小鼠激素性股骨头坏死导致骨髓间充质干细胞microRNA变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     目前,糖皮质激素被广泛应用于结缔组织疾病的治疗当中,大剂量糖皮质激素的应用常会诱发股骨头坏死,由激素使用引起的股骨头坏死在非创伤性股骨头坏死(osteonecrosis of femoral head, ONFH)的发病率中已经居于首位。股骨头坏死如果得不到有效治疗,将出现股骨头塌陷和骨关节炎,最终需行人工关节置换术,因此,早期发现股骨头坏死并行保头治疗显得非常必要。但由于股骨头坏死的病因还不是十分清楚,目前尚无有效治疗方法。基于病理研究,学者发现除微循环障碍导致的毛细血管的微栓塞引起局部骨内压增高,局部缺血坏死外,激素导致的骨髓间充干细胞成骨分化能力的改变,使得骨坏死和修复平衡打破,继而导致股骨头坏死塌陷也是发病机制重要的环节之一。
     microRNA是一种18—25nt长的单链小分子RNA,具有高度保守性、时序性和组织特异性,对于细胞组织的功能以及生命活动起着至关重要的调控作用,最新的研究发现microRNA在骨髓间充质干细胞的成骨分化中起着重要的调控作用。目前,激素刺激对于骨髓间充质干细胞的microRNA变化并不明确,在本实验中,我们通过建立小鼠股骨头坏死模型,分离培养其间充质干细胞,用microRNA芯片来寻找差异性表达的microRNA,通过生物信息学分析预测microRNA对基因的调控,为激素性股骨头坏死的发生机制和临床应用干细胞治疗提供有力的依据。
     研究目的
     1.建立激素性股骨头坏死的小鼠模型;
     2.寻找模型动物中BMSC的miRNA表达差异;
     3.分析表达差异的miRNA可能的调控作用;
     研究方法
     将6只小鼠随机分成2组,每组3只,实验组小鼠行甲基强的松龙21mg/kg皮下注射,连续4周,对照组同等剂量注射生理盐水。行股骨头切片,做HE染色及凋亡染色证明建模成功。取18只小鼠重新建模,做骨髓间充质干细胞原代培养,待其长至覆盖培养瓶80%后,流式鉴定,提取RNA,送检microRNA芯片,筛选差异性表达的microRNA,并进行生物信息学分析,获取此调控途径中的关键microRNA,预测其对于功能基因及信号通路的影响。
     研究结果
     1.较正常小鼠比较,激素刺激4周后,小鼠的股骨头切片出现了较多的空骨陷窝、骨小梁的断裂、纤维增生等改变。
     2.获取小鼠骨髓,做骨髓间充质干细胞培养,并通过形态及流式细胞技术鉴定,CD31-(96.04%)、CD34-(98.27%)、CD105+(95.13%)、CD166+(96.74%)
     3.正常组跟实验组在microRNA表达上存在差异,且在同种异体个体之间具有相对一致的表达趋势,其中microRNA-34b/c、microRNA-206、microRNA-148a、 microRNA-196a等16个microRNA在实验组表达下调明显,而microRNA-21microRNA-342、microRNA-92b等7个microRNA则在实验组高表达。
     4.在有共同表达趋势的microRNA中,选取感兴趣的microRNA进行生物信息学分析,发现microRNA-206、microRNA-34b、microRNA-34c、 microRNA-148a、microRNA-21、microRNA-652与成骨分化相关。
     结论
     1.激素性股骨头坏死可以引起骨髓间充质干细胞microRNA表达谱的改变;
     2.多种miRNA在这个过程中起到了调节作用,从本实验结果推测miRNA-196a下降在激素性股骨头坏死过程中起到了重要作用.
Background
     Nowdays, the glucocorticoid is widely used in the treatment of connective tissue disease, and the large dose of glucocorticoid may induce osteonecrosis of the femoral head. The ratio of steroid-induced osteonecrosis of femoral head (ONFH) had elevated to the first rand of nontraumatic osteonecrosis of femoral head. If the patient with ONFH can not reach the effective treatment, the femoral head will collapse and the osteoarthritis will come out, and the patients will need the operation of artificial joint replacement. So, the early diagnosis and treatment of ONFH is necessary. However, the etiology is still not very clear, the effective treatment of ONFH is not comfirmed. Except the microthrombus caused by micro-circulation disorder which lead local intraosseous hypertension and ischemic, differentiation ability of bone marrow-derived mesenchymal stem cells changed by the glucocorticoids is another reason, which disturbs the balance of the bone necrosis and repair, resulting in femoral head collapse.
     MicroRNA is a small single stranded RNA whose length is about18-25nt,with highly conserved, time sequence and tissue specificity, and it plays a vital role in regulating the function of cell and tissue as well as in the regulationg of life activities. The latest studies found that microRNA plays a vital role in regulating the osteogenic differentiation of bone marrow mesenchymal stem cells. Currently, the microRNA change of bone marrow mesenchymal stem cells induced by glucocorticoid is not very clear. In this research, we established a mouse model of femoral head necrosis, isolated and cultured of mesenchymal stem cells, screened the differences of microRNA in BMSCs, and predicted its gene regulating through bioinformatic analysis. Explore microRNA regulation mechanism of steroid-induced necrosis of femoral head, providing powerful evidence for clinical treatment.
     Objects
     1. To establish a mouse model of femoral head necrosis;
     2. To screen the microRNA differences of bone marrow mesenchymal stem cells in normal group and glucocorticoid-stimulated;
     3. To explore the relationship between microRNA and the osteogenic differentiation of BMSCs through bioinformatic analysis;
     Methods
     6mice are divided into2groups at random (normal group and experimental group), every group has3mice. The mice in the experimental group are subcutaneous injected for4weeks with21mg/kg methylprednisolone, and the mice in the normal group are injected with the same dose of normal saline. Then slice the femoral head, do HE staining and tunnel staining to make sure the model successe. Then rebuilt the animal model, isolate the bone marrow, and MSCs were isolated and cultured with whole marrow method. When BMSCs are at80%confluence, the BMSCs are comfirmed by flow cytometry. Then total RNA was isolated from cultured cells. Screen different microRNA by gene chips, obtain the key microRNA through bioinformatics analysis, and verify its functional.
     Results
     1. Compared with normal group, after stimulated with MPS for4weeks, we can find much change in sections of femoral head, such as empty lacunas, fracture of bone trabecula, fibroplasia, and so on.
     2. Bone marrow mesenchymal stem cells have been successfully isolated, and have been confirmed by the cell morphology and flow cytometry, CD31-(96.04%)、CD34-(98.27%)、CD105+(95.13%)、CD166+(96.74%)
     3. The different profile of microRNA is caused by MPS injection, and it has relatively consistent expression trend in allograft. It shows:in experimental group, microRNA34b/c, microRNA206, microRNA148and microRNA196a are decreased, but microRNA21, microRNA342and microRNA92b in experimental group are increased.
     4. The putative target genes are predicted by Bioinformatics analysis, microRNA206、microRNA34b、microRNA34c、microRNA196a、microRNA148a、 microRNA21、microRNA652are related with osteogenic differentiation.
     Conclusion
     1. The steroid induced osteonecrosis of femoral head may cause microRNA changes in BMSCs。
     2. many miRNA regulate the process of osteogenic differentiation, and miRNA-196a decreasing take an important part in steroid induced osteonecrosis of femoral head.
引文
[1]孙伟.股骨头坏死的病因、病理和发病机制.中华全科医师杂志,2006,(02):75-77.
    [2]Fukushima W, Fujioka M, Kubo T, et al. Nationwide epidemiologic survey of idiopathic osteonecrosis of the femoral head. Clin Orthop Relat Res,2010,468(10):2715-24.
    [3]Kang J S, Park S, Song J H, et al. Prevalence of osteonecrosis of the femoral head:a nationwide epidemiologic analysis in Korea. J Arthroplasty,2009,24(8):1178-83.
    [4]Koo K H, Kim R, Kim Y S, et al. Risk period for developing osteonecrosis of the femoral head in patients on steroid treatment. Clin Rheumatol,2002,21(4):299-303.
    [5]Felson D T, Anderson J J. Across-study evaluation of association between steroid dose and bolus steroids and avascular necrosis of bone. Lancet,1987,1(8538):902-6.
    [6]Mont M A, Jones L C, Hungerford D S. Nontraumatic osteonecrosis of the femoral head:ten years later. J Bone Joint Surg Am,2006, 88(5):1117-32.
    [7]Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis--a histomorphometric study of autopsy cases. Pathol Res Pract,2005, 200(11-12):807-11.
    [8]Ichiseki T, Matsumoto T, Nishino M, et al. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model. J Orthop Sci,2004,9(5):509-15.
    [9]Jones J P. [Epidemiological risk factors for non-traumatic osteonecrosis]. Orthopade,2000,29(5):370-9.
    [10]Kakiuchi M. Dose-dependent inversion of the effect of prostaglandin E1 on intraosseous pressure:adequate dose for reducing blood loss during operation on bone. J Orthop Sci,2000,5(3):283-7.
    [11]Glueck C J, Freiberg R A, Sieve L, et al. Enoxaparin prevents progression of stages I and II osteonecrosis of the hip. Clin Orthop Relat Res,2005, (435):164-70.
    [12]Chen W L, Lin C T, Yao C C, et al. In-vitro effects of dexamethasone on cellular proliferation, apoptosis, and Na+-K+-ATPase activity of bovine corneal endothelial cells. Ocul Immunol Inflamm,2006, 14(4):215-23.
    [13]Bejar J, Peled E, Boss J H. Vasculature deprivation--induced osteonecrosis of the rat femoral head as a model for therapeutic trials. Theor Biol Med Model,2005,2:24.
    [14]Weinstein R S, Nicholas R W, Manolagas S C. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab,2000,85(8):2907-12.
    [15]Alborzi A, Mac K, Glackin C A, et al. Endochondral and intramembranous fetal bone development:osteoblastic cell proliferation, and expression of alkaline phosphatase, m-twist, and histone H4. J Craniofac Genet Dev Biol,1996,16(2):94-106.
    [16]Ziros P G, Basdra E K, Papavassiliou A G. Runx2:of bone and stretch. Int J Biochem Cell Biol,2008,40(9):1659-63.
    [17]Tan G, Kang P D, Pei F X. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head:a review. Chin Med J (Engl),2012,125(1):134-9.
    [18]Oskowitz A Z, Lu J, Penfornis P, et al. Human multipotent stromal cells from bone marrow and microRNA:regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci U S A, 2008,105(47):18372-7.
    [19]Itoh T, Takeda S, Akao Y. MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem,2010,285(36):27745-52.
    [20]Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun,2008,368(2):267-72.
    [21]Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem, 2009,284(29):19272-9.
    [22]Wang T, Xu Z. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun,2010, 402(2):186-9.
    [23]Kapinas K, Kessler C, Ricks T, et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem, 2010,285(33):25221-31.
    [24]Li Z, Hassan M Q, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem,2009,284(23):15676-84.
    [25]Zhang J F, Fu W M, He M L, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol,2011,8(5):829-38.
    [26]Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest,2009,119(12):3666-77.
    [27]Hu R, Liu W, Li H, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem, 2011,286(14):12328-39.
    [28]Li Z, Hassan M Q, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A,2008,105(37):13906-11.
    [29]Conzemius M G, Brown T D, Zhang Y, et al. A new animal model of femoral head osteonecrosis:one that progresses to human-like mechanical failure. J Orthop Res,2002,20(2):303-9.
    [30]Cui Q, Wang G J, Balian G. Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. Connect Tissue Res,2000,41(1):45-56.
    [31]Yang L, Boyd K, Kaste S C, et al. A mouse model for glucocorticoid-induced osteonecrosis:effect of a steroid holiday. J Orthop Res,2009,27(2):169-75.
    [32]范永前,齐进,邓廉夫,et al.小鼠激素性股骨头坏死的组织学演变.中华实验外科杂志,2006,(08):980-981.
    [33]Akita T. [Bone structure in aseptic necrosis of the femoral head by light microscopy, contact microradiography, and fluorescent microscopy --comparing with osteoarthritis and rapidly destructive coxarthrosis]. Nihon Seikeigeka Gakkai Zasshi,1983, 57(11):1755-72.
    [34]边焱焱.大剂量糖皮质激素对骨髓间充质干细胞成骨分化的MiroRNA调控的实验研究[博士]:北京协和医学院中国医学科学院清华大学医学部2012.
    [35]Kim H K, Lee Y S, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol,2006, 174(5):677-87.
    [36]Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics,2013,40(3):107-16.
    [37]Bae Y, Yang T, Zeng H C, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet,2012, 21(13):2991-3000.
    [38]Zhang Y, Xie R L, Croce C M, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A,2011,108(24):9863-8.
    [39]Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol, 2012,197(4):509-21.
    [40]Li M, Yu M, Liu C, et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Prolif, 2013,46(2):223-31.
    [41]Yang N, Wang G, Hu C, et al. Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res,2013, 28(3):559-73.
    [42]Lian J B, Stein G S, van Wijnen A J, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol,2012,8(4):212-27.
    [43]Cheng P, Chen C, He H B, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res,2013, 28(5):1180-90.
    [44]Sugatani T, Vacher J, Hruska K A. A microRNA expression signature of osteoclastogenesis. Blood,2011,117(13):3648-57.
    [45]Lulla R R, Costa F F, Bischof J M, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma, 2011,2011:732690.
    [46]He X, Yan Y L, Eberhart J K, et al. miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol,2011,357(2):463-77.
    [47]Hornstein E, Mansfield J H, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature,2005, 438(7068):671-4.
    [48]Choo S W, Russell S. Genomic approaches to understanding Hox gene function. Adv Genet,2011,76:55-91.
    [49]黄珍东,谭江,陆军,et al.人间充质干细胞成骨分化早期HOX家族基因转录的表观遗传调控.东北师大学报(自然科学版),2007,(01):101-107.
    [50]Hassan M Q, Saini S, Gordon J A, et al. Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis. Cells Tissues Organs,2009,189(1-4):122-5.
    [51]Zheng Y J, Chung H J, Min H, et al. In vitro osteoblast differentiation is negatively regulated by Hoxc8. Appl Biochem Biotechnol,2010, 160(3):891-900.
    [1]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-54.
    [2]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000, 408(6808):86-9.
    [3]Kim V N, Nam J W. Genomics of microRNA. Trends Genet,2006,22(3):165-73.
    [4]Meltzer P S. Cancer genomics:small RNAs with big impacts. Nature,2005, 435(7043):745-6.
    [5]Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002,99(24):15524-9.
    [6]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-6.
    [7]Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci,2005,96(2):111-5.
    [8]Tsang W P, Kwok T T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis,2008,13(10):1215-22.
    [9]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007,131(6):1109-23.
    [10]Ma L, Teruya-Feldstein J, Weinberg R A. Tumour invasion and metastasis initiated by microRNA-lOb in breast cancer. Nature,2007,449(7163):682-8.
    [11]Guo C, Sah J F, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer,2008,47(11):939-46.
    [12]Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A,2006,103(18):7024-9.
    [13]Chin L J, Slack F J. A truth serum for cancer--microRNAs have major potential as cancer biomarkers. Cell Res,2008,18(10):983-4.
    [14]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008, 105(30):10513-8.
    [15]Resnick K E, Alder H, Hagan J P, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol,2009,112(1):55-9.
    [16]Pineles B L, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol,2007,196(3):261 e1-6.
    [17]The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci,2011, 124(Pt18):3187.
    [18]Makino K, Jinnin M, Aoi J, et al. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type Ⅰ collagen expression is impaired in scleroderma dermal fibroblasts. J Invest Dermatol,2013,133(1):110-9.
    [19]Jopling C L, Yi M, Lancaster A M, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science,2005,309(5740):1577-81.
    [20]Hornstein E, Mansfield J H, Yekta S, et al. The micro RNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature,2005,438(7068):671-4.
    [21]Sehm T, Sachse C, Frenzel C, et al. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol,2009, 334(2):468-80.
    [22]He X, Yan Y L, Eberhart J K, et al. miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol,2011,357(2):463-77.
    [23]Gao J, Yang T T, Qiu X C, et al. [Cloning and identification of microRNA from human osteosarcoma cell line SOSP-9607]. Ai Zheng,2007,26(6):561-5.
    [24]Lulla R R, Costa F F, Bischof J M, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma,2011,2011:732690.
    [25]Oskowitz A Z, Lu J, Penfornis P, et al. Human multipotent stromal cells from bone marrow and microRNA:regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci U S A,2008,105(47):18372-7.
    [26]Itoh T, Takeda S, Akao Y. MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem,2010,285(36):27745-52.
    [27]Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun,2008, 368(2):267-72.
    [28]Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem,2009,284(29):19272-9.
    [29]Wang T, Xu Z. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun,2010,402(2):186-9.
    [30]Kapinas K, Kessler C, Ricks T, et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem,2010,285(33):25221-31.
    [31]Li Z, Hassan M Q, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem,2009,284(23):15676-84.
    [32]Zhang J F, Fu W M, He M L, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol,2011, 8(5):829-38.
    [33]Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest, 2009,119(12):3666-77.
    [34]Hu R, Liu W, Li H, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem,2011,286(14):12328-39.
    [35]Li Z, Hassan M Q, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A,2008, 105(37):13906-11.
    [36]孙伟.股骨头坏死的病因、病理和发病机制.中华全科医师杂志,2006,(02):75-77.
    [37]Fukushima W, Fujioka M, Kubo T, et al. Nationwide epidemiologic survey of idiopathic osteonecrosis of the femoral head. Clin Orthop Relat Res,2010, 468(10):2715-24.
    [38]Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis--a histomorphometric study of autopsy cases. Pathol Res Pract,2005,200(11-12):807-11.
    [39]Ichiseki T, Matsumoto T, Nishino M, et al. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model. J Orthop Sci,2004,9(5):509-15.
    [40]Jones J P. [Epidemiological risk factors for non-traumatic osteonecrosis]. Orthopade, 2000,29(5):370-9.
    [41]Kakiuchi M. Dose-dependent inversion of the effect of prostaglandin E1 on intraosseous pressure:adequate dose for reducing blood loss during operation on bone. J Orthop Sci,2000,5(3):283-7.
    [42]Glueck C J, Freiberg R A, Sieve L, et al. Enoxaparin prevents progression of stages I and II osteonecrosis of the hip. Clin Orthop Relat Res,2005, (435):164-70.
    [43]Chen W L, Lin C T, Yao C C, et al. In-vitro effects of dexamethasone on cellular proliferation, apoptosis, and Na+-K+-ATPase activity of bovine corneal endothelial cells. Ocul Immunol Inflamm,2006,14(4):215-23.
    [44]Bejar J, Peled E, Boss J H. Vasculature deprivation--induced osteonecrosis of the rat femoral head as a model for therapeutic trials. Theor Biol Med Model,2005,2:24.
    [45]Weinstein R S, Nicholas R W, Manolagas S C. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab,2000, 85(8):2907-12.
    [46]Alborzi A, Mac K, Glackin C A, et al. Endochondral and intramembranous fetal bone development:osteoblastic cell proliferation, and expression of alkaline phosphatase, m-twist, and histone H4. J Craniofac Genet Dev Biol,1996,16(2):94-106.
    [47]Ziros P G, Basdra E K, Papavassiliou A G. Runx2:of bone and stretch. Int J Biochem Cell Biol,2008,40(9):1659-63.
    [48]Tan G, Kang P D, Pei F X. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head:a review. Chin Med J (Engl), 2012,125(1):134-9.
    [49]Smith L K, Shah R R, Cidlowski J A. Glucocorticoids modulate microRNA expression and processing during lymphocyte apoptosis. J Biol Chem,2010, 285(47):36698-708.
    [50]Rainer J, Ploner C, Jesacher S, et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia,2009,23(4):746-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700