基于相位调制和偏振烧孔的多波长掺铒光纤激光器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输出波长间隔均匀的多波长掺铒光纤激光器在很多领域,如波分复用通信系统、光纤传感、光学仪器和微波光子系统中都有重要的应用。然而掺铒光纤在室温下是均匀展宽的介质,由此产生的模式竞争使激光器谐振腔中很难实现稳定的多波长振荡。为了研究能够在室温下实现稳定多波长输出的掺铒光纤激光器,本文采用了在激光谐振腔中引入正弦相位调制和偏振烧孔的方法来抑制腔中模式竞争。
     在激光谐振腔中,使用正弦信号对半导体光波导进行驱动。这样,半导体光波导可以等效成两个器件:一个对光信号产生移频反馈效果的正弦相位调制器,和一个诱使掺铒光纤中产生偏振烧孔的非线性相位延时器。通过实验,得到了10波长输出的稳定光谱。相邻波长间隔为0.32nm,功率谱比较平坦,起伏小于5dB。结果表明,相位调制和偏振烧孔的共同作用,可以有效的抑制由于掺铒光纤的均匀展宽效应引起的模式竞争。
     在本文中,还使用了Matlab对仿真模型进行了数值模拟。数值模拟方面的主要工作包括:推导了基于高双折射光纤的Sagnac光纤环形镜的传输特性,分析了其作为梳状滤波器的优点;从光信号在半导体光波导中相位变化出发,分析了其作为非线性相位延时器和正弦相位调制器的原理。在介绍铒离子性质的基础上,将铒离子的速率方程用Mueller矩阵的形式表示出来,用来描述掺铒光纤中光信号功率和偏振态的传输情况。
Fiber lasers that oscillate simultaneously at multiple wavelengths with an accurate wavelength spacing are of great interest for many applications such as dense wavelength-division multiplexed (DWDM) communications, fiber-optic sensors, optical instrumentation, and microwave photonic systems. But erbium-doped fiber (EDF) is a homogeneous gain medium at room temperature, which lead to strong mode competition and unstable lasing. So it is different to obtain simultaneous multiwavelength lasing in erbium-doped fiber lasers. For realizing a stable multiwavelength erbium-doped fiber laser at room temperature, sinusoidal phase modulation and polarization hole burning are introduced in the laser cavity to suppress the mode competition.
     A semiconductor optical waveguide is driven by a sinusoidal signal in the laser cavity. It can be classified here as two optical devices: a sinusoidal phase modulator and a nonlinear phase retarder. The sinusoidal phase modulator produces frequency shift for the fiber laser, and the nonlinear phase retarder introduces polarization hole burning in the erbium-doped fiber. Stable lasing with multiple wavelengths up to 10 and wavelength spacing of 0.32nm was demonstrated at room temperature. The power fluctuation was less than 5dB. It indicated that the phase modulation and polarization hole burning are propitious to suppress the mode competition owing to the homogeneous broaden line.
     The numerical model is simulated in Matlab language in our study. Follows are the main points: the transmission characteristics of Sagnac loop mirror based on high-birefringence fiber are deduced. It can be see that the loop can be considered as a comb filter with an accurate wavelength spacing. Based on the analysis of phase shift in the semiconductor optical waveguide, it shows that the semiconductor optical waveguide works as a sinusoidal phase modulator and a nonlinear phase retarder. With the introduction of erbium ion dependencies, a Mueller matrix form of the erbium ion rate equations is presented to propagate powers and polarization states in the EDF.
引文
[1]刘颂豪.光纤激光器的新进展.光电子技术与信息, 2003, 16(1):1~8
    [2] Takashi Ono, Yutaka Yano. Key technologies for Terabit/Second WDM systems with high spectral efficiency of over 1 bit/s/Hz. IEEE Journal of Quantum Electronics, 1998, 34(11):2080~2088
    [3] Yamashita S, Hotate K. Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen. Electronics Letters, 1996, 32 (14):1298~1299
    [4] Sejka M, Varming P, Hubner J. Distributed feedback Er-doped fiber laser. Electronics Letters, 1995, 31(17):1445~1448
    [5] Poutie A J, Finlayson N, Harper P. Multiwavelength fiber laser using a spatial mode beating filter. Optics Letters, 1994, 19(10):716~718
    [6]刘艳,宁提纲,谭中伟等.光纤光栅梳状滤波器及其在新型可选波长激光器中的应用.光学学报, 2004, 6(24):763~765
    [7] Wang D N, Tong F W, Fang X F et al. Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium. Optics Communications, 2003, 288(46):295~301
    [8] Das G, Lit J W Y. L-band multiwavelength fiber laser using an elliptical fiber. IEEE Photonics Technology Letters, 2004, 14(5):60~62
    [9] Talaverano L, Abad S, Jarabo S et al. Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability. Journal of lightwave Technology, 2001, 19(4):553~558
    [10] Sun Junqiang, Qiu Junlin, Huang dexiu. Multiwavelength erbium-doped fiber laser exploiting polarization hole burning. Optics Communications, 2000, 182:193~197
    [11] Bellemare A, karasek M, Rochette M et al. Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid. Journal of Lightwave Technology, 2000, 18(6):825~830
    [12]孙国勇,瞿荣辉,方祖捷等.正弦相位调制下多波长掺铒光纤激光器的研究.中国激光, 2004, 31(11):1293~1295
    [13]吕福云,董法杰,谢春霞等.室温下稳定工作的多波长掺铒光纤激光器.光电子·激光, 2004, 15(6):654~656
    [14] Slavik R, LaRochells S, Karasek M. High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band. Optics Communications, 2002, 206(46):365~371
    [15]程凯,李冬,彭江得.可实现连续激光2脉冲转换的全光纤声光耦合环形谐振腔.中国激光, 2003, 4(30):325~328
    [16] Li S, Chan K T. Novel configuration for multiwavelength activity mode- locked fiber lasers using cascaded fiber Braggings. IEEE Photonics Technology Letters, 1999, 11(2):179~181
    [17] Gregory J C. Multiple Wavelength Generation With Brillouin/Erbium Fiber Lasers. IEEE Photonics Technology Letters, 1996, 8(11):1465~1467
    [18] Desurvire E, Zyskind J Z, Simpson J R. Study of spectral dependence of gain saturation and effect of inhomogeneous broadening in erbium-doped aluminosilicate fiber amplifiers. IEEE Photonics Technology Letters, 1990, 2(9):653~655
    [19] Desurvire E, Zyskind J Z, Simpson J R. Spectral gain hole-burning at in erbium-doped fiber amplifiers. IEEE Photonics Technology Letters, 1990, 2(4):246~248
    [20] Agrawal G P. Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics. Third Edition. USA: Elsevier Science, 2001. 377~379
    [21] Taylor M G. Observation of new polarization dependence effect in long haul optically amplified systems. IEEE Photonics Technology Letters, 1993, 5(10):1244~1246
    [22] Keys R W, Wilson S J, Healy S R et al. Polarization-dependent gain in erbium-doped fibers. Optics Communications, 1994, 4(3):306~307
    [23] Mazurczyk V J, Zyskind J L. Polarization dependent gain in erbium doped fiber amplifiers. IEEE Photonics Technology Letters, 1994, 6(5): 616~618
    [24] Bruyere F, Audouin O. Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain. IEEE Photonics Technology Letters, 1994, 6(5):654~656
    [25] Greer E J, Lewis D J, Macaulay W M. Polarization dependent gain in erbium-doped fiber amplifiers. Electronics Letters, 1994, 30(1):46~47
    [26] Hall D W, Weber M J. Polarized fluorescence line-narrowing measurements of Nd laser glasses: Evidence of stimulated emission cross-section anisotropy. Appl. Phys.Lett., 1983, 42(11):157~158
    [27] Hall D W, Haas R A, Burke W F et al. Spectral and polarization hole burning in neodymium glass lasers. IEEE Journal of Quantum Electronics, 1983, QE-19(1): 1704~1717
    [28] Chartier T, Sanchez F, Stephan, G. General model for a multimode Nd-doped fiber laser. II: Steady-state analysis of length-dependent polarization effects. Applied Physics B: Lasers and Optics, 2000, 70(1):33~43
    [29] Leners R, Francois P L, Stephan G. Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser. Optics Letters, 1994, 19(4):275~277
    [30] Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology, 1991, 9(2):271~283
    [31] Leners R, Georges T. Numerical and analytical modeling of polarization-dependent gain in erbium-doped fiber amplifiers. Journal of the Optical Society of America B: Optical Physics, 1995, 12(10):1942~1954
    [32] Manning R J, Antonopoulos A, Roux R Le et al. Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers. Electronics Letters, 2001, 37(4): 229~231
    [33] Soto H, Erasme D, Guekos G. Cross-polarization modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1999, 11(8): 970~972
    [34]孙军强,刘得明,黄德修等.窄线宽多波长掺铒激光器.中国激光, 2000, 27(9): 773~776
    [35]孙军强,丘军林,黄德修.应用偏振非均匀性实现多波长振荡的掺铒光纤激光器.中国科学(E辑), 2000, 30(5):391~394
    [36] Wysocki P, Mazurczyk V. Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas. Journal of Lightwave Technology, 1996, 14(4):572~584
    [37] Wagener J L, Falquier D G, Diogonnet M J F et al. A Mueller Matrix Formalism for Modeling Polarization Effects in Erbium-Doped Fiber. Journal of Lightwave Technology, 1998, 16(2):200~206
    [38] Wang L J, Lin J T, Ye P. Analysis of Polarization-Dependent Gain in Fiber Amplifiers. IEEE Journal of Quantum Electronics, 1998, 34(3):413~418
    [39]张相武.关于椭圆偏振的表征.哈尔滨师范大学自然科学学报, 1999, 15(5):56~58
    [40] Chu C Y J, Ghafouri-Shiraz H. Analysis of gain and saturation characteristics of a semiconductor laser optical amplifier using transfer matrices. Journal of Lightwave Technology, 1994, 12(8):1378~1385
    [41] Willner A E. Shieh W. Optical spectral and power parameters for all-optical wavelength shifting: single stage, fanout and cascadability. Journal of Lightwave Technology, 1995, 13(5): 771~781
    [42] Asghari M, White I H, Penty R V. Wavelength-conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 1997, 15(7):1181~1189
    [43] Yao Jian, Yao Jianping, Deng Zhichao et al. Investigation of Room-temperature Multiwavelength Fiber-Ring Laser That Incorporates an SOA-Based Phase Modulator in the Laser Cavity. Journal of Lightwave Technology, 2005, 23(8):2484~2490
    [44] Zhou Kejiang, Zhou Dongyun, Dong Fengzhong et al. Room Temperature Multiwavelength Erbium-doped Fiber ring laser employing sinusoidal phase modulation feedback. Optics Letters, 2003, 28(11): 893~895

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700