Ti-MCM-41分子筛的合成、改性及其催化酯交换反应性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MCM-41介孔分子筛具有比表面积高、孔道结构规则以及孔径易调节、化学稳定性好、表面易改性等特点,在有机催化领域有广阔的应用前景。过渡金属杂原子介孔分子筛的合成和功能化研究已成为分子筛材料开发的热点。本论文研究了Ti-MCM-41介孔分子筛的合成方法、孔径调变、质子酸改性及其在草酸二甲酯(DMO)与苯酚酯交换合成草酸二苯酯(DPO)反应中的催化性能,深入分析了Ti-MCM-41的结构、物化性质和催化性能间的构效关系。
     以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯和钛酸四丁酯为原料分别采用水热晶化法和微波辐射法合成了Ti-MCM-41介孔分子筛。通过XRD、低温N2吸附-脱附、TEM、FTIR、DR UV-vis、Py-FTIR、NH_3-TPD、XPS以及ICP-OES等表征技术分析研究了Ti-MCM-41的结构和物化性质,考察了微波辐射条件对分子筛性质的影响。结果表明,Ti-MCM-41分子筛具有长程有序的六方相介孔结构,Ti原子完全进入了分子筛的骨架,且主要以四配位体中心存在。微波辐射法具有合成周期短,产品粒径小、结构有序度高、孔道分布均匀、比表面积高以及活性组分损失少的优点。
     Ti-MCM-41分子筛对DMO与苯酚酯交换反应表现出良好的催化性能,这与其优良的结构和表面性质紧密相关。首先,分子筛中存在大量的骨架Ti(Ⅳ)中心,为酯交换反应提供了丰富的弱L酸性催化中心;其次,介孔分子筛高比表面积、大孔容的特征结构有利于反应体系的分子扩散,提高了酯交换反应的效率。
     根据增溶作用机理,添加有机扩孔剂进行Ti-MCM-41分子筛孔径调变。扩孔剂的疏水性和分子构型能够影响表面活性剂胶束的稳定性和溶胀体积,对扩孔效果有重要影响。添加适当的扩孔剂能够在保持Ti-MCM-41分子筛特征介孔结构及表面化学性质的同时有效的扩大其孔道尺寸,显著地提高了其催化酯交换反应的活性。正庚烷的扩孔效果最佳,分子筛平均孔径可由28.6(A|°)扩大至48.3(A|°)。
     考察了H_2SO_4改性合成S/Ti-MCM-41分子筛的结构和化学性质。由于SO_4~(2-)中S=O的强电子诱导作用,L酸中心增多,同时增强了L酸中心的吸电子能力,进一步活化了分子筛表面的羟基,生成B酸中心。对S/Ti-MCM-41分子筛的催化活性考察发现,B酸中心对酯交换反应有促进作用,但是同时会导致苯甲醚等副产物的生成。
MCM-41 mesoporous molecular sieve has many advantages such as high surface area, periodic hexagonal pore channels, easy adjustability of pore dimension, high chemical stability, and facile modification of surface properties. It has wide applications in catalytic organic chemistry. Synthesis and functionalization of transition-metal-substituted mesoporous molecular sieves have attract much attention in materials field. This dissertation focuses on the effect of synthesis conditions of Ti-MCM-41 mesoporous sieve on catalytic performance for transesterification of dimethyl oxalate (DMO) and phenol. Investigations have been carried out on the prosity regulation and protonic acid modification of Ti-MCM-41 and analysis of its structure-activity relationship.
     Ti-MCM-41 materials were successfully synthesized through both hydrothermal and microwave irradiation methods, using cetyltrimethylammonium bromide as a template agent, tetraethyoxysilane and tetrabutyl titanate as Si and Ti sources respectively in an alkaline solution. Various characterization techniques, including XRD, N2 adsorption-desorption, TEM, FTIR, UV-vis, Py-FTIR, NH_3-TPD, XPS and ICP-OES were carried out to analyze the textural and physicochemical properties of these Ti-MCM-41 samples, with particular emphasis on the influences of microwave conditions on molecular sieves properties. Ti-MCM-41 molecular sieve possesses a long-range ordered hexagonal structure and titanium has incorporated into the silica framework with Ti species mostly in tetrahedral coordination. Experimental results suggested that the microwave irradiation method could provide a short crystallization period, small particle size of products, high structural order, narrow pore size distribution, large surface area, and little loss of active component. The optimum microwave-irradiation condition was keeping a continuous heating at 120℃for 40 min.
     The desirable catalytic activities of Ti-MCM-41 molecular sieves could be ascribed to its favorable structure and surface properties. First, the rich inner-framework Ti (Ⅳ) centers could provide plenty of weak L acid sites for the transesterification of DMO and phenol. Secondly, the mesoporous structure with high surface area and large pore volume is beneficial for the molecular diffusion in reaction system, which improves the efficiency of transesterification reaction.
     According the mechanism of solubilization, the porosity regulation of Ti-MCM-41 by utilizing organic swelling agents was examined. Swelling agents played a key role for pore expansion because its hydrophobic and molecular properties could affect the stability and the swelling volume of surfactant micelles. Addition of swelling agents has been proved to be an effective way for pore expansion of Ti-MCM-41 while the characteristic mesoporous structure and its chemical properties were maintained simultaneously. Thus, the catalytic activity of Ti-MCM-41 molecular sieve was accelerated greatly as its pore size expanded. N-heptane was an optimal swelling agent with which the average pore diameter was expanded form 28.6(A|°) to 48.3 (A|°) .
     The structure and chemical properties of S/Ti-MCM-41 were also studied intensively. Due to the strong electron inductive effect caused by the S=O bond of SO_4~(2-), Lewis acid sites were intensified significantly. Moreover, the surface hydroxyl groups were further activated and formed H~+, generating Br(o|¨)nsted acid sites. The results of catalytic test of S/Ti-MCM-41 catalysts showed that Br(o|¨)nsted acid sites could promote the transesterification reaction between DMO and phenol, although it would also lead to the formation of by-product anisole.
引文
[1]曾昭槐,择形催化,北京:中国石化出版社, 1994
    [2] Kalipcilar H, Culfaz A, Influence of nature of silica source on template-free synthesis of ZSM-5, Crystal Research and Technology, 2001, 36(11): 1197-1207
    [3] Wilson S T, Lok B M, Messina C A, et al., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids, Journal of the American Chemical Society, 1982, 104(4): 1146-1147
    [4] Beck J, Vartuli J, Roth W, et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114(27): 10834-10843
    [5] Corma A, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical reviews, 1997, 97(6): 2373-2420
    [6] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359(6397): 710-712
    [7] Firouzi A, Kumar D, Bull L, et al., Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science, 1995, 267(5201): 1138
    [8] Steel A, Carr S W, Anderson M W, 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates, Journal of the Chemical Society, Chemical Communications, 1994, (13): 1571-1572
    [9] Chen C Y, Burkett S L, Li H X, et al., Studies on mesoporous materials II. Synthesis mechanism of MCM-41, Microporous Materials, 1993, 2(1): 27-34
    [10] Monnier A, Schuth F, Huo Q, et al., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 1993, 261(5126): 1299-1303
    [11] Vartuli J, Kresge C, Leonowicz M, et al., Synthesis of mesoporous materials: Liquid-crystal templating versus intercalation of layered silicates, Chemistry of materials, 1994, 6(11): 2070-2077
    [12] Vartuli J, Schmitt K, Kresge C, et al., Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chemistry of materials, 1994, 6(12): 2317-2326
    [13] Cheng C F, He H, Zhou W, et al., Crystal morphology supports the liquid crystal formation mechanism for the mesoporous molecular sieve MCM-41, Chemical physics letters, 1995, 244(1-2): 117-120
    [14] Blin J, Otjacques C, Herrier G, et al., Kinetic study of MCM-41 synthesis 1, International Journal of Inorganic Materials, 2001, 3(1): 75-86
    [15] Matijasil A, Acegtlin A C, Potrin J e a, Room-temperature synthesis of silicate mesoporous materials. An in situ study of the Iamellar to hexagonal phase transition, Chemical Communication, 1996, (10): 1123~1129
    [16] Luan Z H, He H Y, Zhou W Z, et al., Transformation of lamellar silicate into the mesoporous molecular sieve MCM-41, J. Chem. Soc., Faraday Trans., 1998, 94(7): 979-983
    [17] Huo Q, Feng J, Schuth F, et al., Preparation of hard mesoporous silica spheres, Chemistry of materials, 1997, 9(1): 14-17
    [18] Edler K J, White J W, Room-temperature formation of molecular sieve MCM-41, Journal of the Chemical Society, Chemical Communications, 1995, (2): 155-156
    [19] Chatterjee M, Iwasaki T, Hayashi H, et al., Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41, Catalysis Letters, 1998, 52(1): 21-23
    [20] Conner W C, Tompsett G, Lee K H, et al., Microwave synthesis of zeolites: 1. Reactor engineering, The Journal of Physical Chemistry B, 2004, 108(37): 13913-13920
    [21] Wu C G, Bein T, Microwave synthesis of molecular sieve MCM-41, Chemical Communications, 1996, (8): 925-926
    [22]姚云峰,张迈生,纳米介孔分子筛MCM-41的微波辐射合成法,物理化学学报, 2001, 17(12): 1117-1121
    [23]冯芳霞,钟炳,干粉法合成中孔分子筛MCM-41,石油学报:石油加工, 1998, 14(3): 89-92
    [24] MacLachlan M J, Coombs N, Ozin G A, Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10) 4- clusters, Nature, 1999, 397(6721): 681-684
    [25] Lin W, Chen J, Sun Y, et al., Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel, J. Chem. Soc., Chem. Commun., 1995, (23): 2367-2368
    [26] Tang X, Liu S, Wang Y, et al., Rapid synthesis of high quality MCM-41 silica with ultrasound radiation, Chemical Communications, 2000, (21): 2119-2120
    [27] Huo Q, Margolese D I, Ciesla U, et al., Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368(6469): 317-321
    [28]魏红梅,何农跃,室温强酸性介质合成MCM-41介孔分子筛——(Ⅰ)合成条件对样品的影响,湘潭大学自然科学学报, 2000, 22(3): 49-53
    [29]王晓钟,窦涛,萧墉壮,新型中孔分子筛合成进展,化学通报, 1997, (11): 16-20
    [30]李伟,陶克毅,微波技术在分子筛催化剂中的应用,石油化工, 1998, 27(9): 691-694
    [31] Tuel A, Gontier S, Synthesis and characterization of trivalent metal containing mesoporous silicas obtained by a neutral templating route, Chemistry of materials, 1996, 8(1): 114-122
    [32] On D T, Joshi P, Kaliaguine S, Synthesis, stability and state of boron in boron-substituted MCM-41 mesoporous molecular sieves, The Journal of Physical Chemistry, 1996, 100(16): 6743-6748
    [33] Chen X H, Huang L M, Ding G Z, et al., Characterization and catalytic performance of mesoporous molecular sieves Al-MCM-41 materials, Catalysis Letters, 1997, 44(1): 123-128
    [34] Qian G, Ji D, Lu G, et al., Bismuth-containing MCM-41: synthesis, characterization, and catalytic behavior in liquid-phase oxidation of cyclohexane, Journal of Catalysis, 2005, 232(2): 378-385
    [35]张艳丽,方静华,王家强等,新型介孔分子筛Sr-MCM-41的合成及其吸附性能的研究,云南大学学报:自然科学版, 2005, 27(4): 357-360
    [36] Takeguchi T, Kim J B, Kang M, et al., Synthesis and characterization of alkali-free, Ga-substituted MCM-41 and its performance for n-hexane conversion, Journal of Catalysis, 1998, 175(1): 1-6
    [37] Stone Jr V F, Davis R J, Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves, Chemistry of materials, 1998, 10(5): 1468-1474
    [38] He J, Xu W P, Evans D G, et al., Role of pore size and surface properties of Ti-MCM-41 catalysts in the hydroxylation of aromatics in the liquid phase, Microporous and Mesoporous Materials, 2001, 44: 581-586
    [39]郑珊,高濂, TiO2修饰MCM-41的结构表征及光催化苯酚降解活性,催化学报, 2001, 22(002): 206-208
    [40] Lim S, Haller G L, Gas phase methanol oxidation on V-MCM-41, Applied Catalysis A: General, 1999, 188(1-2): 277-286
    [41] Luan Z, Xu J, He H, et al., Synthesis and spectroscopic characterization of vanadosilicate mesoporous MCM-41 molecular sieves, The Journal of Physical Chemistry, 1996, 100(50): 19595-19602
    [42] Wang Y, Ohishi Y, Shishido T, et al., Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange, Journal of Catalysis, 2003, 220(2): 347-357
    [43] Sakthivel A, Selvam P, Mesoporous (Cr) MCM-41: A mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane, Journal of Catalysis, 2002, 211(1): 134-143
    [44] Xu J, Luan Z, Wasowicz T, et al., ESR and ESEM studies of Mn-containing MCM-41 materials, Microporous and Mesoporous Materials, 1998, 22(1-3): 179-191
    [45] Selvam P, Dapurkar S, Badamali S, et al., Coexistence of paramagnetic and superparamagnetic Fe (Ⅲ) in mesoporous MCM-41 silicates, Catalysis Today, 2001, 68(1-3): 69-74
    [46] Suvanto S, Hukkam ki J, Pakkanen T, et al., High-cobalt-loaded MCM-41 via the gas-phase method, Langmuir, 2000, 16(9): 4109-4115
    [47] Chang Z, Zhu Z, Kevan L, Electron spin resonance of Ni (Ⅰ) in Ni-containing MCM-41 molecular sieves, The Journal of Physical Chemistry B, 1999, 103(44): 9442-9449
    [48] Kong Y, Zhu H Y, Yang G, et al., Investigation of the structure of MCM-41 samples with a high copper content, Advanced Functional Materials, 2004, 14(8): 816-820
    [49] Hartmann M, Racouchot S, Bischof C, Characterization of copper and zinc containing MCM-41 and MCM-48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption, Microporous and Mesoporous Materials, 1999, 27(2-3): 309-320
    [50] Li L, Yu S, Liu F, et al., Reactions of turpentine using Zr-MCM-41 family mesoporous molecular sieves, Catalysis Letters, 2005, 100(3): 227-233
    [51] Higashimoto S, Tsumura R, Zhang S G, et al., Photoluminescence Properties of Mo-MCM-41 Mesoporous Molecular Sieves and Their Photocatalytic Reactivity for the Decomposition of NOx, Chemistry Letters, 2000, 29(4): 408-409
    [52] Florea M, Sevinci M, P¨?rvulescu V, et al., Ru-MCM-41 catalysts for diastereoselective hydrogenation, Microporous and Mesoporous Materials, 2001, 44: 483-488
    [53]胡冰,施剑林,陈航榕,镧系金属掺杂MCM-41分子筛的合成与表征,无机材料学报, 2004, 19(2): 329-334
    [54] He N, Yang C, Dai Q, et al., Studies on the state of Fe and La in MCM-41 mesoporous molecular sieve materials by TG analysis and other techniques, Journal of thermal analysis and calorimetry, 2000, 61(3): 827-837
    [55]刘云珍,邱健斌,郑思宁等, Ce-MCM-41介孔分子筛的合成与表征,稀土, 2004, 25(1): 38-40
    [56]郑瑛,邱健斌,陈前火等, Pr-MCM-41介孔分子筛合成与表征,中国稀土学报, 2002, 20(2): 129-131
    [57]林婉珍,李忠水, Dy-MCM-41介孔分子筛的合成与表征,福建化工, 2002, (3): 1-3
    [58] Eimer G A, Pierella L B, Monti G A, et al., Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials, Catalysis Letters, 2002, 78(1): 65-75
    [59] Wang Y, Zhang Q, Ohishi Y, et al., Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation, Catalysis Letters, 2001, 72(3): 215-219
    [60] Zhang Q, Wang Y, Itsuki S, et al., Manganese-containing MCM-41 for epoxidation of styrene and stilbene, Journal of Molecular Catalysis A: Chemical, 2002, 188(1-2): 189-200
    [61] Poppl A, Hartmann M, L. Kevan Electron spin resonance and electron spin echo modulation studies of Cu (Ⅱ) ion coordination and adsorbate interaction in ion-exchanged Al-MCM-41 mesoporous materials, J. Phys. Chem, 1995, 99: 17251-17258
    [62] Li Z, Gao L, Zheng S, Investigation of the dispersion of MoO_3 onto the support of mesoporous silica MCM-41, Applied Catalysis A: General, 2002, 236(1-2): 163-171
    [63] Lensveld D J, Mesu J G, Dillen A J, Synthesis and characterization of MCM-41 supported Nickel oxide catalysts, Microporous and Mesoporous Materials, 2001, 44-45: 401-407
    [64] Dapurkar S, Badamali S, Selvam P, Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates, Catalysis Today, 2001, 68(1-3): 63-68
    [65] Parida K, Rath D, Studies on MCM-41: Effect of sulfate on nitration of phenol, Journal of Molecular Catalysis A: Chemical, 2006, 258(1-2): 381-387
    [66] Wang R, Li Y, Preparation of MCM-41 supported phosphoric acid catalyst for thiophenic compounds alkylation in FCC gasoline, Catalysis Communications, 2010, 11(8): 705-709
    [67] Kozhevnikov I, Sinnema A, Jansen R, et al., New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41, Catalysis Letters, 1994, 30(1): 241-252
    [68] Zhao X, Lu G, Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study, The Journal of Physical Chemistry B, 1998, 102(9): 1556-1561
    [69] Shephard D S, Zhou W, Maschmeyer T, et al., Site-directed surface derivatization of MCM-41: use of high-resolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials, Angewandte Chemie International Edition, 1998, 37(19): 2719-2723
    [70] Macquarrie D J, Jackson D B, Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica, Journal of the Chemical Society, Chemical Communications, 1997, (18): 1781-1782
    [71] Kaminsky W, Strübel C, Lechert H, et al., Syndiotactic polypropene with MCM-41 supported metallocene [Me_2C (Cp)(Flu)] ZrCl_2, Macromolecular rapid communications, 2000, 21(13): 909-912
    [72] Huo Q, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chemistry of materials, 1996, 8(5): 1147-1160
    [73] Kim M J, Ryoo R, Synthesis and pore size control of cubic mesoporous silica SBA-1, Chemistry of materials, 1999, 11(2): 487-491
    [74] Ulagappan N, Rao C, Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica, Chemical Communications, 1996, (24): 2759-2760
    [75] Sayari A, Hamoudi S, Yang Y, Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater, Chemistry of materials, 2005, 17(1): 212-216
    [76] Sayari A, Liu P, Kruk M, et al., Characterization of large-pore MCM-41 molecular sieves obtained via hydrothermal restructuring, Chemistry of materials, 1997, 9(11): 2499-2506
    [77] Verhoef M J, Kooyman P J, Peters J A, et al., A study on the stability of MCM-41-supported heteropoly acids under liquid-and gas-phase esterification conditions, Microporous and Mesoporous Materials, 1999, 27(2-3): 365-371
    [78] Rodriguez I, Iborra S, Corma A, et al., MCM-41-Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Br?nsted base catalysts, Chem. Commun., 1999, (7): 593-594
    [79] Gao H X, Ma W X, Cao L, et al., A new FCC catalyst comprsing MCM-41 super macroporous zeolite, Petroleum Processing and Petrochemicals, 1997, 28(5): 16-20
    [80] Chen Y W, Lu Y H, Characteristics of V-MCM-41 and its catalytic properties in oxidation of benzene, Industrial & Engineering Chemistry Research, 1999, 38(5): 1893-1903
    [81] Van der Waal J, Rigutto M, Van Bekkum H, Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes, Applied Catalysis a-General, 1998, 167(2): 331-342
    [82] Kumar N, Nieminen V, Lindfors L E, et al., Cu-H-MCM-41, H-MCM-41 and Na-MCM-41 mesoporous molecular sieve catalysts for isomerization of 1-butene to isobutene, Catalysis Letters, 2002, 78(1): 105-110
    [83] Maschmeyer T, Rey F, Sankar G, et al., Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 1995, 378(6553): 159-162
    [84] Zhao X S, Lu G Q, Hu X, Organophilicity of MCM-41 adsorbents studied by adsorption and temperature-programmed desorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179(2-3): 261-269
    [85] Xu X, Song C, Andresen J M, et al., Preparation and characterization of novel CO_2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials, 2003, 62(1-2): 29-45
    [86] Selvam P, Bhatia S K, Sonwane C G, Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves, Industrial & Engineering Chemistry Research, 2001, 40(15): 3237-3261
    [87] Raimondo M, Perez G, Sinibaldi M, et al., Mesoporous M41S materials in capillary gas chromatography, Chem. Commun., 1997, (15): 1343-1344
    [88]欧阳光,中国化学产品大全,北京:化学工业出版社, 1998:1145~1147
    [89]王小东,苏凤林,中国聚碳酸酯(PC)开发和应用进展,辽宁化工, 2008, 37(12): 831-832
    [90] Sikdar S K, The world of polycarbonates, Chemtech, 1987, 17(2): 112~117
    [91]徐克勋,精细有机化工原料及中间体手册:化学工业出版社, 1998:381
    [92] Beranek J, Hlavackova J, Preparetion of diary carbonates, Nucleic Acid Chemistry, 1978, (2): 999~1001
    [93] Yoshinori H, Hideki K, Michio H, Catalyst for Manufacturation of Diaryl Carbonate, JP 0900923, 1997-04-05
    [94] Chalk A J, Aromatic carbonates and polycarbonates, US 2738520 1978-04-13
    [95] Hallgren J, Matthews R, The Reactions of Carbon Monoxide and Phenols Promoted by Palladium Complexes, Journal of Organometallic Chemistry, 1979, 175(1): 135-142
    [96] Hallgren J E, Catalytic aromatic carbonate process using manganese tetradentate redox co-catalysts, US 4349485, 1982-09-14
    [97] Bolon D A, Gorczyca T B, Hallgren J E, Process for the preparation of diaryl carbonates, US 4533504, 1985-08-06
    [98] Haitko D A, Grade M M, Longley K L, et al., Phosphine ligand promoted synthesis of tetraaryloxyalkane, US 5973183, 1999-10-26
    [99] Vavasori A, Toniolo L, Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate, Journal of Molecular Catalysis A: Chemical, 1999, 139(2-3): 109-119
    [100] Ishii H, Ueda M, Takeuchi K, et al., Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd2-Sn heterotrinuclear complex along with Mn redox catalyst without any addition of ammonium halide, Journal of Molecular Catalysis A: Chemical, 1999, 144(2): 369-372
    [101] Yin G, Jia C, Kitamura T, et al., A new efficient Pd-catalyzed synthesis of diphenyl carbonate with heteropolyacid as a cocatalyst, Journal of Organometallic Chemistry, 2001, 630(1): 11-16
    [102] Yasuda H, Watarai K, Choi J C, et al., Effects of bulky ligands and water in Pd-catalyzed oxidative carbonylation of phenol, Journal of Molecular Catalysis A: Chemical, 2005, 236(1-2): 149-155
    [103] Gabriello I, Ugo R, Renato T, Aromatic Carbonates, Ger Offen 2528412, 1976-01-08
    [104] Tundo P, Trotta F, Moraglio G, et al., Continuous-flow processes under gas-liquid phase-transfer catalysis (GL-PTC) conditions: the reaction of dialkyl carbonates with phenols, alcohols, and mercaptans, Industrial & Engineering Chemistry Research, 1988, 27(9): 1565-1571
    [105] Tuinstra H, Rand C L, Process for the preparation of phenyl carbonates or polycarbonates, 1994-05-24
    [106]曹平,杨先贵,唐聪明等,碳酸二甲酯和醋酸苯酯合成碳酸二苯酯热力学分析,天然气化工: C1化学与化工, 2008, 33(002): 43-46
    [107] Hideaki T, Yoshiyuki O, Atusi M, Process for preparing carbonate esters, EP 684221, 1995-11-29
    [108] Tsuneki H, Onda Y, Moriya A, et al., Process for preparing carbonate esters, US 5543546, 1996-08-06
    [109] Keigo N, Shuji T, Katsumasa H, Process for producing diaryl carbonate: US, 5834615, US 5834615, 1998-11-10
    [110] Nishihira K, Tanaka S, Nishida Y, et al., Process for producing a diaryl carnonate, US 5811573, 1998-09-22
    [111] Harada K, Sugise R, Inbe Y, Preparation of diaryl carbonates by heating diaryl oxalates, JP 08325206, 1996-12-10
    [112] Harada K, Sugise R, Inbe Y, Preparation of diaryl carbonates by decarbonylation diaryl oxalates, JP 0977722, 1997-03-25
    [113] Nishihira k, Yoshida S, Tanaka S, Manufacturing method of diphenyl carbonate, JP 11246488, 1999-09-14
    [114] Ito M, Preparation of Aromatic Carbonate Diesters, JP 0892167, 1996-04-09
    [115] King Jr J A, Colborn R E, Haitko D A, et al., Formation of carbonate esters and orthocarbonates, US 5663406, 1997-09-02
    [116] Rodney R L, Stagno J L, Beckman E J, et al., Enzymatic synthesis of carbonate monomers and polycarbonates, Biotechnology and bioengineering, 1999, 62(3): 259-266
    [117] Kongen K, Arihito C, kashun S, Preparation of carbonate compounds by esterification of urea derivatives in high yield and high selectivity, JP 08198815, 1996-06-06
    [118] Colborn R E, Method for making diaryl carbonate, US 5504238, 1996-04-02
    [119] Kazuyoshi S, Fusashi T, Manufacture of diaryl or alkyl aryl carbonates, JP 04187661, 1992-07-06
    [120] Nishihira K, Tanaka S, Harada K, et al., Process for producing a polycarbonate, US 5922827, 1999-07-13
    [121] Romano U, Tesei R, Process for the preparation of aromatic carbonates, US 4045464, 1977-08-30
    [122] Reisinger C P, Fischer P, Hansen S M, et al., Process for the production of a diaryl carbonate, US 10/791587, 2004-03-02
    [123] Akinobu Y, Takoshi Y, Preparation of diaryl carbonates and/or alkyl aryl carbonates, JP 09241218, 1997-09-16
    [124]王胜平,郭宏利,苯酚和草酸二甲酯在不同分子筛催化下的酯交换反应,化学通报, 2003, 66(001): 50-54
    [125] Ma X B, Guo H L, Wang S P, et al., Transesterification of dimethyl oxalate with phenol over TS-1 catalyst, Fuel Processing Technology, 2003, 83(1-3): 275-286
    [126]郭宏利,王胜平,马新宾等, Sn改性TS-1分子筛催化苯酚和草酸二甲酯合成草酸二苯酯,催化学报, 2003, 24(6): 423-427
    [127] Wang S P, Ma X B, Gong J L, et al., Characterization and activity of stannum modified H beta catalysts for transesterification of dimethyl oxalate with phenol, Catalysis Today, 2004, 93-95: 377-381
    [128] Liu Y, Zhao G M, Liu G, et al., Cyclopentadienyl-functionalized mesoporous MCM-41 catalysts for the transesterification of dimethyl oxalate with phenol, Catalysis Communications, 2008, 9(10): 2022-2025
    [129] Gong J L, Ma X B, Wang S P, et al., Transesterification of dimethyl oxalate with phenol over MoO_3/SiO_2 catalysts, Journal of Molecular Catalysis A: Chemical, 2004, 207(2): 215-220
    [130] Ma X B, Wang S P, Gong J L, et al., A comparative study of supported TiO_2 catalysts and activity in ester exchange between dimethyl oxalate and phenol, Journal of Molecular Catalysis A: Chemical, 2004, 222(1-2): 183-187
    [131] Wang S P, Ma X B, Guo H L, et al., Characterization and catalytic activity of TiO_2/SiO_2 for transesterification of dimethyl oxalate with phenol, Journal of Molecular Catalysis A: Chemical, 2004, 214(2): 273-279
    [132] Gong J L, Ma X B, Yang X, et al., Comparative preparation of MoO_3/SiO_2 catalysts using conventional and slurry impregnation method and activity in transesterification of dimethy oxalate with phenol, Catalysis Letters, 2005, 99(3-4): 187-191
    [133] Ma X B, Gong J L, Wang S P, et al., Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesterification of dimethyl oxalate with phenol, Catalysis Communications, 2004, 5(3): 101-106
    [134] Yang X, Ma X B, Wang S P, et al., Transesterification of Dimethyl Oxalate with Phenol Over TiO_2/SiO_2: Catalyst Screening and Reaction Optimization, Aiche Journal, 2008, 54(12): 3260-3272
    [135] Ma X B, Gong J L, Yang X, et al., A comparative study of supported MoO_3 catalysts prepared by the new "slurry" impregnation method and by the conventional method: their activity in transesterification of dimethyl oxalate and phenol, Applied Catalysis A: General, 2005, 280(2): 215-223
    [136] Gong J L, Ma X B, Yang X, et al., A bimetallic molybdenum and stannum catalyst for the transesterification of dimethyl oxalate with phenol, Catalysis Communications, 2004, 5(4): 179-184
    [137] Wang S P, Liu Y, Shi Y, et al., Dispersion and catalytic activity of MoO_3 on TiO_2-SiO_2 binary oxide support, Aiche Journal, 2008, 54(3): 741-749
    [138] Chen C X, Peng J S, Li B, et al., The catalytic activity of CuNi-containing hydrotalcites in the transesterification of dimethyl oxalate with phenol, Journal of Porous Materials, 2009, 16(2): 233-238
    [139]史芸,张广林,王胜平等,草酸二甲酯与苯酚酯交换反应产物的高效液相色谱法定量分析,天然气化工: C1化学与化工, 2009, (4): 76-78
    [140] Lihitkar N B, Abyaneh M K, Samuel V, et al., Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41, Journal of Colloid and Interface Science, 2007, 314(1): 310-316
    [141] Barrett E P, Joyner L G, Halenda P P, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen Isotherms, Journal of the American Chemical Society, 1951, 73(1): 373-380
    [142] Corma A, Navarro M T, Pariente J P, Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, Journal of the Chemical Society, Chemical Communications, 1994, (2): 147-148
    [143] Behrens P, Stucky G D, Ordered molecular arrays as templates: a new approach to the synthesis of mesoporous materials, Angewandte Chemie International Edition in English, 1993, 32(5): 696-699
    [144] Kosslick H, Lischke G, Landmesser H, et al., Acidity and catalytic behavior of substituted MCM-48, Journal of Catalysis, 1998, 176(1): 102-114
    [145] Chou B, Tsai J L, Cheng S, Cu-substituted molecular sieves as liquid phase oxidation catalysts, Microporous and Mesoporous Materials, 2001, 48(1-3): 309-317
    [146] Morey M, Davidson A, Eckert H, et al., Pseudotetrahedral O_3/2 V=O centers immobilized on the walls of a mesoporous, cubic MCM-48 support: preparation, characterization, and reactivity toward water as investigated by 51V NMR and UV-Vis spectroscopies, Chemistry of materials, 1996, 8(2): 486-492
    [147] Lim S, Haller G L, Preparation of highly ordered vanadium-substituted MCM-41: stability and acidic properties, The Journal of Physical Chemistry B, 2002, 106(33): 8437-8448
    [148]佟惠娟,李工,含铁和钒的ZSM-5型分子筛的合成,表征及催化性能,石油化工高等学校学报, 2002, 15(2): 33-36
    [149]赵杉林,张扬健,孙桂大等,钒硅MCM-41沸石分子筛微波合成与表征,燃料化学学报, 1999, 27(2): 130-133
    [150] Kishor Mal N, Kumar P, Fujiwara M, et al., Restructured V-MCM-41 with non-leaching vanadium and improved hydrothermal stability prepared by secondary synthesis, Studies in Surface Science and Catalysis, 2002, 142: 1307-1314
    [151]金向军,李晓萍,门勇等, M-HMS的合成,表征及在苯酚羟化反应中的催化性能,应用化学, 2002, 19(3): 247-250
    [152] Dutoit D C M, Schneider M, Hutter R, et al., Titania-silica mixed oxides: IV. Influence of Ti content and aging on structural and catalytic properties of aerogels, Journal of Catalysis, 1996, 161(2): 651-658
    [153] Prasad M R, Madhavi G, Rao A R, et al., Synthesis, characterization of high Ti-containing Ti-MCM-41 catalysts and their activity evaluation in oxidation of cyclohexene and epoxidation of higher olefins, Journal of Porous Materials, 2006, 13(1): 81-94
    [154] Ren J, Li Z, Liu S, et al., Silica–titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties, Catalysis Letters, 2008, 124(3): 185-194
    [155] Laha S C, Kumar R, Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions, Microporous and Mesoporous Materials, 2002, 53(1-3): 163-177
    [156] Gontier S, Tuel A, Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase, Applied Catalysis A: General, 1996, 143(1): 125-135
    [157] Karthik M, Tripathi A, Gupta N, et al., Characterization of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol, Applied Catalysis A: General, 2004, 268(1-2): 139-149
    [158] Barmatova M, Ivanchikova I, Kholdeeva O, et al., Titanium-Doped Solid Core-Mesoporous Shell Silica Particles: Synthesis and Catalytic Properties in Selective Oxidation Reactions, Catalysis Letters, 2009, 127(1-2): 75-82
    [159] Eimer G A, Chanquia C M, Sapag K, et al., The role of different parameters of synthesis in the final structure of Ti-containing mesoporous materials, Microporous and Mesoporous Materials, 2008, 116(1-3): 670-676
    [160] Rajakovic V N, Mintova S, Senker J, et al., Synthesis and characterization of V- and Ti-substituted mesoporous materials, Materials Science and Engineering: C, 2003, 23(6-8): 817-821
    [161] On D T, Nguyen S V, Hulea V, et al., Mono- and bifunctional MFI, BEA and MCM-41 titanium-molecular sieves. Part 1. Synthesis and characterization, Microporous and Mesoporous Materials, 2003, 57(2): 169-180
    [162] Chao M C, Lin H P, Mou C Y, et al., Synthesis of nano-sized mesoporous silicas with metal incorporation, Catalysis Today, 2004, 97(1): 81-87
    [163] Cagnoli M V, Casuscelli S G, Alvarez A M, et al., "Clean" limonene epoxidation using Ti-MCM-41 catalyst, Applied Catalysis a-General, 2005, 287(2): 227-235
    [164]辛勤,固体催化剂研究方法:北京:科学出版社, 2004
    [165] Eimer G A, Casuscelli S G, Chanquia C A, et al., The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves, Catalysis Today, 2008, 133: 639-646
    [166] Rajagopal S, Marzari J A, Miranda R, Silica-alumina-supported Mo oxide catalysts: genesis and demise of Br?nsted-Lewis acidity, Journal of Catalysis, 1995, 151(1): 192-203
    [167] Yori J, Krasnogor L, Castro A, Correlation between acid strength (Ho) and ammonia desorption temperature for aluminas and silica-aluminas, Reaction Kinetics and Catalysis Letters, 1986, 32(1): 27-32
    [168]朱玉霞,林伟,田辉平等,固体酸催化剂酸性分析方法的研究进展,石油化工, 2006, 35(7): 607-614
    [169] Sawa M, Niwa M, Murakami Y, Relationship between acid amount and framework aluminum content in mordenite, Zeolites, 1990, 10(6): 532-538
    [170] Lónyi F, Valyon J, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Microporous and Mesoporous Materials, 2001, 47(2-3): 293-301
    [171]徐勇,陈克巧,国内微波化学应用研究现状及进展,上海化工, 1998, 23(3): 56-58
    [172]黄双艳,李永红,微波技术在分子筛领域的应用进展,天津化工, 2003, 17(1): 13-16
    [173]张迈生,李莉,杨燕生等, MCM-41中孔分子筛的全微波辐射快速合成,中山大学学报, 1998, 37(2): 128-131
    [174] Park S E, Kim D S, Chang J S, et al., Synthesis of MCM-41 using microwave heating with ethylene glycol, Catalysis Today, 1998, 44(1-4): 301-308
    [175]赵杉林,张扬健,孙桂大等, MCM-41沸石分子筛的微波合成与表征,石油化工, 1999, 28(3): 139-141
    [176]许磊,王公慰,魏迎旭等, MCM-41介孔分子筛合成研究Ⅱ.微波辐射合成法,催化学报, 1999, 20(3): 251-255
    [177] Jiang T S, Shen W, Zhao Q, et al., Characterization of CoMCM-41 mesoporous molecular sieves obtained by the microwave irradiation method, Journal of Solid State Chemistry, 2008, 181(9): 2298-2305
    [178] Arafat A, Jansen J C, Ebaid A R, et al., Microwave preparation of zeolite Y and ZSM-5, Zeolites, 1993, 13(3): 162-165
    [179] Takahashi R, Sato S, Sodesawa T, et al., High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid, The Journal of Physical Chemistry B, 2000, 104(51): 12184-12191
    [180] Lafond V, Mutin P H, Vioux A, Control of the texture of titania-silica mxed oxides prepared by nonhydrolytic sol-gel, Chemistry of materials, 2004, 16(25): 5380-5386
    [181] Guidotti M, Ravasio N, Psaro R, et al., Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance?, Journal of Catalysis, 2003, 214(2): 242-250
    [182] Eimer G A, Casuscelli S G, Ghione G E, et al., Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts, Applied Catalysis a-General, 2006, 298: 232-242
    [183] Wagner M P, Reinforcing silicas and silicates, Rubber Chemistry and Technology, 1976, 49(3): 703-774
    [184] Geobaldo F, Bordiga S, Zecchina A, et al., DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite, Catalysis Letters, 1992, 16(1): 109-115
    [185] Prakash A M, Sung-Suh H M, Kevan L, Electron spin resonance evidence for isomorphous substitution of titanium into titanosilicate TiMCM-41 mesoporous molecular sieve, The Journal of Physical Chemistry B, 1998, 102(5): 857-864
    [186] Marchese L, Maschmeyer T, Gianotti E, et al., Probing the titanium sites in Ti-MCM41 by diffuse reflectance and photoluminescence UV-Vis spectroscopies, The Journal of Physical Chemistry B, 1997, 101(44): 8836-8838
    [187] Ratnasamy P, Srinivas D, Kn zinger H, Active sites and reactive intermediates in titanium silicate molecular sieves, Advances in Catalysis, 2004, 48: 1-169
    [188] Stakheev A, Shpiro E, Apijok J, XPS and XAES study of TiO_2-SiO_2 mixed oxide system, Journal of physical chemistry, 1993, 97(21): 5668-5672
    [189]Barr T L, The nature of the relative bonding chemistry in zeolites: an XPS study, Zeolites, 1990, 10(8): 760-765
    [190] Gao X, Simon R, Fierro J, et al., Structural characteristics and reactivity/reducibility properties of dispersed and bilayered V2O5/TiO_2/SiO_2 catalysts, The Journal of Physical Chemistry B, 1999, 103(4): 618-629
    [191] Blasco T, Corma A, Navarro M, et al., Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures, Journal of Catalysis, 1995, 156(1): 65-74
    [192] Weisz P, Frilette V, Intracrystalline and molecular-shape-selective catalysis by zeolite salts, The Journal of Physical Chemistry, 1960, 64(3): 382-382
    [193] Chen N Y, Garwood W E, Some catalytic properties of ZSM-5, a new shape selective zeolite, Journal of Catalysis, 1978, 52(3): 453-458
    [194] Das D, Lee J F, Cheng S, Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups, Journal of Catalysis, 2004, 223(1): 152-160
    [195] Nowiska K, Kaleta W, Synthesis of bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves, Applied Catalysis A: General, 2000, 203(1): 91-100
    [196] Saikia L, Satyarthi J K, Srinivas D, et al., Activation and reactivity of epoxides on solid acid catalysts, Journal of Catalysis, 2007, 252(2): 148-160
    [197] Srinivas D, Srivastava R, Ratnasamy P, Transesterifications over titanosilicate molecular sieves, Catalysis Today, 2004, 96(3): 127-133
    [198]于世涛,刘福胜,固体酸与精细化工,北京:化学工业出版社, 2006
    [199]许海红,郭岱石,蒋淇忠等,硫酸根促进的纯硅MCM-41催化假性紫罗兰酮环化合成紫罗兰酮的性能,催化学报, 2006, 27(12): 1080-1086
    [200] Fourches N, Turban G, Grolleau B, Study of DLC/silicon interfaces by XPS and in-situ ellipsometry, Applied Surface Science, 1993, 68(1): 149-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700