高盐废水有机物和氨氮去除规律的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在高盐废水的生物处理中,有关盐度对生物处理系统影响的利弊及高盐环境下有机物和氨氮处理效果的研究结论还不统一。对常温下高盐废水中有机物和氨氮降解的动力学研究、低温高盐双重不利因素对有机物和氨氮去除的影响、低温对活性污泥系统的影响及生物学分析报道较少。针对这些问题,本文采用序批式活性污泥反应器(SBR)模拟高盐废水进行试验,主要研究了常温(20℃)时不同污水盐度对有机物去除和生物脱氮的影响及动力学分析;此外,试验还研究了低温对活性污泥系统的影响;在6℃~20℃范围内缓慢降温和快速降温两种不同降温方式对有机物和氨氮去除的影响,并对此进行了生物学分析。这些研究对高盐废水生物处理研究进展有一定的促进作用。
     试验结果表明,常温(20℃)下当盐度超过10.5g╱L时,有机物的去除率和生物脱氮效率整体上随着盐度的升高而下降。在pH值为8.0左右、溶解氧在2.0~3.0mg╱L、污泥浓度为3000mg/L的试验条件下,进水COD为360mg/L左右时,海水比例由30%(盐度为10.5g╱L)升高到50%(盐度为19.5g╱L)时,COD去除率由87%降为82%,盐度对COD去除率影响不大;当海水比例超过50%升高至70%(盐度为24.5g/L)时,COD去除率下降至68%,盐度对COD去除率影响明显;进水氨氮浓度为62mg╱L左右时,海水比例分别为30%、50%、70%时,氨氮去除率分别为91%、86%、80%,盐度对氨氮去除率影响不大;当海水比例超过70%达到100%(盐度为35g╱L)时,氨氮去除率下降明显,为67%。当海水比例超过30%时,生物硝化过程出现了亚硝酸盐积累现象,实现了短程硝化反硝化;根据一周期内COD和氨氮的降解曲线,应用泰姆斯图解法求得30%、50%、70%海水比例下COD降解的反应速率常数分别为0.7886h~(-1)、0.7504h~(-1)、0.7273h~(-1);30%、50%、70%、100%海水比例下氨氮降解的反应速率常数分别为0.2717h~(-1)、0.139h~(-1)、0.118h~(-1)、0.1079h~(-1)。数据显示随着海水比例的升高,COD和氨氮降解的反应速率速率常数减小。另外污水盐度的增加还造成了反硝化速率下降。
     在低温条件下(6℃~15℃),50%海水比例时随着温度的降低COD和氨氮去除率下降。通过试验证实了快速降温比缓慢降温对活性污泥处理效果的影响更大。在pH值为8.0左右、溶解氧在2.0~3.0mg/L、污泥浓度为3000mg/L的试验条件下,在缓慢降温过程中,进水COD浓度在360mg/L左右时,15℃、10℃、6℃时的COD去除率分别为69.84%、56.24%、46.54%;进水氨氮浓度为39mg╱L左右时,在以上各温度下氨氮的去除率分别为77%、46%、28%。快速降温过程中,在与以上条件相同的情况下,15℃、10℃、6℃时COD去除率分别为69%、37%、26%,氨氮的去除率分别为73%、35%、19%。与COD去除率相比,低温对氨氮的去除影响更大。从生物学角度分析,中温菌活性随着温度降低而减弱,水温低于10℃时,中温菌一般不再具有代谢外源物质的能力,对污水中有机物和氨氮起去除效果的是耐冷菌。低温条件下活性污泥的吸附性能和沉降性变差。
     在6℃~15℃范围内,海水比例为50%的污水中硝化菌同时受到温度和高盐双重因素的不利影响。首先高盐抑制了硝酸菌的生长造成生物硝化过程出现亚硝酸盐积累,同时低温对亚硝酸菌的活性也产生了抑制作用。硝化反应中,氨氮降解速率明显高于亚硝态氮增长速率,并且温度越低,两者相差程度越大。15℃、10℃、6℃时氨氮降解速率分别为0.0239gNH_3—N/gMLSS.d、0.0174gNH_3—N/gMLSS.d、0.0104gNH_3—N/gMLSS.d,在以上各温度下亚硝态氮的增长速率分别为0.0128gNO_2—N/gMLSS.d、0.0065gNO_2—N/gMLSS.d、0.00234gNO_2—N/gMLSS.d。这说明低温下氨氮的降解主要用于生物同化,只有一小部分转化为亚硝态氮。
Now the viewpoint whether the effects of salinity on biological treatment systemwas good or not and the removal effects of organics and ammonia in the high salinityenvironment were not consistent in the biological treatment of high salinity wastewater.The reports about the kinetics research on the degradation of organics and ammonia in thehigh salinity wastewater at normal temperature and the effects of double adversefactors-low temperature and high salinity on the removal of organics and ammonia werelacking. What's more, the research on the effects of low temperature on activated sludgesystem and the analysis in view of biology in the high salinity wastewater were rare. As tothese questions, in this paper the effects of different wastewater salinity on organics andammonia removal as well as kinetics analysis were mainly studied by Sequencing BatchReactor (SBR) process. Besides the effects of low temperature on activated sludge systemand two styles of temperature drop-low temperature drop and sharp-temperature drop onorganics and ammonia removal were studied within 6℃~20℃. As to these contents, theanalysis in view of biology was illustrated. These researches were promotive to thebiological treatment of high saline wastewater.
     Experimental results showed that the efficiency of organics and ammonia removaldecreased with the salinity increasing at normal temperature (20℃) when wastewatersalinity was over 10.5g/L. The experimental parameters were: pH:8.0;dissolved oxygen:2.0~3.0mg/L; mixed liquid suspended solid concentration: 3000mg/L; At the influentCOD concentration of 360mg/L, when the seawater proportion increased from 30%(Thesalinity was 10.5g/L) to 50%(The salinity was 19.5g/L), COD removal efficiencydecreased from 87%to 82%. The effect of salinity on COD removal efficiency was notobvious; When the seawater proportion was over 50%and reached 70%(The salinity was24.5g/L), the effect of salinity on COD removal efficiency was obvious and decreased to68%. At the influent ammonia concentration of 62mg/L, when the seawater proportionwas 30%, 50%and 70%, ammonia removal efficiency was 91%, 86%and 80%respectively. The effect of salinity was not remarkable. When the seawater proportion wasover 70%and reached 100%(The salinity was 35g/L), ammonia removal efficiencydecreased remarkably to 67%. When seawater was above 30%, nitrite was accumulatedduring biological nitrifying process and shortcut nitrification-denitrification was achieved.According to the curves of COD and ammonia degradation during a circle, the value ofthe degradation rate constant of organics and ammonia at different proportion of seawaterwere worked out through Thomas illustration. The value of the COD degradation rate constant at 30%, 50%and 70%seawater was 0.7886h~(-1), 0.7504h~(-1) and 0.7273h~(-1)respectively; The value of the ammonia degradation rate constant at 30%, 50%, 70%and100%seawater was 0.2717h~(-1), 0.139h~(-1), 0.118h~(-1) and 0.1079h~(-1) respectively. These datashowed that the degradation rate constant dropped with the seawater salinity increasing.Besides, denitrification rate reduced due to the increase of salinity in the wastewater.
     When seawater proportion was 50%, the removal efficiency of organics andammonia reduced with the temperature dropping, within 6~15℃. Experiments showedthat the activated sludge system got worse effect when temperature dropped fast. Theexperimental parameters were: pH: 8.0;dissolved oxygen: 2.0~3.0mg/L;mixed liquidsuspended solid concentration: 3000rag/L; At the influent COD concentration of360mg/L, during the process of low temperature drop the COD removal efficiency of 15℃,10℃and 6℃was 69.84%, 56.24%and 46.54%respectively. At the influent ammoniaconcentration of 39mg/L, the ammonia efficiency of 15℃, 10℃and 6℃was 77%, 46%and 28%respectively. At the same experimental parameters, during the process of sharptemperature drop the COD removal efficiency of 15℃, 10℃and 6℃was 69%, 37%and26%respectively. The ammonia efficiency of 15℃, 10℃and 6℃was 73%, 35%and19%respectively. Compared to organics removal efficiency, low temperature had worseeffect on ammonia. In the view of biology, the activity of mesophilic microorganismreduced with the temperature dropping. When the wastewater temperature was below10℃, the principle force to decompose organics and ammonia in wastewater werecold-adapted microorganism, for the mesophilic microorganism nearly had no ability tometabolize allogenic materials at such low temperature. The adsorption and settlingperformance of activated sludge became worse at low temperature.
     Nitrifying bacteria in the wastewater containing 50%seawater were affectedadversely by low temperature and high salinity within 6℃~15℃. First of all, nitrate'sgrowth was restrained because of high salinity, thus nitrite was accumulated duringbiological nitrification. At the same time, the activity of nitrosomas was inhibited at lowtemperature. During the process of nitrifying, the rate of ammonia degradation was higherthan that of nitrite growth. The difference was more obvious at the lower temperature.The ammonia degradation rate of 15℃, 10℃and 6℃was 0.0239gNH_3—N/gMLSS.d, 0.0174gNH_3—N/gMLSS.d and 0.0104gNH_3—N/gMLSS.d respectively; Atthe same temperature, the nitrite growth rate of 15℃, 10℃and 6℃was0.0128gNO_2—N/gMLSS.d、0.0065gNO_2—N/gMLSS.d and 0.00234gNO_2—N/gMLSS.drespectively. This showed that ammonia degradation was mainly due to biologicalassimilation at low temperature. Only a small part of ammonia was converted to nitrite.
引文
1 王占生,刘文君.微污染水源饮用水处理[M].中国建筑工业出版社,1999:1~3
    2 张中祥,钱易.城市可持续发展与水污染防治对策[M].中国建筑工业出版社,1998:36~38
    3 张晶,许士国.沿海城市雨水资源利用探讨[J].水利水电技术,2003,34(11):4~7
    4 文湘华,占新民,王建龙等.含盐废水的生物处理研究进展[J].环境科学,1999,20(3):104~106
    5 A Li, G Guowei. The treatment of saline wastewater using a two-stage contact oxidation method [J]. Wat. Sci. Tech., 1993, 28(7):31~37
    6 J Stewart, H.F Ludwing, and Kearns W.H .Effect of Varying Salinity on Extended Aeration Process [J]. Water Pollution Control Federation. 1993, 34 (11): 31~1177
    7 J W Mulde, van Kempen R. N-removal by SHARON[J].Water Quality International, 1997, 2: 30~31
    8 Y Lei, Ching-ting L, K S Wen.Biodegration of dispersed diesel fuel under high salinity conditions [J]. Wat Res., 2000, 34(13):3303~3314
    9 N.Intrasungka, et al. Biological nutrient removal efficiency in treatment of saline wastewater [J].Wat. Sci. Tech, 1999,13 (6): 183~190
    10 Yucel Tokuz R.The effects of inorganic salts on the activated sludge process performance [J]. Wat.Res..1999, 23:99~104
    11 Craig R. Woolard et al. Biological treatment ofhypersaline wastewater by a biofilm of halophilic bacteria[J]. Water Envion. Research,1994, 66(3): 230~235
    12 A.C.Anthonisen et al. Inhibition Of nitrification by ammonia and nitrous acid [J].JWPCF, 1996, 48 (5): 835~852
    13 M F Hamoda and I M S Al-Atlar. Effects of high sodium chloride concentration on activated sludge treatment [J]. Wat. Sci.Tech. 1995, 31 (9):61~72
    14 S. Belkin, A. Brenner and A. Abeliovich. Biological treatment of a high sanity chemical industrial wastewater[J].Wat. Sci.Tech.. 1993,27(7): 105~112
    15 F Kargi, A Uygur. Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria [J].Environ Technol.1996, 17:325~330
    16 Arjen Rinzema. Sodium Inhibition of acetocalastic methanogens in granular sludge from a UASB reactor [J].Enzyme and Microb.Technol.. 1998, 10(1):24~32.
    17 G M Wang-chong, Loehr RC.Kinetics of microbial nitrification: nitrite-nitrogen oxidation [J].Wat Res, 1998, 12(8):605~609
    18 Charles Glass et al. Denitrification of high-nitrate and high-salinity wastewater [J]. Wat. Res.. 1999,33(1):223~229
    19 L Yang. Biodegrdation of dispersed diesel fuel under high salinity condition.Wat.Res.2000, 34(13):3303~3314
    20 C.T Lai. et al. Biological treatment of mineral oil in a salty Environment.Wat.Sci.Tech..2000, 42(5):369~375
    21 CJ Dale. Submerged biotower technology for tertiary nitrification of Poultry abattoir wastewater[J]. Journal of the Chartered Institution of water and Environmental Management, Feb 2000
    22 A R Dincer, F Kargi. Performance of rotating biological dise system treating saline wastewater[J]. Process Biochemistry, 2001, 36: 901~906
    23 F Kargi, A Uygur. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor[J]. Enzyme and Microbial Technology, 2004(34): 313-318
    24 M. S. Moussa, D. U. Sumanasekera. Long. term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers[J]. Wat Res. 2006, 31 (12): 2203~2211
    25 陈郭健.高盐度、高氨氮肠衣废水的治理研究[J].环境与开发,1995,10(1):5~7
    26 杨健.驯化活性污泥处理高含盐量有机废水[J].上海环境科学,1998,17(9):8~10
    27 刘洁玲.A-B两段法处理高含盐皂化废水[J].工业用水与废水,1999,30(1):6~8
    28 孟庆凡.高含盐环氧丙烷废水生化处理的研究[J].工业用水与废水,2000,2431(1):19~21
    29 冯叶成、古新民.活性污泥处理系统耐含盐废水冲击负荷性能[J].环境科学,2000,21 (1):106~108
    30 王静,张雨山.海水盐度对完全混合活性污泥法氨氮去除率的影响研究[J].工业水处理,2000,20(4):18~19
    31 张雨山,王静,寇希元.完全混合活性污泥法处理含海水污水时基质降解与生物增长之间的关系[J].工业水处理.2000,20(11)
    32 何健.高盐度难降解工业废水生化处理研究[J].中国沼气.2000,18(2):12~16
    33 刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,27(11):54~56
    34 刘样凤,李青山,乌锡康.驯化活性污泥处理高含盐量有机废水的研究[J].工业用水与废水,2002,33(4):43~45
    35 梁晨辉,吉风蓉,庞春霞.改进型SBR法处理高盐度有机磷农药废水的研究[J].污染防治技术,2003,16(1):44~45
    36 崔有为、张国辉.海水冲厕污水生物处理可行性研究[J].工业水处理.2003,23(12):33~36
    37 李琳琳,林冰,徐金枝等.CASS法处理含盐废水的研究[J].工业用水与废水.2003,34(4):33~35
    38 石建敏,黄新文,林春绵等.无机盐对生物接触氧化处理法的影响[J].浙江工业大学学报.2003,1(1):97~100
    39 张延青,谢经良,沈晓南.海水利用后排水对城市污水处理厂生物处理的影响[J].城市环境与城市生态.2003,16(6):126~127
    40 于德爽.含海水城市污水的生物处理研究:[学位论文]哈尔滨:哈尔滨工业大学,2003
    41 祝贵兵,彭永臻,王淑莹等.低温下混有冲厕海水的污水生物处理研究[J].中国给水排水.2003,19(13):5~9
    42 崔有为,王淑莹,甘湘庆等.生物处理含盐污水的盐抑制动力学[J].环境污染治理技术与设备.2005,6(5):38~41
    43 武桂芝,武周虎,沈晓南等.生物接触氧化法处理含海水城市污水试验研究[J].青岛建筑工程学院学报.2004,25(4):53~55
    44 刘长青,张峰,毕学军等.海水对污泥沉降性能及脱氮除磷影响的试验[J].工业用水与废水.2005,36(6):24~26
    45 孙晓杰,周利,彭永臻.SBR中海水对短程硝化的影响[J].青岛理工大学学报,2005,26(6):111~113
    46 彭光霞,周岳溪,何绪文等.高含盐有机废水MDAT-IAT生物处理工艺研究[J].环境科学研究, 2006, 19 (3): 72~74
    47 M C Marquez. A taxonomic study of heterotrophic halophilic and non-halophilic bacteria from a sllar saltern [J]. J gen..Micobiol.1999,133:45~46
    48 陶卫平.嗜盐菌的嗜盐机制[J].生物学通报,1996,31(1):23~24
    49 田新玉.极端嗜盐细菌和耐盐细菌的区分[J].微生物学报,1999,30(4):314~317
    50 黄民生.嗜盐细菌生物技术处理高含盐量有机工业废水[J].污染防治技术,1998,11(1):30~
    51 任培根,周培瑾.中度嗜盐菌的研究进展[J].微生物学报,2003,43(3):427~431
    52 T Unemoto. Regulation of internal solute concentrations of marine vibro alginolyticus in response to external NaCl concentration [J]. Can. J. Microbiol, 2000, 25:922~926
    53 F Hamaide, D J Kushner. Proton motive iorce and Na~+/H~+ antiport in a moderate haiophile [J]. J. Bacterial. Fed,2001,57:1163~1172
    54 王颖群,陶涛.微生物渗透压过程中相溶性溶质[J].微生物学通报,1999,34(7):293~296
    55 Gauthier M J, Flatau G N, Breittmayer U J. Protective effect of glycine betaine on survival of Escherichia coli cells in marine environment [J]. Wat Sci. Tech, 2002, 24 (2): 129~132
    56 彭永臻.SBR法的五火优点[J].中国给水排水,1993,9(2):29~31
    57 国家环境保护局.水和废水监测分析方法(第三版)[M].中国环境出版社.1989
    58 国家环境保护局.HJ/T132-2003.高氯废水化学需氧量的测定碘化钾高锰酸钾法.北京:中国环境科学出版社,2004
    59 崔有为.海水冲厕的生物处理研究:[学位论文]哈尔滨:哈尔滨工业大学,2003
    60 张自杰,戴爱临.氧化塘在北方城镇污水处理中的应用[J].环境工程,1993,(3):1~4
    61 孟雪征.冷适应微生物处理寒冷地区低温生活污水的研究:[学位论文]哈尔滨:哈尔滨工业大学,2001
    62 M. K. Ray, G. S. Kumar, S. Shivaji. Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph pseudomonas syringae: a possible role in temperature adaptation. [J]. Bacterial, 1994, 176(14):4243~4249
    63 M. K. Ray, G. S. Kumar. Phosphorylation of membrane proteins on response to temperature in an Antarctic pseudomonas syingae[J]. Bicrobiology, 1996,140(9): 3217~3223
    64 R. A. Herbert, R. J. Sharp molecular biology and biotechnology of extremophiles[J].Chapman and H all. 1998,New York:204~221
    65 N. J. Russell. Mechanisms of thermal adaptation in bacteria: Blueprints for survival. Trends Biochem Sci.2000,(9): 108~112
    66 T. D. Brock. Thermophiles: General molecular and applied microbiology. 1998, (1):21-25
    67 辛明秀.嗜冷酵母分类学及酶系的研究:[学位论文]北京:中科院微生物研究所.1999:12~14,56~64
    68 T.Ochiai, N.Fukunaga, S. Sasaki.Two structurally-different N ADP-specific isocitrate dehydrogenases in an obligate psychrophilic bacterium, Vibrio sp.Strain ABE-1[J]. Gen. Appl. Mcrobiol. 1996:30(2):479~487
    69 T. Ochiai, N. Fukunaga. Purification and some properties of two NADP--specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, vibrio sp., strain ABE-1 [J]. Biochem. 1997,86(2):377~384
    70 P. G.Jones, M. Inouye. The cold-shock response,---a hot topic[J]. Molec Microbiol 1994,(11):811~818
    71 G.Willimsky, H. Bang, G. Fischer. Characterization of csp B, a bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures [J]. Bacteriol.2000,174(20):6326~6335
    72 M.R .Ray, T. Sitaramamma. Occurrence and expression of cspA, a Cold-Shock Gene, in Antarctic psychrotrophic bacteria[J]. FEMS Microbiol.Lett. 1994,116(1):55~60
    73 施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21~23
    74 耿艳楼,钱易.简捷硝化-反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2~6
    75 潘桂珉.煤气废水亚硝化型硝化的研究[J].水处理技术,2000,20(4):230~235
    76 王志盈,彭党聪,袁林江等.高氨浓度下生物流化床内亚硝化过程的选择性研究[J].西安建筑科技大学学报,2000,32(1):1~7
    77 李春杰,顾国维.SMSBR处理废水中的短程硝化反硝化[J].中国给水排水,2001,17(11):8~12
    78 张英杰.亚硝化型硝化的控制途径[J].中国给水排水,2002,18(6):29~31
    79 辛明秀,周培瑾.低温微生物研究进展[J].微生物学报,1998,38(5):400~403
    80 J.A Oleszkiewicz, S.A Berquist. Low temperature nitrogen removal in sequencing batch reactors [J]. Wat Res, 1999, 22(9): 1163~1171
    81 A Andersson, P Laurent, A Kihn et al. Impact of temperature on nitrification in biological activated carbon(BAC) filters used for drinking water treatment[J]. Wat Res, 2001, 35(12):2923~2934
    82 M.A. Head, J.A Oleszkiewicz. Bioaugmentation for nitrification at cold temperatures [J]. War Res, 2003, 31 (8):2824~2835
    83 P.Ilies, D. S. Mavinic. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate [J]. War Res, 2001, 33(8):2934~2945
    84 Xie Shu-guang, Zhang Xiao-jian, Wang Zhan-sheng. Temperature effect on aerobic denitrification and nitrification [J]. Journal of Environmental Sciences, 2003, 15(5):669~673
    85 白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报,2001,21(5):569~572
    86 白晓慧,王宝贞.寒冷地区城市污水处理厂改进工艺的运行效能fJ].中国环境科学,2001,2(1):70~73
    87 谢曙光,张晓建,王占生.极低温度下两级曝气生物滤池的运行特性[J].中国给水排水,2002,18(7):17~19
    88 何星海,武江津,常丽春.官厅水库入库生物接触A/O工艺低温试验研究[J].环境科学,2004,25(1),99~102
    89 李敏,章北平,胡国云等.低温兼性生化处理生活污水[J].华中科技大学学报,2006,23(1):49~51
    90 罗固源,季铁军,豆俊峰.SUFR系统在低温影响下处理效果的试验分析[J].环境科学学报,2005,25(4):512~518
    91 王春荣,王宝贞,王琳.温度及氨氮负荷对曝气生物滤池硝化作用的影响[J].城市环境与城市生态,2004,17(4):24~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700