锁模脉冲拍频实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光拍频自1955年发现以来,尤其是1960年激光出现以来得到迅速的发展。但迄今为止,关于光拍频技术的研究主要集中在利用单纵模激光器所产生的单纵模脉冲上,而对于锁模激光器输出的ps锁模脉冲的研究还没有引起人们足够的重视。
     本文主要对主被动锁模激光器输出的ps锁模脉冲拍频进行实验研究。在理论研究方面,分析了光拍频的基本原理,以及对拍频实验所用锁模光源的产生进行了讨论。同时对锁模技术的关键器件及其锁模机理进行了分析。对利用锁模脉冲拍频进行了理论计算,同时对拍频实验中关键器件声光移频器及其原理进行了讨论。
     在实验研究方面,对主被动锁模激光器及锁模脉冲的拍频进行了实验研究。在主被动锁模激光器实验方面,首先,研究了Nd4+:YAG激光器的自由振荡,然后加声光锁模器实现主动锁模激光器运转,研究其脉冲激光输出特性,最后加Cr4+:YAG晶体实现被动锁模激光器运转,研究其脉冲激光输出特性。进而利用主动锁模脉冲,及声光移频器实现了不同频移下的拍频。最终实现了ps级主动锁模脉冲在声光移频器最佳工作频率80MHz条件下的拍频,此状态下拍频结果最为理想,误差最小。
Optical beat frequency, which has been found since 1955, especially since the emergence of the laser in 1960 has been developed rapidly. So far, mostly, the research of optical beat frequency has concentrated on the use of single-frequency pulse generated by single longitudinal mode laser. However, the study on the mode-locked pulse generated by ps mode-locked laser did not arouse enough attention.
     This paper mainly concentrates on the Optical beat frequency of ps mode-locked pulse generated by avtively-passively mode-locked laser.
     In theory, firstly this paper introduced the basic principle of beat frequency, and then, discussed the generation of light source for beat frequency. In the meantime, the key mode-locking device and its mode-locking mechanism was analyzed. Also, the theoretical calculation of beat frequency for mode-locked pulse was worked. Then, the paper discussed the the acousto-optic frequency shifter that is the key device and its working principle.
     In experimental research, we carried out the experiments of actively- passively mode-locked laser and beat frequency for the mode-locked pulse. For the mode-locked lasers. First of all, we studyed the Nd4 +: YAG laser free vibration. And then added acousto-optic cell to achieve actively mode-locked operation, in the meantime, the laser output characteristics was studied. And finally we added Cr4 +: YAG crystal to achieve actively-passively mode-locked laser operation, and the characteristics of laser output is also studied. We achieved the beat frequencies under different frequency shift generated by acousto-optic frequency shifter. At last , when acousto-optic frequency shifter was under 80MHz that was its best working frequency, we achieved the best result of beat frequency. In this condition, the error of beat frequency for mode-locked pulse was the smallest.
引文
1 Davis, D. T.,Collins, R. J.. Frequency Beats in the off-Axis Modes of Ruby Lasers. Minnesota Univ Minneapolis Dept of Electrical Engineering. 1965, TR-3,2p
    2 KOHANZADEH Y, AUSTON DH. . MEASUREMENT OF LOW-ABSORPTION COEFFICIENTS USING THE BEAT FREQUENCY SHIFT BETWEEN TRANSVERSE MODES OF A LASER. IEEE J.Quantum Electron. 1970, QE-6(7):475~477
    3 Weksler M., Vager Z., Neumann G.. MEASUREMENT OF A VERY HIGH DISPLACEMENT SENSITIVITY OF THE BEAT FREQUENCY IN AN He-Ne LASER. IEEE J. Quantum Electron. 1980, QE-16(7):785~790
    4 Jettappa.Richard Rodrigues, Sharma.Seshadri. Frequency error estimation in nonlinear systems using beats. ASME Des Eng Div Publ DE. 1991, 37:91~96
    5 S.G. Murdoch, R. Leonhardt, J.D. Harvey. Tuneable THz beat frequency generation in optical fibers. Optics Communications. 1996, 130:25~28
    6 M. D. Pelusi, H. F. Liu, D. Novak. THz optical beat frequency generation from a single mode locked semiconductor laser. Appl.Phys.Lett. 1997, 71 (4):449~451
    7 Sammy W. Henderson, Stephen M. Hannon. Advanced Coherent Lidar System for Wind Measurements. Proc. of SPIE. 2005, 5887(1):1~10
    8 Strand O T, Berzins L V, Goosman D R, et al. Veloeimetry using heterodyne techniques. Proe.SPIE. 2005, 5580:593~599
    9 O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth. Compact system for high-speed velocimetry using heterodyne techniques. Rev.Sci.Instrum. 2006, 77(083108):1~8
    10 MTAl-Qdah, M Khazani, H A Abdul-Rashid, K Dimyati, BMAli. A new optical modulator chirp measurement technique using differential frequency beating. J. Opt. A: Pure Appl.Opt. 2006, 8:315~318
    11 Shuko Yokoyama, Yuki Hagihara, Takeshi Yasui, Tsutomu Araki. A Distance Meter using a Sub-Terahertz Intermode Beatin an Optical Frequency Comb. IEEE. 2008, 1~2
    12 Y.C.Huang, A.S.Solntsev, T.D. Wang, W.W.Hsu. Generation of fs laser pulses from a ps pulse-pumped optical parametric amplifier with a beat-wave seed signal. Optics Communications. 2009, 282:2250~2254
    13杨选民,黄宗华,陈永强.用光的拍频波测量光速.应用激光. 1981,4:41~42
    14汤俊雄,李爱国.用稳光程干涉仪拍频检测小位移.中国激光. 1989, 16(3):156~169
    15李信,邱宗明,刘君,赵念念,李康循,郭彦珍.应用全息光栅拍频的精密测量仪.西安理工大学学报. 1995, 11(1):22~27
    16闫雪涛.激光陀螺中光波叠加机理研究. 2001年飞行器惯性器件学术交流会论文集. 2001:161~167
    17管致中,夏恭恪.信号与线性系统(第三版).北京:高等教育出版社. 2002:133~141
    18王林.利用拍频反馈控制调制频率实现再生锁模的光纤激光器.半导体光电. 2002, 23(5):308~311
    19伞海生,温继敏,刘戬,谢亮,祝宁华.基于光外差技术的超宽带频率响应测量系统.光学学报. 2005, 25(11):1497~1500
    20李正正,蔡虹,洪小刚等.双光束激光多普勒测速系统.物理实验. 2005, 25(3):44~47
    21秦勤.一种针对雷达多普勒测速系统全面干扰的方法.火控雷达技术. 2005, 34:65~68
    22王双义,吕志伟,林殿阳,王超.利用布里渊散射进行目标探测.激光与光电子学进展. 2006, 43(2):13~17
    23周秀云,周肇飞,张涛.石油机械大尺寸零件精密测量装置研究.西南石油大学学报. 2007, 29(4):145~148
    24周金龙,董小鹏,李伟文,夏历,沈平.光子学技术生成微波信号.电子技术. 2008, 4:62~64
    25王明吉,刘丽群.连续油管长度激光多普勒在线测量系统.科学技术与工程. 2009, 9(8):2162~2164
    26齐恕安,宋建忠.无导轨激光干涉法测量大长度的进展.光电技术及系统学术讨论会论文集(第三册). 1984:253~264
    27克希耐尔.固体激光工程.北京:科学出版社. 2002:455~459
    28周炳焜,高以智,陈倜嵘,陈家骅.激光原理(第四版).国防工业出版社. 2000:235~238
    29愈宽新,姜铁良,赵启大.激光原理与激光技术.北京工业大学出版社. 1998:258~271
    30克希耐尔.固体激光工程.北京:科学出版社. 2002:104~131
    31张志海,邢歧荣,王加贤,柴路,张伟力,王清月.采用Cr4+:YAG为可饱和吸收体的Nd:YAG调Q锁模.光电子·激光. 1999, 10(6):508~511
    32 M.L.Stitch. Laser Handbook. North-Holland Publishing Company. 1979, 3:306~314
    33 Yankov P. Cr4+:YAG Q-switching of Nd:host laser oscillators. J. Phys. (D) Appl. Phys.. 1994, 27(6):1118~1120
    34 Shimony Y, Burshtein Z, Kalisky Y. Cr4+:YAG as passive Q-swithch and Brewster plate in a pulse Nd:YAG laser. IEEE J.Quantum Electron. 1995, 31(10):1738~1741
    35 A Sennaroglu, C R Pollock. Efficient continuous-wave chromium-doped YAG laser[J]. J.Opt.Soc.Am(B). 1995, 12(5):930~937
    36 Y Shimony, Z Burshteim, Y Kalisky. Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser[J]. IEEE J.Quantum Electron. 1995, Q-E31(10): 1738~1741
    37 Ouyang Bin, Ding Yanhua, Wan Xiaoke, et al. Saturable absorption of Cr4+:YAG and its performance as Q-switches. Acta Optica Sinica(光学学报). 1996, 16(12):1665~1670
    38 ZHU Chang-hong, LI Zheng-jia, ZHOU Hai, et al. Theoretical and experimental researches on repetition rate of pulse with passive or self-Q-switched laser.Journal of optoelectronics·Laser(光电子·激光). 2001, 12(8):802~805
    39徐介平.声光器件的原理、设计和应用.北京:科学出版社. 1982:50~270
    40石顺祥,张海兴,刘劲松.物理光学与应用光学.西安:电子科技大学出版社. 2003:266~267
    41朱京平.光电子技术基础.北京:科学出版社. 2003:178~181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700