微波对羊毛微结构的影响及其在染整加工中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波是一种频率范围从300MHz-300GHz的电磁波,相应的波长范围为1mm-1m。用微波照射极性物质时,极性物质分子吸收微波,使分子转动和自旋速度加快,增加的内能转化为热量而产生热效应。随着科学技术的发展,人们对纺织材料的加工处理提出了更高的要求,像微波辐射加工处理各种纺织材料这样的均匀、快速、节能、高效无污染的加工方式已受到人们的广泛重视。作为一种高档产品,羊毛具有较好的弹性、柔韧性、吸湿和保暖性能等优点。对比其它天然或合成纤维,羊毛有相对较高的介电常数,因此在微波场中具有相对较高的极化能力。将微波技术应用到羊毛织物的染整加工中,是羊毛绿色环保染整加工领域的一个研究方向。
     尽管国内外许多研究者都在进行关于微波在纺织品染整加工中的应用研究,而关于微波在羊毛染整加工中的应用研究的报道却很少。本论文利用微波对不同含湿量的羊毛织物进行辐射,通过研究微波辐射下不同含湿量的羊毛微结构和性能同微波辐射之间的变化规律,得出微波辐射处理对不同含湿量羊毛结构和性能的影响规律。研究了微波辐射预处理技术对羊毛染色性能的影响以及羊毛轧染微波固色技术和微波抗菌整理技术,探讨了微波辐射条件下壳聚糖双胍盐酸盐合成时微波的热效应、特殊微波效应和非热效应机理。主要研究内容和结论如下:
     利用微波对不同含湿量的羊毛织物进行辐射,研究了微波辐射下不同含湿量的羊毛微结构和性能同微波辐射之间的变化规律,重点讨论了微波辐射功率和时间对不同含湿量羊毛物理机械性能、结晶度、表面形态结构、二硫键含量、有序α-螺旋链的含量和大分子聚集态结构的无序程度等的影响。不同含湿量的羊毛由于其纤维内部含水量的不同导致它们对微波的吸收作用和纤维内部结构调整能力也不同,因此断裂强力和断裂伸长经微波辐射处理后会有不同程度的提高或下降。常态羊毛织物经微波辐射处理后纤维的结晶指数和有序α-螺旋链的含量有所提高,微波辐射处理提高了常态羊毛纤维大分子聚集态结构的有序程度。干态和湿态羊毛织物经微波辐射处理后纤维的结晶指数和有序α-螺旋链的含量有所下降,微波辐射处理削弱了干态和湿态羊毛纤维大分子聚集态结构的有序程度。微波辐射对羊毛纤维的表面鳞片结构有所损伤,不同的微波辐射功率对纤维表面鳞片的损伤程度不同。常态和干态羊毛织物经微波辐射处理后,虽然纤维表面鳞片结构受到一定程度的损伤,但鳞片的大部分可以保持较完整的形态,表面相对较为光滑。湿态羊毛织物经过微波辐射处理后,纤维表面鳞片结构受到了较严重的破坏。微波辐射处理会使羊毛鳞片表层的胱氨酸中二硫键被破坏,胱氨酸二硫键的含量会随辐射功率的增大而减少。
     采用微波对羊毛进行辐射预处理,利用兰纳素活性染料和派拉丁1:1型金属络合染料对羊毛织物进行常规浸染法染色,在研究了预处理前后羊毛的染色吸附和扩散性能后,发现预处理后染料在羊毛上的上染速率和表观扩散系数提高,而染色吸附性能不变。微波处理破坏了羊毛纤维鳞片表层致密的二硫键网状结构,使羊毛的初始染色壁障被打破,染料更容易向纤维内部扩散。
     采用丽雅伦活性染料和兰纳素活性染料对羊毛织物进行轧染微波固色,利用单因素和正交实验考察了半乳甘露聚糖用量、尿素用量、亚硫酸氢钠用量、染浴pH值、微波辐射功率、微波固色时间和固色前室温堆置时间对染色织物表观得色量K/S值和固色率的影响,并与传统的羊毛轧染室温堆置固色工艺和常规浸染工艺进行了对比。羊毛轧染微波固色的最佳工艺为:微波辐射功率700W,固色时间5min,半乳甘露聚糖用量40g/L,亚硫酸氢钠用量20g/L,尿素用量100g/L。羊毛织物经轧染微波固色在700W功率下固色3min时,已经接近甚至超过羊毛轧染室温堆置24小时的固色率,且经微波固色后具有较好的匀染性。为了进一步改善羊毛轧染短时间微波固色的透染性,采用二氯异氰脲酸盐(DCCA)对羊毛进行预处理。羊毛经氧化预处理后染色织物的表观得色量和透染性较未经预处理羊毛有了显著的提高。同时该染色工艺还可以改善常规浸染工艺对纤维强力损伤大的缺点,具有高效、节能、降耗、工艺简单等诸多优点。
     合成了两种抗菌性壳聚糖衍生物,壳聚糖单胍盐酸盐和壳聚糖双胍盐酸盐。将合成的壳聚糖胍盐对羊毛织物进行整理,研究了整理后羊毛织物的抗菌性能。采用双氧水对羊毛织物进行预处理,分析了氧化处理后整理剂壳聚糖胍盐、交联剂柠檬酸和羊毛之间的交联机理。采用微波加热方式将两种整理剂对羊毛织物进行整理,研究了微波辐射功率和时间对羊毛织物物理机械性能和整理剂在羊毛上吸附量的影响,优化了微波整理工艺,并与传统烘干焙烘整理工艺进行了对比。羊毛经壳聚糖胍盐整理可以明显地提高其抗菌性能。未经双氧水氧化预处理的羊毛与壳聚糖胍盐和柠檬酸未发生交联反应,而经氧化预处理后的羊毛能与壳聚糖胍盐和柠檬酸产生酯化和酰胺化交联。采用微波短时间加热可大大减少烘干焙烘时间。采用微波加热将浸轧壳聚糖胍盐的羊毛织物在700W功率下处理2min,壳聚糖胍盐在羊毛上的吸附量和羊毛织物白度明显高于传统烘干焙烘工艺,而两种加热方式下,羊毛织物的断裂强力基本相同。微波加热条件下,在壳聚糖胍盐、柠檬酸和羊毛之间交联的均匀性和交联程度要好于传统烘干焙烘工艺,且整理后羊毛织物的抗菌性能更好。
     探讨了微波辐射条件下壳聚糖双胍盐酸盐合成时微波的热效应、特殊微波效应和非热效应机理。微波加热法合成壳聚糖双胍盐酸盐可以简化合成工艺流程,且显著提高了反应速率,在极短的时间内可以获得较常规加热法同样的产率,提高了合成效率。微波加热较常规加热法能提高反应速率主要是由于微波加热的化学反应体系升温迅速以及由微波介电加热的特殊性引起的特殊微波效应的结果,而对于微波加热过程是否存在非热效应这一问题的真正解决将有待于微波与化学反应的相互作用机理和非平衡理论的进一步发展。
     本文的研究表明,微波作为一种均匀快速的加热方式,将其应用到羊毛织物的染整加工领域,可大大缩短羊毛织物染整加工所需时间,降低水和能源的消耗,实现高效节能的清洁生产。研究微波对不同含湿量羊毛微结构和性能的影响为其在羊毛产业上的应用奠定了理论基础。
Microwave has wavelength between about 1mm and 1m corresponding to frequency from 300MHz up to 300GHz. Microwaves are high frequency radio waves which are capable of penetrating many materials and causing heat to be generated in the process. The ability of a substrate to absorb microwave energy is determined by its polarity. When an electrical field is applied at microwave frequencies, the polar molecules rotate in an attempt to rearrange their dipole moment with the changing electrical field. Energy is absorbed and heat is generated by the internal friction between the rotating molecules. In recent years, some new techniques and methods for saving energy and pollution-free in textile processing have been studied. The use of microwave heating method in textile dyeing and finishing has been the subject of considerable importance because of various advantages such as uniformity, flexibility, less energy and high efficiency. Wool has been widely used as a high-quality textile material due to its good elasticity, flexility, wettability, biodegradability and biocompatibility. Compared with other natural fibers or synthetic polymers, wool has a relatively higher dielectric constant (ε). Microwave irradiation is one of powerful techniques of non-contact heating, because the dielectric substances with large dielectric constant vigorously fever by vibration and rotation of permanent dipoles in microwave field. Wool has higher polarization ability in microwave field compared with other natural fibers or synthetic polymers. The use of high efficient microwave heating method in wool dyeing and finishing to achieve energy savings and high efficiency has been the subject of considerable.
     A number of studies have investigated the application of microwave in textile dyeing and finishing, however, few studies have investigated application of microwave in wool dyeing and finishing. In this paper, wool fabrics in different humid state were treated with microwave. The micro-structure and property change of wool fabrics in different humid state during microwave irradiation, dyeing behavior of wool pretreated by microwave, microwave pad dyeing process of wool and microwave curing for antimicrobial finishing of wool were studied. In addition, the study also penetrates into thermal efficiency, special microwave efficiency and non-thermal efficiency of microwave when chitosan biguanidine hydrochloride was synthesized under microwave irradiation. Contents and conclusions of the studies are mainly as follows.
     Wool fabrics in different humid state were treated with microwave. The micro-structure and property change of wool fabrics in different humid state during microwave irradiation was studied with stress put on discussing the effect of microwave irradiation at different power and treatment time on physical properties, crystallinity, surface morphological structure, the concentration of cystine S-S bonds, the concentration of the a-helical conformation and the degree of disorder for protein molecules chain of wool in different humid state. It can be concluded from the investigated report that microwave irradiation could impact the physical properties of wool fabrics in different humid state. The crystallnity and concentration of the a-helical conformation of the treated wool in nature humid state with microwave irradiation increased. The crystallnity and concentration of the a-helical conformation of the treated wool in dry state and wet state with microwave irradiation decreased. Microwave treatment improves ordered degree for nature humid wool fine structure and decreases ordered degree for dry and wet wool fine structure. The microwave treatment caused an obvious damaging effect of the surface scale-like structure of the wool fibres. The wool fiber in wet state lost its original scale-like structure after higher power microwave treatment. The concentration of cystine S-S bonds in microwave-treated wool fibres is lower than that of the untreated wool fibres. The cystine S-S gradually decreases with an increasing irradiation power.
     Wool was pretreated with microwave and then dyed with Lanasol reactive dye and Palatin 1:1 metal complex dye by conventional exhaust dyeing process. Adsorption behavior and diffusion coefficient were also studied. A higher dye uptake rate and increased diffusion coefficient of treated fibers are observed in the dyeing test, but the adsorption behavior keeps constant in the microwave treatment. Microwave pretreatment has a slightly damaging effect on the surface scale-like structure of wool, which results in the reduction of the concentration the S-S bonds in keratin. It was considered that destroy of the surface improved the absorption of dye molecules by the wool fibres during dipping and the diffusion of dye molecules into the wool fibres.
     Microwave pad dyeing process of wool dyed by Realan reactive dyes and Lanasol reactive dyes were carried out. Influences of various dyeing process conditions including galactomannan dosage, urea dosage, sodium bisulphite dosage, pH value, microwave irradiation power, microwave treatment time and cold batching time before microwave fixation on K/S values and fixation of dyed fabric were investigated by using single factor experimentation and orthogonal experimental design. Fixation, levelness of dyeing, dye penetration, breaking strength and breaking elongation of dyed wool fabric were compared among cold pad batch dyeing process, microwave pad dyeing process and conventional exhaust dyeing process. The optimal microwave pad dyeing conditions were found to be:microwave irradiation power 700W, microwave treatment time 5 minutes,40g/L galactomannan,20g/L sodium bisulphite,100 g/L urea. Microwave heating at 700W for 3 minutes produced almost same or more fixations compared with 24 hours cold batching. Higher uniformity was achieved with microwave heating. To improve the penetrating property of microwave pad dyeing process for wool, wool fabric was pretreated with dichlorinated isocyanurate (DCCA). It was found that the chlorination-treated wool fibres had significantly improved colour yield and penetrating property compared to untreated wool. The conventional exhaust dyeing process leads to the requirement for long continuous dyeing times at higher temperature, which can lead to certain impairments of the wool material as a consequence of fibre damage. Microwave pad dyeing process of chlorination-treated wool could minimize fibre damage in the dyeing by the exhaustion method, in particular to reduce the dyeing time, the energy consumption of the actual dyeing process still further.
     Antimicrobial chitosan guanidine hydrochloride and chitosan biguanidine hydrochloride have been synthesized by the guanidinylation reaction of chitosan. Antimicrobial properties of guanidinylated chitosan treated wool fabric were assessed. Wool fabrics were oxidized by hydrogen peroxide, crosslinking mechanism among finishing agent guanidinylated chitosan, crosslinking agent citric acid and wool was analyzed after oxidization. An alternative microwave curing system was used for curing guanidinylated chitosan treated wool fabric. The effects of microwave curing at different irradiation power and treatment time on the physical properties and adsorption capacity of guanidinylated chitosan on wool fabrics have been examined. Guanidinylated chitosan modifications can effectively improve the antimicrobial properties of wool fabric. Guanidinylated chitosan and citric acid did not crosslink with the wool fibers if wool fabrics were not oxidized by hydrogen peroxide and after oxidization, citric acid produce esterification and transamidation with the -OH group and the -NH2 group of the wool and guanidinylated chitosan to form a crosslink. The use of the microwave curing system effectively reduced the drying and curing time when compared to the conventional drying and curing system. The microwave-cured sample showed a significant improvement in whiteness and adsorption capacity at 700W power for 2min when compared with the conventionally cured sample. Retention of breaking strength was similar between microwave-cured sample and conventionally cured sample. The microwave-cured sample showed higher uniformly and degree of crosslinking and antimicrobial activity compared with the conventionally cured sample.
     The study penetrates into thermal efficiency, special microwave efficiency and non-thermal efficiency of microwave when chitosan biguanidine hydrochloride was synthesized under microwave irradiation. Microwave heating method can increase the reaction rate over the conventional heating method. Time is saved and efficiency is enhanced markedly. Enhancement of reaction rate for microwave heating is due to high heating rate of the reaction system and special microwave efficiency. Existence or non-existence of non-thermal efficiency depends on interaction mechanism between microwave and chemical reaction and further development of unbalance theory.
     It can be summarized that microwave irradiation treatment technique has significant potential for dyeing and finishing of wool fabric as microwave is a clean, environmentally friendly, highly efficient heating technology. Research for the micro-structure and property change of wool fabrics in different humid state during microwave irradiation lays foundations for further application of microwave in dyeing and finishing of wool fabrics.
引文
[1]吴长春,贺靓.棉织物微波染色研究[J].印染,2008(2):18-20.
    [2]朱若英.对环境友好的羊毛表面改性技术研究[D].天津工业大学,2003.
    [3]杭伟明.纤维化学及面料[M].北京:中国纺织出版社,2005:96-97.
    [4]于伟东.纺织材料学[M].北京:中国纺织出版社,2006:4344.
    [5]赵雪,何瑾馨,展义臻.羊毛环保染色工艺研究进展[J].上海毛麻科技,2008(4):18-23.
    [6]Kan C W, Yuen C W M. Dyeing behaviour of low temperature plasma treated wool [J]. Plasma Processes and Polymers,2006,3(8):627-635.
    [7]Darinka F, Alenka O, Sonja C B. The impact of corona modified fibres chemical changes on wool dyeing [J]. Journal of Materials Processing Technology,2009,209(1):584-589.
    [8]Mori M, Matsudairaand M, Inagaki N. Mechanical property and anti-felting property of wool fabric treated with low-temperature plasma [J]. Sen'i Gakkaishi,2006,52(1):19-27.
    [9]Kan C W, Yuen C W M. Surface characterisation of low temperature plasma-treated wool fibre [J]. Journal of Materials Processing Technology,2006,178(1-3):52-60.
    [10]展义臻,朱平,赵雪,等.物理技术在羊毛染色中的应用[J].毛纺科技,2007(10):55-58.
    [11]卢娜,邓炳耀,姚静,等.精纺呢绒的壳聚糖抗菌整理[J].毛纺科技,2006(5):9-12.
    [12]Hsieh S H, Huang Z K, Huang Z Z, et al. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan [J]. Journal of Applied Polymer Science,2004,94(5): 1999-2007.
    [13]Dev V R G, Venugopal J, Sudha S, et al. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye [J]. Carbohydrate Polymers,2009,75(4):646-650.
    [14]Lim S H, Hudson S M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group [J]. Carbohydrate Research,2004,339(2):313-319.
    [15]Xie Y J, Liu X F, Chen Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity [J]. Carbohydrate Polymer,2007,69(1):142-147.
    [16]Xie W M, Xu P X, Wang W. Preparation and antibacterial activity of a water-soluble chitosan derivative [J]. Carbohydrate Polymers,2002,50(1):35-40.
    [17]Peng Y F, Han B Q, Liu W S. Preparation and antimicrobial activity of hydroxypropyl chitosan [J]. Carbohydrate Research,2005,340(11):1846-1851.
    [18]Jia Z S, Shen D F, Xu W L. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan [J]. Carbohydrate Research,2001,333(1):1-6.
    [19]何伟方.微波在纺织工业中的应用[M].北京:中国纺织出版社,1990:1-3,120,123.
    [20]C.O.卡帕,A.斯塔德勒编著,麻远译.微波在有机和医药化学中的应用[M].北京:化学工业出版社,2007:9-10.
    [21]杨伯伦,贺拥军.微波加热在化学反应中的应用进展[J].现代化工,2001,21(4):8-12.
    [22]赵雪,何瑾馨,展义臻.微波技术在纺织品染整加工中的应用[J].印染,2008(21):44-47.
    [23]薛文良,程隆棣,李艳.微波技术在现代纺织工业中的应用[J].纺织导报,2006(4):24-25.
    [24]邓宇,冯建敏.微波强化H2O2在植物纤维漂白中的应用研究[J].印染助剂,2005,22(7):31-33.
    [25]Chiao-Cheng J H, Reagan B M. Microwave dyeing of polyesters with disperse dyes [J]. Textile Chemist and Colorist,1983,15(1):29-36.
    [26]Montazer M. Microwave assisted dyeing of cellulose with direct dyes [J]. Textile Chemist and Colorist,2004,11(1):23-36.
    [27]江美福.微波技术在真丝绸染色中的应用研究[J].微波学报,1997,13(3):248-254.
    [28]Chen Y F, Yang H, Li Z W. Investigation on microwave dyeing of cotton fabrics [J]. Journal of China Textile University, English Edition,1993,10(1):25-32.
    [29]韩林畴.物理技术在涤纶染色中的研究进展[J].山东纺织科技,2008(1):53-56.
    [30]邱红娟.微波在纺织染整上的应用[J].国外丝绸,2000(6):29-31.
    [31]王安平,陈克宁.棉织物防皱整理的研究和进展[J].染整技术,2007,27(10):5-10.
    [32]Katovic D, Vukusic S B. Application of electromagnet waves in durable press finishing with polycarboxylic acid [J]. Textile Chemist and Colorist,2002,2(4):39-42.
    [33]包建军.丝织物多元羧酸防皱整理及微波辐照技术的应用[D].四川大学,1999.
    [34]Purwar R, Joshi M. Effect of microwave curing on easy care finishing of cotton using glyoxal /glycol [J]. Textile Chemist and Colorist,2005,5(11):41-44.
    [35]Pepperman Jr A B, Vail S L. Microwave drying of FR cotton fabrics [J]. Textile Chemist and Colorist,1977,9(7):137-139.
    [36]Lyons D W, El-Nasher A, Wail S L, et al. Migration of FR finishes during drying of cylindrical cotton samples [J]. Textile Chemist and Colorist,1977,9(5):86-89.
    [37]Katovic D, Vukusic S B.用于纺织品干燥整理的微波装置[J].纺织信息周刊,2004(18):11.
    [38]李俊升,张晓林,石开通.微波低温等离子体处理羊毛的染色性能研究[J].染整技术,2005,27(10):1-4.
    [39]马晓光,石开通.氧微波低温等离子体用于棉针织物前处理探讨[J].针织工业,2004(4):78-80.
    [40]Sun H, Lin L, Jiang X. The improvement of dyeability of flax fibre by microwave treatment [J]. Pigment & Resin Technology,2005,34(4):190-196.
    [41]Haggag K, Hanna H L, Youssef B M. Dyeing polyester with microwave heating using disperse dyestuffs [J]. American Dyestuff Reporter,1995(3):22-34.
    [42]朱梁.微波的碱减量方法:中国,99124275[P].2001-07-18.
    [43]邹利云,陈宇岳,盛家镛.微波辐照后的真丝纤维结构及其性能研究[J].丝绸,2001(4):8-10.
    [44]Hou A Q, Wang X J, Wu L H. Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose [J]. Carbohydrate Polymers,2008,74(4):934-937.
    [45]张丽,王善元.微波处理对棉纤维结构与性能的影响[J].纤维素科学与技术,2008,16(4):42-47.
    [46]张丽,蔡玉兰,王善元.微波处理对棉纤维结晶结构的影响[J].纤维素科学与技术,2009,17(1):52-56.
    [47]曹雪琴.微波法对真丝纤维的接枝改性研究[J].印染助剂,2005,22(12):9-11.
    [48]Tsukada M, Islam S, Arai T. Microwave irradiation technique enhance protein fiber properties [J]. Autex Research Journal,2005,5(1):40-48.
    [49]Yoshimura Y, Ohe T, Ueda M, et al. Effect of microwave heating on dyeing [J]. Seni Gakkaishi,2007,63(6):146-151.
    [50]Murugan R, Senthilkumar M, Ramachandran T. Study on the possibility of reduction in dyeing time using microwave oven dyeing technique [J]. IE (I) Journal-TX,2007,287(2):23-27.
    [51]Yoshimura Y, Ohe T, Ueda M, et al. Effect of microwave on diffusion behavior of dye molecules [J]. Sen'i Gakkaishi,2009,65(9):241-245.
    [52]李红山,赖利超,黎松超,等.微波加热三氯化钕助染羊毛酸性染料染色研究[J].化学 研究与应用,2002,14(3):358-359.
    [53]Delaney M J. Pad-batch-microwave dyeing of wool [J]. Textile Chemist and Colorist,1972, 4(5):119-122.
    [1]Li J P, Lin H F, Zhao W F, et al. Instant modification of graphite nanosheets by the grafting of a styrene oligomer under microwave radiation [J]. Journal of Applied Polymer Science,2008, 109(3):1377-1380.
    [2]Moharram M A, Mahmoud O M. FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose Ⅰ into cellulose Ⅱ during mercerization [J]. Journal of Applied Polymer Science,2008,107(1):30-36.
    [3]Liu L, Li Y, Fang Y, et al. Microwave-assisted graft copolymerization of caprolactone onto chitosan via the phthaloyl protection method [J]. Carbohydrate Polymers,2005,60(3):351-356.
    [4]Nakai Y, Yoshimizu H, Tsujita Y. Enhanced gas permeability of cellulose acetate membranes under microwave irradiation [J]. Journal of Membrane Science,2005,256(1-2):72-77.
    [5]Huacai G, Wan P, Dengke L. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency [J]. Carbohydrate Polymer,2006,66(3):372-378.
    [6]何伟方.微波在纺织工业中的应用[M].北京:中国纺织出版社,1990:19.
    [7]施楣梧.用于丝绸化学修饰和抗皱整理微波辐照技术的研究[D].四川联合大学,1997.
    [8]Sakabe H, Ito H, Miyamoto T, et al. States of water sorbed on wool as studied by differential scanning calorimetry [J]. Textile Research Journal,1987,57(2):66-72.
    [9]Pierlot A P. Water in wool [J]. Textile Research Journal,1999,69(2):97-103.
    [10]Zhao X, He J X. Proceedings of the Fiber Society 2009 Spring Conference [C]. Shanghai: China Textile Press,2009.
    [11]侯秀良,刘启国,王善元.采用WAXD、DSC技术研究山羊绒、羊毛纤维的结晶结构[J].东华大学学报,2004,30(3):86-89.
    [12]Segal L. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffract meter [J]. Textile Research Journal,1959,29(10):786-794.
    [13]Cao J, Joko K, Cook J R. DSC studies of the melting behavior of a-form crystallites in wool keratin [J]. Textile Research Journal,1997,67(2):117-123.
    [14]Cao J, Bhoyro A Y. Structural characterization of wool by thermol mechanical analysis of yarns [J]. Textile Research Journal,2001,71(1):63-66.
    [15]Wortmann F J, Deutz H. Characterizing keratins using high-pressure differential scanning calorimetry [J]. Journal of Applied Polymer Science,1993,48(1):137-150.
    [16]Wortmann F J, Deutz H. Thermal analysis of ortho- and para-cortical cells isolated from wool fibers [J]. Journal of Applied Polymer Science,1998,68(12):1991-1995.
    [17]Liu H L, Yu W D. Study of the structure transformation of wool fibers with Raman spectroscopy [J]. Journal of Applied Polymer Science,2007,103(1):1-7.
    [18]Jurdana L E, Ghiggino K P, Nugent K W, et al. Confocal laser Raman microprobe studies of keration fibers [J]. Textile Research Journal,1995,65(10):593-600.
    [19]侯秀良,王善元.采用激光显微拉曼光谱仪研究山羊绒、羊毛纤维的结构[J].毛纺科技,2004(1):38-40.
    [1]王晶.羊毛染色及防缩氯化预处理中的AOX问题[J].印染,2000(7):42-45.
    [2]Schmidt A, Bach E, Schollmeyer E. The dyeing of natural fibres with reactive disperse dyes in supercritical carbon dioxide [J]. Dyes and Pigments,2003,56(1):27-35.
    [3]Merdan N, Akalin M, Kocak D. Effects of ultrasonic energy on dyeing of polyamide (microfibre)/Lycra blends [J]. Ultrasonics,2004,42(1-9):165-168.
    [4]Chen C, Fan L, Wang H. Antibacterial evaluation of cotton fabric pretreated by microwave plasma and dyed with Taiwan folkloric medicinal plants [J]. Sen'i Gakkaishi,2007,63(11): 252-255.
    [5]Ke G Z, Yu W D, Xu W L, et al. Effects of corona discharge treatment on the surface properties of wool fabrics [J]. Journal of Materials Processing Technology,2008,207(1-3): 125-129.
    [6]El-Zawahry M M, Ibrahim N A, Eid M A. The impact of nitrogen plasma treatment upon the physical-chemical and dyeing properties of wool fabric [J]. Polymer-Plastics Technology and Engineering,2006,45(10):1123-1132.
    [7]Xin J H, Zhu R, Hua J. Modification and low temperature dyeing properties of wool treated by UV radiation [J]. Coloration Technology,2002,118(4):169-173.
    [8]Ahmed A S E, El-Shishtawy R M. The use of new technologies in coloration of textile fibers [J]. Journal of Materials Science,2010,45(5):1143-1153.
    [9]Haggag K, El-Sayed H, Allam O G Degumming of silk using microwave-assisted treatments [J]. Journal of Natural Fibers,2007,4(3):1-22.
    [10]金郡潮.羊毛织物等离子体表面改性的研究[D].东华大学,2003.
    [1]沈一峰,夏玉书,曹怡.丝绸冷轧堆染色方法:中国,200610053726[P].2007-03-14.
    [2]Gilchrist A K, Rattee I I D. Complex formation in pad liquors-The cold pad-batch processs for dyeing wool with fiber reactive dyes [J]. Textile Chemist and Colorist,1973,5(6):105-108.
    [3]Gilchrist A K, Rattee I I D. The cold pad-batch processs for dyeing wool with fiber reactive dyes [J]. Textile Chemist and Colorist,1974,6(7):27-29.
    [4]Von der Eltz H U, Maier H P, Rostermundt K H. Pad cold-dwell processs for dyeing wool piece goods with reactive dyes under acid pH:美国, US 4701182 [P].1987-11-20.
    [5]Richter W, Durl B. Pad dyeing processs for wool:美国, US 4 640 691 [P].1987-02-03.
    [6]Asquith R S, Booth A K. Novel approaches to the cold dyeing of wool [J]. Textile Chemist and Colorist,1971,3(5):33-35.
    [7]Lewis D M, Seltzer I. Pad-batch dyeing of wool with reactive dyes [J]. Journal of the Society of Dyers and Colourists,1968,84(10):501-507.
    [8]Gibson J D M, Lewis D M, Seltzer I. Pad-batch dyeing of wool fabric-development of an industrial process [J]. Journal of the Society of Dyers and Colourists,1970,86(7):298-303.
    [9]唐菊.Q-溴丙烯酰胺型活性染料对蛋白质纤维染色性能的研究[J].江苏丝绸,2007(4):4-7.
    [10]谢孔良,曾兆敏.羊毛纤维剥色方法和剥色剂研究[J].纺织学报,1994,15(8):359-361.
    [11]赵涛.染整工艺学教程第二分册[M].北京:中国纺织出版社,2005:119-123,198.
    [12]姜宪凯,孙虹雁,林珑,等.尿素对亚麻纤维轧染染色性能的改进[J].黑龙江大学自然科学学报,2005,22(1):74-77.
    [13]Zhao X, Zhan Y Z. CPB dyeing of wool fabric with reactive dyes. The Indian Textile Journal, 2009(4):42-47.
    [14]Church J S, Davie A S, Scammells P J, et al. Lanasol dyes and wool fibres, part Ⅱ:model studies on the mechanism of dye fixation in an aqueous system [J]. Dyes and Pigments,1998, 39(4):313-333.
    [15]Haggag K, Hanna H L, Youssef B M. Dyeing polyester with microwave heating using disperse dyestuffs [J]. American Dyestuff Reporter,1995(3):22-34.
    [16]上海市毛麻纺织科学技术研究所编.毛织物染整技术[M].北京:中国纺织出版社,2006:345-346.
    [1]Guo Z Y, Xing R, Liu S. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan [J]. Carbohydrate Research,2007,342(10): 1329-1332.
    [2]Ignatova M, Manolova N. Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning [J]. European Polymer Journal,2007,43(4):1112-1122.
    [3]Delben F, Muzzarelli R A A. Thermodynamic study of the protonation and interaction with metal cations of three chitin derivatives [J]. Carbohydrate Polymer,1989,11(3):205-219.
    [4]Muzzarelli R A A, Muzzarelli C, Tarsi R. Fungistatic activity of modified chitosans against Saprolegnia parasitica [J]. Biomacromolecules,2001,2(1):165-169.
    [5]Liu X F, Guan Y L, Yang D Z, et al. Antibacterial action of chitosan and carboxymethylated chitosan [J]. Journal of Applied Polymer Science,2001,79(7):1324-1335.
    [6]Muzzarelli R, Weckx M, Filippini O, et al. Charateristic properties of N-carboxybutyl chitosan [J]. Carbohydrate Polymer,1989,11(4):307-320.
    [7]Ma G P, Yang D Z, Tan H L. Preparation and characterization of N-alkylated chitosan derivatives [J]. Journal of Applied Polymer Science,2008,109(2):1093-1098.
    [8]Kurita K, Kojima T, Nishiyama Y, et al. Synthesis and some properties of non-natural amino polysaccharides:Branched chitin and chitosan [J]. Macromolecules,2000, 33(13):4711-4716.
    [9]Hu Y, Du Y M, Yang J H. Synthesis, characterization and antibacterial activity of guanidinylated chitosan [J]. Carbohydrate Polymers,2007,67(1):66-72.
    [10]李群.一种甲壳胍抗菌剂的制备方法:中国,200610069131[P].2008-04-09.
    [11]Chen C S, Su J C, Tsai G J. Antimicrobial effect and physical properties of sulfonated chitosan [J]. Advances in Chitin Science,1998,3:273-277.
    [12]Wang Y, You Q D. Synthesis and antibacterial effect of new alkylenedibiguanides [J]. Journal of Chinese Pharmaceutical Sciences,2002,11(2):19-21.
    [13]Wallace M L. Testing the efficacy of polyhexamethylene biguanide as an antimicrobial treatment for cotton fabric [J]. Textile Chemist and Colorist,2001,1(11):18-20.
    [14]Qian L Y, Guan Y, He B H, et al. Modified guanidine polymers:Synthesis and antimicrobial mechanism revealed by AFM [J]. Polymer,2008,49(10):2471-2475.
    [15]钱丽颖,肖惠宁,何北海.高分子胍盐和多元胺抗菌型聚合物及其制备方法与应用:中国,200710030951[P].2008-05-07.
    [16]Krebs F C, Miller S R, Ferguson M L, et al. Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1 [J]. Biomedicine & Pharmacotherapy,2005,59(8):438-445.
    [17]潘志信.三氧化硫脲的合成[J].应用化学,2001,18(1):62-63.
    [18]杜予民.壳聚糖胍盐衍生物的及其制备方法:中国,200610124894[P].2007-4-11.
    [19]潘志信.甲壳胍的合成及吸湿保湿性能[J].应用化学,2003,20(4):377-379.
    [20]赵雪,乔真真,何瑾馨.壳聚糖双胍盐酸盐衍生物的合成及其抗菌性能研究[J].纺织科技精萃,2009(4):39.
    [21]Stockel R F. Aminosaccharide biguanides:美国,US 5637681[P].1997-06-10.
    [22]Audrey E M, Judith J B. A facile conversion of amino acids to guanidino acids [J]. Synthesis, 1986(9):777-779.
    [23]Hsieh S H, Huang Z K, Huang Z Z, et al. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan [J]. Journal of Applied Polymer Science,2004,94(5): 1999-2007.
    [24]Martel B, Weltrowski M, Ruffin D, et al. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics:Study of the process parameters [J]. Journal of Applied Polymer Science,2002,83(7):1449-1456.
    [25]Gawish S M, Ramadan A M, Abo El-Ola S M, et al. Citric acid used as a cross-linking agent for grafting P-cyclodextrin onto wool fabric [J]. Polymer-Plastics Technology and Engineering, 2009,48(7):701-710.
    [26]Zhao X, He J X, Zhan Y Z. The antimicrobial activity of wool fabrics treated with crosslinking agents and polyhexamethylene biguanide [J]. China Textile,2009(5):46-52.
    [27]Shin Y, Yoo D I. Use of chitosan to improve dyeability of DP-finished cotton (Ⅱ) [J]. Journal of Applied Polymer Science,1998,67(9):1515-1521.
    [28]Fouda M M G, El Shafei A, Sharaf S, et al. Microwave curing for producing cotton fabrics with easy care and antibacterial properties [J]. Carbohydrate Polymers,2009,77(3):651-655.
    [29]王禹,孙海涛,王宝辉.微波的热效应与非热效应[J].辽宁化工,2006,35(3):167-169.
    [1]C.O.卡帕,A.斯塔德勒编著,麻远译.微波在有机和医药化学中的应用[M].北京:化学工业出版社,2007:12,16-19.
    [2]赵雪,乔真真,何瑾馨.壳聚糖双胍盐酸盐衍生物的合成及其抗菌性能研究[J].纺织科技精萃,2009(4):39.
    [3]Stockel R F. Aminosaccharide biguanides:美国, US 5 637 681 [P].1997-06-10.
    [4]Singh V, Tiwari A, Tripathi D N. Microwave enhanced synthesis of chitosan-graft-polyacrylamide [J]. Polymer,2006,47(1):254-260.
    [5]黄卡玛,李颖,杨春,等.弱电磁场与生命系统相互作用的动力学基础—生物代谢动态过程中的电磁干扰[J].中国医学物理学杂志,1997,14(4):205-210.
    [6]Adey W. Nonlinear electrodynamics in bio-logical systems [M]. New York:Plcnum Press, 1984:227-245.
    [7]Chiabrera A.Interactions between electro-magnetic fields and cells [M]. New York:Plcnum Press,1985:281-396.
    [8]Huang K. The theoretical simulation of decompose reaction under the weak microwave irradiation in biology and chemistry [J]. Physics of Alive,1997,15 (2):28-30.
    [9]杨晓庆,黄卡玛.微波与化学反应相互作用中的关键问题讨论[J].电波科学学报,2006,21(5):802-809.
    [10]Mingos D M P, Baghurst D R. Applications of microwave dielectric heating effects to synthetic problems in chemistry [J]. Chem. Soc. Rev,1991,20(1):1-47.
    [11]Davies E, Olliff C, Wright I, et al. A weak pulsed magnetic field affects adenine nucleotide oscillations, and related parameters in aggregating dictyostelium discoideum amoebae [J]. Bioelectrochemistry and Bioenergetics,1999,48(1):149-162.
    [12]De Pomerai D, Daniells C, David H. Non-thermal heat-shock response to microwaves [J]. Nature,2000,405(6785):417-418.
    [13]Kotnik T, Miklavcic D. Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields [J]. Bioelectromagnetics,2000,21(5):385-394.
    [14]Lu S T, Mathur S P, Akyel Y. Ultrawide-band electromagnetic pulses induced hypotension in rats [J]. Physiology and Behavior,1999,65 (4):753-761.
    [15]Stuerga D A C, Gaillard P. Microwave athermal effects in chemistry:A myth's autopsy, part Ⅰ: historical back-ground and fundamentals of wave-matter interaction [J]. Journal of Microwave Power and Electromagnetic Energy,1996,31(2):87-100.
    [16]Stuerga D A C, Gaillard P. Micwave athermal effects in chemistry:A myth's autopsy-part Ⅱ: orienting effect s and thermodynamic consequences of electric field [J]. Journal of Microwave Power and Electromagnetic Energy,1996,31(2):101-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700