温室热环境动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室是农业生产性建筑设施。现代温室生产的一个主要特征,是可根据室外气象条件和作物生长发育阶段,利用控制设备对温室内环境条件进行有效控制,采用连续生产方式和管理方式,高效、均衡地生产。温室是一个半封闭的环境系统,受外界环境因素的影响很大。因此对乌鲁木齐地区的温室内部环境进行研究,对发展本地温室产业具有重要意义的。本文以天彩集团的棉花育种温室的热环境为研究对象。首先,介绍对温室内热环境有密切联系的温度环境、光环境和湿度环境的特点以及棉花生长发育对这些环境的要求。其次,将整个温室分为覆盖层、内部空气、作物层和土壤等四个层次,根据传热学原理,分别对这四层建立热平衡方程。再次,采用适当的数值算法并运用MATLAB编程求解该热平衡方程组,验证方程组的正确性,分析温室环境的特点以及变化趋势。最后,根据该温室不足之处,对温室的改造提出建议。
The greenhouse is a kind of agriculture production building facilities. A main characteristic of modern greenhouse is to make use of the control equipments to control the environment in the greenhouse according to the outdoors weather term and the stage of the growth and adopt the continuous mode of production with manage the way efficiently and balanced. The greenhouse is a half-closed environment system, which is influenced by the outdoors environment greatly. Proceeding the research on the internal environment of greenhouse in the region of Urumqi is of great importance to develop the native glasshouse industry. The research object of this text is the internal environment of the Rainbow Group’s cotton breeding greenhouse. First of all, introduce the characteristics of the light environment, the temperature environment and the humidity environment, which affect the internal thermal environment of greenhouse greatly and the request to these environment of cotton breeding briefly. Secondly, divide the whole greenhouse into the four layers, which is the cover, the internal air, the plant and the soil. According to the theory of heat conduction, establish the thermal balanced equation of the four layers. Thirdly, adopt the definite numerical arithmetic, and use the MATLAB to program to solve the non-linear equation system and validate the correctness of it. Finally, find out the disadvantages of the greenhouse and put forward the suggestion to reconstruct it.
引文
[1] 蔡大用,白峰杉.现代科学计算.北京:科学出版社,2001
    [2] 陈钟欣.传热学专题讲座.北京:高等教育出版社,1989
    [3] 范治新.工程传热原理.北京:化学工业出版社,1982
    [4] 何光渝.Visial Basic 常用数值算法集.北京:科学出版社,2002
    [5] 黄忠霖.MATLAB符号运算及其应用.北京:国防工业出版社,2004
    [6] 金一庆,陈越.数值方法.北京:机械工业出版社,2000
    [7] 李信真等.计算方法.西安:西北工业大学出版社,2000
    [8] 李式军.设施园艺学.北京:中国农业出版社,2002
    [9] 李乃成,邓建中.数值计算方法.西安:西安交通大学出版社,2003
    [10] 林成森.数值计算方法(下).北京:科学出版社,2003
    [11] 刘继韩.气候学.北京:北京大学出版社.1995
    [12] 刘廷玮,刘鉴民,M.Daguenet.太阳能的利用.北京:科学技术文献出版社,1987
    [13] 罗中岭.当代温室气候与花卉.北京:中国农业科技出版社,1994
    [14] 潘守文.小气候考察的理论基础及其应用.北京:气象出版社.1989
    [15] 苏晓生.掌握MATLAB6.0及其工程应用.北京:科学出版社,2002
    [16] John H. Mathews,Kurtis D. Fink.数值方法(MATLAB版).陈渝等译.北京:电子工业出版社,2002
    [17] Shoichiro Nakamura.科学计算引论-基于MATLAB的数值分析.梁恒,刘晓艳等译.北京:电子工业出版社,2002
    [18] 吴毅明,徐师华.温室塑料棚环境管理.北京:农业出版社,1989
    [19] 魏巍.MATLAB应用数学工具箱技术手册.北京:国防工业出版社,2004
    [20] 许波.MATLAB工程数学应用.北京:清华大学出版社,2000
    [21] 张智新.MATLAB程序设计与应用.北京:清华大学出版社,2002
    [22] 郑慧娆,陈绍林等.数值计算方法.武昌:武汉大学出版社,2002
    [23] 周长吉.现代温室工程.北京:化学工业出版社,2003
    [24] 赵静,但琦.数学建模与数学实验.北京:高等教育出版社,施普林格出版社,2001
    [25] 赵鸿钧.塑料大棚园艺.北京:科学出版社,1984
    
    [26] 章熙明,任择霈,梅飞宁等.传热学.北京:中国建筑工业出版社.1985
    [27] 中国矿业学院数学教研室.数学手册.北京:科学出版社,1980
    [28] 中国农业科学院棉花研究所.棉花栽培技术.北京:农业出版社.1977
    [29] 张彦平.设施园艺.北京:中国农业出版社,2002
    [30] 邹志荣.园艺设施学.北京:中国农业出版社,2002
    [31] D.Hanselman, B.Littlefield.精通MATLAB 6 . 张航,黄攀译.北京:清华大学出版社,Person Education培生教育出版集团.2002
    [32] Edward, B.Magrab等.MATLAB原理与工程应用.高铁,李新叶,胡智奇等译.北京:电子工业出版社,2003
    [33]E.M.斯帕罗,R.D.塞斯.辐射传热.顾传保,张学学译.北京:高等教育出版社,1983
    [34]E.W.腊塞尔(英).土壤条件与植物生长.谭世文,郭公佑译北京:科学出版社,1979
    [35]F.P.因克罗普拉,D.P.德维特著.传热基础.陆大有,于广经,朱谷君等译.北京:宇航出版社,1987
    [36]J.C.切托.生物传热学基础.北京:科学出版社,1991
    [37]J.P.霍尔曼.传热学.马庆芳,马重芳,王兴国译.北京:人民教育出版社,1980
    [38]J.P.霍尔曼.传热学题解.马庆芳,马重芳,王兴国译.北京:人民教育出版社,1980
    [39]N.J.罗森堡.小气候——生物环境.何章超,施鲁怀译.北京:科学出版社.1982
    [40]S.V.帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1985
    [41]W.M.罗森若等.传热学手册.李萌亭等译.北京:科学出版社,1985
    [42]W.H.拜尔.标准数学手册.北京:化学工业出版社,1988
    [43]К.Я.康德拉捷夫.太阳辐射能.北京:科学出版社,1962
    [44]П.Е.丹科,А.Г.波波夫,Т.Я.科热夫尼科娃著[前苏联].高等数学解题手册.周概容,肖慧敏译.天津:天津科学技术出版社,1983
    [45]德意志联邦共和国工程师协会工艺与化学工程学会.传热手册.化学工业部第六设计院译.北京:化学工业出版社,1977
    [46]土壤物理性测定委员会(日).土壤物理性测定法.重庆:科学技术文献出版社重庆分社,1979
    [47]白义奎,刘文合等.辽沈I型日光温室环境及保温性能研究.农业工程学报,2003,19(5):191~196
    [48]陈端生.中国节能日光温室建筑与环境研究进展.农业工程学报,1994,3:123~129
    [49]陈青云,汪政富.节能型日光温室热环境的动态模拟.农业工程学报,1996,12(1):67~71
    [50]杜军,王怀彬,杨励丹.温室热平衡计算及经济性分析.农业系统科学与综合研究,2000,16
    
    
    (2):132~134,138
    [51]杜军,王怀彬,杨励丹.温室微气候及其供热技术然就发展现状.农业系统科学与综合研究,2000,16(2):135~138
    [52]杜军,王怀彬,杨励丹.温室内气温与土壤相关性传热模型.哈尔滨工业大学学报,2000,32(5):1~4
    [53]顾寄南,毛罕平,李萍萍.温室系统综合动态模拟的研究.上海农业学报,2001,17(2):22~26
    [54]顾寄南,毛罕平,李萍萍.温室系统综合动态模拟的研究.农业工程学报,2001,17(4):79~82
    [55]孔凡亮,刘仁涛,盛力伟.北方寒冷地区温室供暖计算方法.农机化研究,2002,3:42~43
    [56]李良晨.保护地设施内的热湿状态的计算方法.西北农业大学学报,1991,19(4):25~32
    [57]刘杰,李保明,黄仕伟.NJ—6型连栋塑料温室冬季光温环境的试验研究.中国农业大学学报,2001,6(6):59~62
    [58]李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究.农业工程学报,1994,3:130~136
    [59]沈能展,任红玉,李淑敏等.华农98-Ⅱ型节能日光温室冬季温度特点.北方园艺,2001,2,8~9
    [60]塔依尔,吕国华.日光温室内热量收支的解析和数值模拟.石河子大学学报(自科版),1999,3(4):303~307
    [61]佟国红,王铁良等.日光温室墙体传热及节能分析.农业系统科学与综合研究,2003,19(2):101~102
    [62]杨丽娟.日光温室内温度变化的研究.吉林林业科技,2002,31(6):23~25
    [63]杨树栋,王天铎.气孔表面上边界层阻力的进一步计算.植物生理学报,1988,14:9~15
    [64]周长吉,王应宽.中国现代温室的主要型式及其性能.农业工程学报,2001,17(1):16~21
    [65]张继元.温室夏季热状态的计算.农机化研究,2000,3:29~32
    [66]B. Nielsen, H. Madsen. Identification of a linear coutinuous time stochastic model of the heat dynamics of a greenhouse. J. Agric. Eng. Res, 1998,71(3):249~256
    [67]B. Nielsen, H. Madsen. Identification of transfer functions for control of greenhouse air temperature. J. Agric. Eng. Res, 1995,60(1):25~34
    [68]Chandra P et al. A time dependent analysis of greenhouse thermal environment. Trans of the ASAE,1981,24(2):442~449
    [69]D. De Halleux, L. Gauthier. Energy consumption due to dehumidifucaion of greenhouses under northern latitudes. J. Agric. Eng. Res, 1998,69(1):35~42
    [70]D.L. Critten. Direct sunlight losses in North-South alighted Multi-span greenhouses with symmetric roofs at UK Latitudes.J. Agric. Eng. Res, 1988, 40(2) : 71~79
    
    [71]Duncan G. A.et al. Simulation of energy flows in a greenhouse:magnitude and conservation potential.Trans of the ASAE,1981,24(6) :1014~1021
    [72]Froehlich D P et al. Stead-periodic analysis of glasshouse thermal environment. Trans of the ASAE,1979,22(2) :387~399
    [73]G. Papadokis, D. Manolakos, S. Kyritsis. Solar radiation transmissivity of a single-span greenhouse through measurements on scale models. J. Agric. Eng. Res, 1998,71(4):331~338
    [74]H.J.M. Vollebregt, J.J.Van De Brank. Analysis of radiative and convection heat exchange at greenhouse walls. J. Agric. Eng. Res, 1995,60(2) : 99~106
    [75]J.G. Pieters, J.M. Deltour et al. Condensation and static heat transfer through greenhouse Covers during night. Trans of the ASAE, 1994,37(6) :1965~1971
    [76]Kindelan M. Dynamic modeling of greenhouse environment. Trans of the ASAE, 1980,23(6):1232~1239
    [77]L.D. Albright, A.J. Both, A.J. Chiu. Controlling greenhouse light to a consistent daily integral. Trans of the ASAE,2000, 43(2):421~431
    [78]L.S. Marsh, S. Singh. Economics of greenhouse heating with a Mine-assisted heat pump. Trans of the ASAE, 1994(6):1959~1963
    [79]L.Seginer, I.Ioslorich. Seasonal optimization of the greenhouse environment for a simple two-stage crop growth model. J. Agric. Eng. Res, 1998,70(2):145~156
    [80]M.Teitel, I.Segal. Net thermal radiation undershading screens. J. Agric. Eng. Res,1995,61(1):19~26
    [81]M.Teitel, J.Tanny. Radiative heat transfer from heating tubes in a greenhouse. J. Agric. Eng. Res, 1998,69(2):185~188
    [82]Person.S., A. E. Eheldon,and P. Hadley. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agric. Eng. Res, 1995,62(1): 61~70
    [83]S.Kurpaska, Z.Slipek. Mathematical model of heat and mass exchange in a garden subsoil during warm-air heating. J. Agric. Eng. Res, 1996,65(4):305~312
    [84]G.A.Giacomelli, K.C.Gates, S.Panigrahi. Solar PAR vs. solar total radiation transmission in a greenhouse. Trans of the ASAE,1988,31(5):1540~1544
    [85]Ting. K.C., G.A. Giacomelli. Availability of solar photosynthetically active radiation. Trans of the ASAE, 1987,30(5): 1453~1457
    
    [86]T. Takakura, T.O.Manning, G.A.Giacomelli et al. Feedforward control for a floor heat greenhouse. Trans of the ASAE, 1994, 37(3): 939~945
    [87]Wang shao-jin, J. Deltou. Impact of the main structural parameters on the greenhouse climate. Transaction of the CSAE,1995,9: 101~107
    [88]Wang shao-jin, Zhu Song-ming. Simulation and measurement of tunnel greenhouse climate. Transaction of the CSAE, 1997,12: 139~144
    [89]X. Yang et al. The microclimate and transpiration of a greenhouse cucumber crop. Trans of the ASAE, 1989,32(6):2143~2150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700