours under 80℃-90℃,the leaching agent changed every 2 hours, the aluminum leaching rate reached 90.99%.
引文
[1]章晔.X射线荧光探矿技术.北京:地质出版社,1984.1-20
    [2]刘彬,黄衍初,贺晓华.环境样品x射线荧光光谱分析.新疆:新疆大学出版社,1996.2-17
    [3]李韶峰,陈松岭.物理学发展史中的科学机遇.技术物理教学,2006,(2):48-48
    [4]王建安.布拉格定律来源考辨.自然科学史研究,1992,11(3):245-250
    [5]刘战存,苑红霞.布拉格父子对X射线晶体衍射的研究及其启示.首都师范大学学报:自然科学版,2006,27(1):32-36
    [6]杨冠池.莫塞莱与原子序数规律.鸡西大学学报:综合版,2006,6(6):44-45
    [7]徐克耀,刘战存,苑红霞.西格班对X射线光谱学发展的贡献.首都师范大学学报:自然科学版,2006,27(2):35-38
    [8]Soller W. A.New precision X-ray Spectrometer. Phys.Rev,1920, (24):158-167.
    [9]Geiger H, Muller W. Mode of Ation and Construction of a Counter Tube. Phys.Z, 1928,(29):839-841.
    [10]Friedman H, Birks L.S.Counter Pectrometer for X-ray Fluoresence Analysis. Rev.Sci.Instrum,1948,(19):323-330
    [11]卓尚军.陶光仪X射线荧光光谱定量分析中超轻元素的处理方法.化学学报,1999,57(12):1348-1351
    [12]陶光仪.x射线荧光光谱分析中的粉末压片制样法.分析实验室,1995,14(3):92-92
    [13]Guil.JC(,娄兴军译).用X射线荧光光谱测定法分析超轻元素(硼和碳).国外分析仪器技术与应用,1990,(1):66-68
    [14]肖明.W.H布拉格和巴克拉关于X射线本质的一场争论.培训与研究:湖北教育学院学报,2001,18(5):10-13
    [15]徐光宪.物质结构.北京:人民教育出版社,1961,21-33
    [16]E.P.Birtin. X射线光谱分析的原理和应用.北京:国防工业出版社,1993.323-602
    [17]Pres H, Esenwein A S.X-ray Fluorescence Spectrographic Method for Deter-
    mination of Lead in Gasoline. Schweiz Arch Angew Wiss Tech,1960, (26):317-320
    [18]周继红,罗重庆.XRF滤纸薄样法测定钛铁尾矿冶炼中的微量钪.中南工业大学学报,1995,26(5):684-687
    [19]Rose H J, Cutita F. X-ray Fluorescence Analysis of Light Elements in Rocks and Minerals, AppI Spectrosc,1963,(17):81-85
    [20]Rose H J, Cutita F. X-ray Fluorescence Analysis of Light Elements in Rocks and Minerals, AppI Spectrosc,1963,(17):81-85
    [21]卜赛斌,张淑英,李明洁.稀土燃致伸缩材料的X射线荧光光谱分析稀有金属,1999,23(6):454-457.
    [22]Tos G.Correction Method for the X-ray Fluorescence Spectrographic Method for Determination of Iron, Mangnese, Calcium and Potassium in Light Matrices. Spectrocium Acta,1972,27(B):89-92
    [23]Sherman J.Theoretical Derivation of Composition of Mixable Specimens from Fluoresent X-ray Tensities. Advan.Xray Anal,1958,(1):231-250
    [24]Beatie H J, Brissey R M. Calibration Method for X-ray Fluorescence Spectro-
    Metry.Anal.Chem,1954, (26):980-983
    [25]丰梁垣.关于X荧光分析中氧化物和熔片体系Lachance理论α系数计算方法的探讨.光谱学与光谱分析,1989,9(2):73-75
    [26]Lucas-Tooth H J.Scientific and Analytical Equipment Dept N.V.Philips Gloeilampenfabrieken Eindhoven. In:Buwalda J eds. Excitation in Proceedings of the 5th Conference on X-ray Analysis Methods.Swansea, Wales, U K:Neth, 1996.1-5
    [27]谢忠信,赵宗铃,陈远盘,等.X射线光谱分析.北京:科学出版社.1982.280-302
    [28]陆少兰,X射线光谱分析应用进展.分析实验室,1995,14(1):66-70
    [29]Criss J W, Birks L S.Caculatiom Method for X-ray Spectrometry Empirical Coefficients vs Fundamental Parameters. Anal.Chem,1968,(40):1080-1086
    [30]许佩珍,袁汉章,郝贡章,等.基本参数法和经验系数法相结合的软件开发及其应用.分析试验室,1986,(01):23-27
    [31]陶光仪,吉昂,张中义,等.用NBSGSC计算机程序和单标样的理论a系数法分析结果.光谱学与光谱分析,1985,(06):34-37
    [32]李纪民,张桂芹.X射线荧光分析中基本参数法的应用原子能科学技术.1989,23(1):15-19
    [33]吉昂,陶光仪,沈美芬,等.基本参数法和经验系数法相结合的一种新尝试.光谱学与光谱分析,1983,(01):17-21
    [34]谢荣厚,高树桢,朱一钧.X射线荧光光谱分析的进展.光谱学与光谱分析,1983,(03):45-48
    [35]颜一鸣,丁训良.使用X光聚束系统的X射线荧光分析研究核技术,1994,17(6):340-342
    [36]张勤,樊守忠,潘宴山Minipal 4便携式能量色散X射线荧光光谱仪在勘查地球化学中的应用.岩矿测试,2007,26(5):377-380
    [37]乐安全,朱节清,谷英梅.微束X射线荧光分析.光谱学与光谱分析,1993,13(3):79-79
    [38]丁训良,梁炜.一种新型的微束XRF谱仪核技术,1996,19(3):164-169
    [39]刘亚文,范钦敏,李道伦,等.全反射X射线荧光分析法测定微量硒.光谱学与光谱分析.1993,13(3):69-69.
    [40]李国会.樊守忠.X射线荧光光谱法直接测定碳酸盐岩石中的主次痕量元素.岩矿测试,1997,16(2):45-50.
    [41]刘亚文.全反射X射线荧光光谱法.光谱学与光谱分析,1987,7(4):69-69.
    [42]Klockenkamper R.全反射X射线荧光分析(,王晓红,王毅民,王永奉,等译).北京:原子能出版社,2001.102-137
    [43]肖克炎,李景朝,陈郑辉等.中国铜矿床品位吨位模型.地质评论,2004,50(1):50-56
    [44]世界铜镍矿物原料基地:回顾与展望.国土资源情报.2008,(11):34-40
    [45]王松君,常平,王璞君,等.电感耦合等离子体发射光谱法直接测定黄铜矿中多元素.岩石测试.2004,23(3):228-230
    [46]王春晖.电感耦合等离子体发射光谱法测定铜矿中砷的含量.南方国土资源,2007,(8):48-52
    [47]王晓颖,危权香.德兴铜矿钻孔样中Au、Ag元素的分析.江西地质,2000,14(1):70-72
    [48]陈少鸿,朱丽辉,王谦,等.有色金属发展概况.有色金属.2004,56(2):117-118
    [49]许景光.硫氰酸盐光度法测定铜矿中的钨.江西有色金属.2007,21(1):36-37
    [50]刘小毛.水杨基荧光酮-溴化十六烷基三甲基铵光度法测定铜矿中钨.理化检验-化学分册.2004,40(9):550-551
    [51]何炼,郝原芳.氢化物发生原子荧光光谱法测定铜矿中的锗.山东理工大学学报,2004,18(5):13-16
    [52]高学峰,郭莹.快速测定铜、铁矿石中总铁.现代技术陶瓷,2000,21(2):39-40
    [53]刘本发.铜矿冶炼炉渣中铜的碘氟法测定.湖南冶金,1993,(5):55-56
    [54]马中.铜物相中硫化铜矿的测定.新疆有色金属.2004,(3):5-36
    [55]袁蕙霞,郭玉翠.微量钨、鉬催化极谱的连续测定.矿产与地质,2005,199(3):328-330
    [56]回韬.阴离子交换树脂分离-盐酸底液方波极谱法测定铜矿石中铅.经济技术协作信息,2002,(15):31-31
    [57]权梅,孙建文.原子荧光光谱法测定铜矿中的锑、砷、铋的含量.安徽地质,2006,16(1):52-54
    [58]孙厚兰,郭居媛.原子荧光光谱法测定铜矿中的硒和碲.岩矿测定,1993,12(4):287-289
    [59]彭苏文.柱芯电极光谱法测定西藏斑岩铜矿中的铜、鉬、银、铅、锌、砷、钨和铋.光谱学与光谱分析,1993,13(3):45-50
    [60]宋云阔.斑岩铜矿石中钽铪的X射线荧光光谱法测定.37-40
    [61]敖晓青,葛江洪.斑岩铜矿石中钽铪的X-射线荧光光谱法测定.黑龙江国土资源,:43
    [62]李国会,攀守忠,潘宴山.SPECTROSCAN-U型便携式波长色散X射线荧光光谱仪现场测定铜矿区15种元素.光谱实验室,2003,20(2):250-253
    [63]吉昂,陶光仪,卓尚君等.X射线荧光光谱仪分析.北京:科学出版社,2003.67-86
    [64]赵晨.X射线荧光光谱仪原理与应用探讨.理论与研究.测试技术卷,2007,(02):4-7
    [65]河野久征(,严泉才译).X射线荧光分析入门.郑州:中国有色金属工业总公司郑州轻金属研究院,1982.93-114
    [66]李国会,樊守忠,潘晏山.X射线荧光光谱法测定水系沉积物、土壤等样品中Cl、Br和S三元素.地质与勘探.2002,38:219-221
    [67]Fernand Claisse, Jimmy S.Blanchette. Physics and chemistry of borate fusion. Canada:Fernand Claisse Inc.2004:32-84
    [68]李国会,马光祖,罗力强等.X射线荧光光谱分析中不同价态硫对测定硫的影响及地质试样中全硫的测定.岩矿测试,1994,13(4):265-265
    [69]Norrish K, Thompson G.M. XRS analysis of sulphides by fusion method. X-ray Spectrometry,1990,19(2):67-67
    [70]Josefina de Gyves, Montserrat Baucells, Cardellach E, et al.Direct Determination of zinc, lead, iron and total sulphur in zinc ore concentration by X-ray fluorescence spectrometry. The Analyst.1989,114(5):559-559
    [71]方启学,钮因键,黄国智.我国氧化铝工业现状及发展策略.中国有色金属 学会会讯,2000,(4):11-15
    [72]吴小琴.硅酸盐细菌的应用概况.江西科学,1997,15(1):60-65
    [73]胡岳华,贺治国,胡维新.硅酸盐细菌在资源加工中的应用和现状.矿冶工程,2000,23(1):22-24
    [74]周吉奎,胡岳华,邱冠周.硅酸盐细菌在矿物工程领域的应用研究进展.金属矿山,2002,(01):26-28
    [75]Grodeva V I,等.铝土矿的微生物选矿.国外金属矿选矿,1989,(11):9-11
    [76]Grodeva S, Genchev F. Bioleching of bauxites by wild and laboratory bred mixrokial strains. Int Conger Study bauxites Alurn,1978,(1):271-278
    [77]Andreev P L, Lydheva L V. Effect of the composition of the culture medium On the bacterial decomposition of aluminosillicates. IZVV'yssh Uchebn Zaued tsuetn metal.1979,(5):7-9
    [78]索罗日金.细菌在矿物工程中的应用.国外金属矿选矿,1991,(5):1-10
    [79]Kupriyanova F G, Ashina, et al.The peculiarities of destruction of some silicates during the development of B.mucilignosus spores treated with a microbial ribonnnucleese. Bictekhnoloya,1994, (6):24
    [80]童雄.微生物浸矿的理论与实践.北京:冶金工业出版社,1997,48-53
    [81]周国华,薛玉兰,何伯泉.铝土矿除铁研究概况.矿产保护与利用,1998,(4):44-47
    [82]Phalguni, Anad. Biobeneficiation of Bacillus polymyxa calcium and iron removal.Int Minter Process,1996,(48):51-60
    [83]瓦桑S S,等.铝土矿生物处理的最新进展.国外金属矿选矿,2001,(62):27-32
    [84]赵雅如.利用微生物提高含铝针铁矿的铝土矿中的铝的回收率.轻金属,1991,(4):6-9
    [85]Natayauan K A. Some microbiological aspects of bauxite mineralization beneficiation. M inerals and Metallurgical Processing,1997,14 (2):47-50
    [86]Andreev P I. Removal of iron from bauxite from the industry. Obogashch Shlamov,1983,(1):111-116
    [87]Roychaudhury G.Biological removal of from china clay. Erzmetall,1990,48(5): 210-212
    [88]邱木清,张卫民.微生物技术在矿产资源利用与环保中的应用.矿产保护与利用,2003,(12):45-50
    [89].王清良,刘迎九,杨金辉,等.721铀矿石细菌渗滤浸出及细菌的驯化培养研究.金属矿山,2003,(10):37-39
    [90].Castro I M, Fietto J L R, et al.Bioleaching of zinc and nickel from silicatesusing Aspergillus nigereultures.Hydrometallurgy,2000, (57):39-49
    [91].Mishra S P, Roy Chaudhury G Kinetics of Zn2+ adorption by penicillum sp. Hydrometallurgy,1996, (40):11-23
    [92]Mera M U, Beveridge T J.Mechanism of silicate binding to the bacterial cell wall in bacillus subtilis. Joural of Bacteriology,1993,175(7):1936-1945
    [93]Nalini Jain, Sharma D K. Biohydrometallury for nonsulfidic minerals-A review. Geomicrobiology Journal,2004, (21):135-144
    [94]Andreev P I, Lydheva L V.Effect of the composition of the culture medium on the bacterial decomposition of aluminosilicates.IZV Vyssh Uchehn Zaued Tsuetn metall,1979,(5):7-9
    [95]Bryner L C,et al. Microorganisms in leaching of sulfide minerals. Industral and Engineering Chemistry,1954, (46):2587-2592
    [95]Elzeky M, Attia Y A. Effect of bacterial adaption on kinetics and mechanisms bioleaching ferrous sulfides.The chemical Engineering Joural.1995,56(B): 115-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700