用户名: 密码: 验证码:
水分胁迫对小麦生理生态及产量品质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以扬麦158为供试材料,于2001-2004年在安徽农业大学试验农场设有遮雨设施的钢架大棚内(合肥)进行盆栽试验。试验设有对照(CK),轻度水分胁迫(T1),中度水分胁迫(T2)和重度水分胁迫(T3)四种不同的水分处理。每种处理五次重复。运用农业气象学、植物学、植物生理学、作物栽培学、生态学以及应用数学等学科的原理和方法、就小麦主要生育期不同水分胁迫条件下生长状况的变化,生理生态的动态变化及其与产量品质的关系进行了研究,结果表明:
    1.任何时期、任何程度的水分胁迫都使小麦产量降低,且不同时期、不同程度的水分胁迫对产量的影响不同,尤其是生育后期(拔节孕穗以后)对产量的影响较为显著。其中,拔节孕穗期T3减产率达41.2%,T2减产率30.1%,T1减产率22.4%。
    2.分蘖以前水分胁迫各处理对小麦生育进程有延缓效应。自拔节期始,水分胁迫使小麦生育进程加快,生育期缩短,随着水分胁迫的加剧,对生育期和生育进程的影响明显提高,轻度、中度和重度水分胁迫与对照相比,全生育期天数分别缩短了3天,4天和6天,生育期平均分别比对照提前1.3天、2.2天和3.5天。
    3.水分胁迫对绿叶面积的影响很大,且随着水分胁迫程度的加剧,各生育期均呈现出明显的规律性:绿叶面积减少量明显增加,绿叶数也随之减少。随着生育进程的推进,绿叶面积衰减量也呈增加的趋势。生育前期水分胁迫对绿叶面积的影响小于生育后期。
    4.水分胁迫处理对地上部分鲜重的影响随着胁迫程度的加剧而增大;不同程度的水分胁迫都使株高和穗长降低;在同一生育期中,T1的株高和穗长均大于T2,T2大于T3。
    5.水分胁迫对根系干重、单株次生根数和根冠比的影响均随着胁迫程度的加剧而增加,但不同生育期水分胁迫影响程度不同。对根系干重的影响在抽穗开花以后大于抽穗开花以前,引起次生根数的减少在拔节孕穗期和抽穗开花期最为明显,对小麦根冠比的影响程度在拔节孕穗期最大。
    6.不同水分胁迫条件下对若干生理指标的动态变化研究中发现,旗叶的光合速率,随着水分胁迫程度的加剧,下降幅度增大;旗叶蒸腾速率最小值出现在开花初期,并随着花期的进行逐渐升高,开花后21天出现最大值,之后又开始下降;不同水分
    
    
    胁迫对可溶性糖、脯氨酸、MDA含量均随着水分胁迫程度的加剧而增加。开花之前水分胁迫使SOD、POD活性增强,开花期各处理SOD活性均达到最高值,随后开始降低,灌浆期到乳熟期急剧降低;而随着生育期的推进和水分胁迫程度的加剧,POD活性降低幅度加大。
    7.轻度水分胁迫对物质转化和产量形成的影响不显著,而重度水分胁迫严重阻碍物质的转化和产量的形成。随着水分胁迫的加剧,SOD、POD和PRO等有利于物质转化和产量形成的生理性状越来越弱,而不利于产量形成的因素,如MDA越来越强。
    8.随着水分胁迫程度的加剧,蛋白质、氨基酸、湿面筋含量以及沉降值等呈现增加趋势,而粗淀粉的变化趋势与上述相反。
    9.根据综合评判,各水分胁迫处理方案中,T1最优,T3最差。
The experiments were carried out with yangmai 158 on the experiment farm and steel shed of Anhui Agricultural University for two years from 2001 to 2004. The pot experiment was originally designed with four different water application treatments. The CK(check) treatment was 75~80% of maximum field capacity. The light water stress treatment (T1) was 65~70% of maximum field capacity. The medium water stress treatment (T2) was 55~60% of maximum field capacity. The heavy water stress treatment (T3) was 45~50% of maximum field capacity. Crop growth and development, physiology and ecology, production and Quality of winter wheat under different water stress treatments were researched and analyzed by means of Agricultural meteorology, Crop culture, Plant physiology and ecology, Agricultural statistics, Applied mathematics and so on. The results showed that:
    1. The production of winter wheat was reduced under different water stress and different growth stages. Effect of different water stress and different growth stages on production was different, especially at the later growth stages (after jointing to booting stage), effect on production was significant. At jointing to booting stage, reduction rate was 41.2% in T3 treatment, 31.0% in T2 treatment, 22.4% in T2 treatment.
    2. Different water stress treatment made growth process later than CK treatment before tillering stage. From jointing stage, different water stress treatment made growth process shorter than CK treatment. With the water stress become more serious, the effects on growth stage and the growth process was more significantly. Compared to the CK, the light water stress, medium water stress and heavy water stress of the whole growth stages shorten 3 days, 4 days and 6 days, and the growth stage improved 1.3 days, 2.2 days and 3.5 days.
    3. Effect on green leave area was very heavy under water stress and with the degree of water stress intensifying, various growth stages presented obvious regularity: Green leaf
    
    
    area decrement obvious increased, green leaf number also along with it reduction. With the growth process moving forward, green leaf area decrement had the increasing tendency. The preliminary growth stages of water stress to the green leaf area influence were smaller than the later growth stages.
    4. With the water stress degree intensifying, the influence on the aerial parts fresh weight increased. The varying degree water stress all caused plant height and spike long to reduce. At the same stage, In the identical period of duration, T1 plant height and spike long is bigger than T2, T2 is bigger than T3.
    5. With the water stress degree intensifying, the influence on the root dry weight, secondary radical root and R/S improved. The influence of water stress was different at different growth stages. The influence on root dry weight before the flowering stage was smaller than later flowering stage. The amount of secondary roots was heavily affected at jointing to booting stage and flowering stage and the sensitive stage to R/S was jointing to booting stage.
    6. Under water stress condition, the dynamic variety of several physical index were studied. It showed that: With intensity of water stress, photosynthetic rate of flag leaves dropping extent extended. At the beginning of flowering stage, the transpiration rate value of flag leaves was the least. After that, it improved gradually. 21 days later, the transpiration rate value of flag leaves was the largest. With the development of stages, it declined. With intensity of water stress, the content of soluble sugar, Pro and MDA improved. Under water stress condition, SOD and POD activity enhanced before flowering stage. The peak value of SOD activity was found at the flowering stage. Then it started to decrease. At the filling stage and mature stage, it declined sharply. With intensity of water stress and development of growth stages, the dropping extent of POD activity increased.
    7. The influence of light water stress on material transformation and yield formation was not significant, while heavy
引文
[1] 扬继富. 农业节水投入现状分析与政策探讨[J]. 节水灌溉,2002(6):5~7.
    [2] 胡锡骥. 世界水资源与农业生产[J]. 世界农业,2000(4):10~11.
    [3] 康绍忠,李永杰. 21世纪我国节水农业发展趋势及其对策[J]. 农业工程学报,1997,(4):1~7
    [4] 朱丕荣. 世界的水资源与灌溉农业[J]. 世界农业,1997(1):3~5
    [5] 张宪政,陈凤玉,王荣富. 植物生理学实验技术[M]. 辽宁科学技术出版社,1994
    [6] 山东农学院,西北农学院编著. 植物生理学实验指导[M] .山东科技出版社,1980
    [7] 山东农业大学编. 植物生理学实验技术[M]. 1987.
    [8] Blackman PG,Davies WJ.Root to shoot cmmunication in maize plants of the effects of soil dryin.J.Exp Bot,1985,36:459~464
    [9] LeshemYY, Wurzburge J, Grpssman S. Cytokinin interaction with free radical metabolism and senescence: Effect on endogenous lipoxygenase and purineoxidation..Plant physiol,1981,53:9~12.
    [10] Jarves,P. G,1981, Stomatal Physiology, Cambridge university Press, Cambridge, pp.163~185
    [11] 邹琦,植物生理生化实验指导[M]. 北京:中国农业出版社,1995.
    [12] 王玮,李春香,李德全,张中兰. 土壤缓慢脱水对开花期小麦根系及叶片渗透调节及渗透调节物质的影响[J]. 植物学通报,2001,18(2):221~225.
    [13] Morgan JM. Ann Rev Plant Physiol 1984, 35:299~319.
    [14] 邹琦,作物抗旱生理生态研究[M]. 山东科学技术出版社,1984.
    [15] 陈玉玲,曹敏. 干旱条件下ABA与气孔导度和叶片生长的关系[J]. 植物生理学通讯,1999, 35(5):398~402.
    [16] 刘祖贵,孙景生,张寄阳,段爱旺. 亏缺灌溉对风沙区春小麦生长发育及水分生产效率的影响[J]. 灌溉排水,2002,21(3):28~31
    [17] 裴冬,张喜英. 调亏灌溉对棉花生长、生理及产量的影响[J]. 生态农业研究,2000,8(4):52~55
    [18] 王玮,邹奇. 水分胁迫下不同抗旱性小麦品种不同生育期渗透调节及渗透调节物质的研究[M],见邹奇主编,作物抗旱生理生态研究. 山东科学技术出版社,1994,51~56
    [19] 孟庆伟,邹奇,程丙嵩 . 山东农业大学学报,1987,18(3):17~22
    [20] Leigh RA. Planta 1981,153:34~41
    [21] Teare peet. Crop~water Relation. A Wiley interscience Publication. John Wiley&Sons.
    
    
    1983
    [22] Singh TA. Nature 1972,285:188~190
    [23] Beny. Plant Physiol 1984,61:231~235
    [24] Hanson AD. et al. Crop Science 1977, 17:720~726
    [25] 李德全,邹奇,程丙嵩. 土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[M],见邹奇主编,作物抗旱生理生态研究. 山东科学技术出版社,1994,44~50
    [26] 卢从明,张其德,匡廷云. 水分胁迫对光合作用影响的研究进展[J]. 植物学通报,1994,11(增刊):9~13
    [27] 杜宝华,刘明孝,洪佳华. 冬小麦群体光照条件及其光合特征[J]. 中国农业气象,1990,11(3):27~30
    [28] 王焘,郑国生,邹奇. 干旱与正常供水条件下小麦光合午休及其机理的研究[J]. 华北农学报,1997,12(4):48~51
    [29] 高素华,毛飞,郭建平. 干旱胁迫对冬小麦生理因素的影响[M]. 见徐祥德,吴正华主编. 华北干旱预研究进展. 气象出版社,1999,78~86
    [30] 阎隆飞,李明启. 基础生物化学[M]. 农业出版社,1985,北京,169
    [31] Long, S.P., 1963,Plant Cell Envion, (6):345~363
    [32] 张旭等编著. 水稻生态育种[M]. 北京:农业出版社,1991:168~199
    [33] Jensen, C.R,Henson, I.E, and Turner, N.C, Root and shoot water relations of Lupins during drought~induced stomatal closure, Aust. J. Plant Physiol. , 1989, 16:415~428
    [34] 山东农学院,西北农学院编著. 植物生理学实验指导[M]. 山东科技出版社,1980
    [35] 李秧秧. 水分胁迫下作物体内的激素代谢,见:山仑,陈陪元主编,旱地农业生理生态基础[C]. 北京:科学出版社,1998:96~109
    [36] 李原园,李英能,苏人琼等编. 中国农业水危机及其对策[R]. 北京:中国国家科学技术委员会农村科技司,1997:52~54
    [37] 张正斌,王德轩著. 小麦抗旱生态育种[M]. 西安:陕西人民教育出版社,1992:3~12
    [38] Van Oosterom E J, Acevedo E. Adaptation of barley (Hordeum vulgare L.) to harsh Mediterranean environments [J]. Euphytica, 1992,62:1~14.
    [39] 王晨阳. 土壤水分胁迫对小麦形态及生理影响的研究[J]. 河南农业大学学报,1992,26(1):89~98
    [40] Hurd E A. Phenotype and drought tolerance in wheat [J]. Agric Meteor, 1974, 14:39~45
    [41] 梁银丽,陈培元. 旱地小麦品种的特征特性[A]. 见:山仑,陈陪元主编,旱地农
    
    
    业生理生态基础[C]. 北京:科学出版社,1998:259~266.
    [42] 景蕊莲,胡荣海,朱志华等. 冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究[J]. 西北植物学报,1997,17(2):152~157.
    [43] Passioura J B. Roots and drought resistance [J]. Agric Water Management, 1983,7:265~280.
    [44] 陶汉之,张承慧. 遮阴茶树光合特性的研究[J]. 植物生理学通讯,1996,(6):42~46
    [45] 山仑,黄占斌,张岁岐编著. 节水农业[M]. 北京:清华大学出版社, 2000:137~139
    [46] 史兰波, 李云荫. 保水剂在节水农业中的应用. 生态农业研究, 1993, 1(2): 89~93
    [47] 申来水, 冯乃宽. 保水剂在农作物上的应用[J]. 山西农业科学, 1989, 4:17
    [48] 张志良主编. 植物生理学实验指导[M]. 北京:高等教育出版社,1990.
    [49] 蒋明义,荆家海,王韶唐. 植物生理学报,1991,17(11):80~84
    [50] H.W.Cutforth等著,杨健译. 残茬高度对加拿大干旱区春小麦生长的微气候和产量的效应. 麦类作物,1998,18(3):52~55.
    [51] 李建民,王璞,周殿玺,等. 灌溉制度对冬小麦耗水及产量的影响[J]. 生态农业研究,1999,7(2):23~26.
    [52] 王俊儒,李生秀. 不同生育期水分亏却对冬小麦产量及构成因素的影响[J]. 西北植物学报,2000,20(2):193~200.
    [53] 王立秋,占忠,曹敬山. 水肥因子对对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67~73.
    [54] Tennant D.A. test of modified line intersect method of estimating root length[J]. J Ecol, 1975,63:23~28.
    [55]介晓磊,李有四等.保水剂对土壤持水特性的影响[J].河南农业大学学报,2000,(3):22~23
    [56] 房全孝,陈雨海. 冬小麦节水灌溉的生理生态基础研究进展〔J〕. 干旱地区农业研究, 2000,21(1):21~26.
    [57] 苗果园,张云亭,尹军等. 黄土高原旱地冬小麦根系生长规律的研究[J]. 作物学报,1989,15(2):104~115.
    [58] 管秀娟,赵世伟,王俊振,李壁成. 不同生育期干旱对冬小麦根冠生长发育的影响[J]. 华北农学报,2001,16(4):71~76.
    [59] 马元喜,王晨阳,周继泽. 小麦根系主要生态效应的研究[J]. 河南农业大学学报,1994,28(1):12~18.
    [60] 马元喜,等. 小麦的根〔M〕. 北京:中国农业出版社,1999,136~139.
    
    [61] Brady D J. The interaction of water stress with the senescence pattern of leaves [J]. Bulletin the royal society of new Zealand, 1974,12:403~409
    [62] Grigoyuk I A.Smart I G. Effect of polystimulin K on yield and quality of winter wheatbetween antistress activity and cytokine~like properties of synthetic biogically~active compounds[j]. fiziologiyai Biokhimlya Kulturukh Rastenii, 1989, 21(5):446~451
    [63] 张秋英,李发东,刘孟雨,董宝娣. 水分胁迫对小麦旗叶叶绿素a荧光参数和光合速率的影响[J].干旱地区农业研究,2002,20(3):80~84
    [64] Passioura J.B. Roots and drought resistance. Agriculture Water Management. 1983.7:265~280
    [65] Taylor, H.M. Nguyen, H.T. Opportunities for manipulating systems to reduce drought stress in wheat. In J.P.Srivastava(ed), Drought tolerance in winter cereals. John Wiley & Sons. 1987.285~298
    [66] 王晨阳, 不同土壤水分条件下小麦根系生态生理效应的研究[J],华北农学报.1992,7(4):1~8
    [67] 朱云集,土壤水分逆境对冬小麦根系某些形态解剖结构及超微结构的影响[J], 河南农业大学学报,1994,28(3):224~229
    [68] 刘殿英, 石立岩, 董庆裕. 不同时期施肥水对冬小麦根系活性和植株性状的影响[J], 作物学报, 1993,19(2):149~155
    [69] 马元喜,不同土壤中小麦根系生长动态的研究[J]. 作物学报,1987,13(1)37~44
    [70] 郭安红,魏红,李凤明,赵松岭,土壤水分亏却对春小麦根系干物质积累和分配的影响[J],生态学报,1999,19(2):179~184
    [71] 梁银丽,扬翠玲,不同类型小麦品种对渗透胁迫的反应[J],西北农学报,1995,(4):21~25
    [72] 马瑞昆,家丽,贾秀领,刘淑贞,供水深度与冬小麦根系发育的关系[J],干旱地区农业研究,1991,(3):1~9
    [73] Varma P.K. Efficiency of nodal roots in rainfed wheat(Triticum aestivum). Indian J. Agric. Sci., 1992,62(8):563~565
    [74] Zhirmunskaya N M, Ovsyanikova T V, Shapovalov A A, et al. Interelationship between antistress activity and cytokinin~like properties of synthetic biologically~active compounds[J]. Fiziologiya I Biokhimiya Rastenii,1989,21(5):446~451
    [75] 黎秀卿,王文正,吕潇. 北方春大麦区蛋白质含量与生态条件的关系[J].山东农业科学,1998,2:20~21
    
    [76] Hrradecka D, Staszkova L. Influence of the application of CTK and nitrogen fertilizer on spring wheat[J], Rostlinna~Vytoba, 1996,22(3):258~264
    [77] 黄国存,崔四平. 干旱对小麦幼苗SOD活性和CaM水平的影响[J]. 华北农学报,1995,10(1):40~44
    [78] Hasiao TC. Influence of osmotic adjustment on leaf rolling and tissue death in rice(Oryzasativa L.). Plant Physical,1984,75:338~341
    [79] 冯彩平,王沛洪. 水分胁迫对冬小麦过氧化物酶与超氧化物歧化酶的影响[M]. 植物抗性生理研究,赵可夫主编,1991, 山东科学技术出版社,53~57
    [80] Shinozaki K, Yamaguchi~Shinozaki K. Molecular response to drought and cold stress. Current Opinion in Biotechnology, 1996, 7:161~167
    [81] Bower C, MV Van Montagu D Inze. Superoxide dismutase and stress tolerance. Ann Rev plant physiol plant Mol Biol, 1992, 43:83~116
    [82] 曾韶西,王以柔,刘鸿先. 低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J]. 植物生理学报,1991(17):177~182
    [83] Niinomi A et al. Lipid peroxidation by the [Peroxidase/H2O2/phenolic]system. Plant Cell Physiol, 1987,28:731~735
    [84] 扬肇驯等. 冬小麦幼苗春化期间过氧化物酶的变化[J]. 植物生理学报,1981,7(4):311~316
    [85] 尹田夫. 大豆科学,1985(3):153~158
    [86] Hanson AD et al. Crop Science 1979, 19:489~498
    [87] 曹乙植,吕忠恕. 植物生理学报,1985(11):9~16
    [88] 张爱良,苗果园等.不同土壤水分对冬小麦旗叶生理特性的影响[J].山西农业大学学报.1998,18(3):200~202
    [89] Bewley I D. Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol,1979,30:195~238.
    [90] Mclord J M,et al. Superoxide dismutase:An enzymic function for erythrocuprein(hemocupreim). J Biol Chen, 1969,224:6049~6055.
    [91] 孙大业. 植物细胞信号转导研究进展[J]. 植物生理学通讯.1996,32(2):81~91
    [92] 蒋明义等. 渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J]. 植物生理学报,1991,(1):80~84
    [93] 李清全等. 植物在逆境下的渗透调节[J]. 山东农业大学学报,1989(2):75~80
    [94] 汤章城等. 游离脯氨酸与高粱苗的抗旱性[J]. 植物生理学通讯,1986(2):29
    [95] 王可玢,许春辉,赵福洪,等. 水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J]. 生物物理学报,1997,13(2):273~278
    
    [96] 陈贵,胡文玉,谢捕绨,等. 提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J]. 植物生理学通讯,1991,27(1):44~46
    [97] 王俊儒,李生秀,李凯丽. 冬小麦不同生育时期水分亏缺胁迫对叶片保护酶系统的影响[J]. 西北植物学报,2001,21(1):47~52
    [98] 陈秀珍,冬小麦抗旱生理生化特性及遗传性研究:[硕士学位论文]. 保定:河北农业大学,2000
    [99] 陈晓远,罗远培. 开花期复水对受旱冬小麦的补偿效应研究[J]. 作物学报,2001,21(7):512~516
    [100] 茜大彬.肥水条件对小麦加工品质效应的研究. 华北农学报[J].1989,4(1):35~40
    [101] 王立秋. 氮磷肥对春小麦产量和品质的影响及效益分析. 干旱地区农业研究[J].1994,3:8~13
    [102] 王晨阳,马元喜,周苏玫等. 土壤干旱胁迫对冬小麦衰老的影响[J]. 南农业大学学报,1996,30(4):309~312
    [103] 曹广才. 小麦品质生态[M]. 北京:中国科学技术出版社,1993.
    [104] 于振文,岳寿松,沈成国等,高产低定额灌溉对冬小麦旗叶衰老的影响[J]. 作物学报,1995,21(4):503~508
    [105] 王美云,李少昆,赵明. 关于玉米光合作用与叶片水分利用效率关系的研究[J]. 作物学报. 1997,23(3):245~252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700