调频连续波SAR实时成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调频连续波合成孔径雷达(Synthetic Aperture Radar,SAR)是一种体积小、重量轻、造价低的高分辨成像雷达,非常适合无人机等小型飞行平台的遥感和侦察,具有广泛的应用前景。
     与常规的脉冲SAR相比,小型飞行平台应用背景下的调频连续波SAR实时成像主要面临四个问题:一是天线的连续运动不能忽略;二是系统采用去斜率的混频方式,采样频率很低;三是发射信号扫频非线性的影响必须考虑;四是要便于集成运动补偿处理。
     针对天线的连续运动问题,提出了一种改进的频率尺度变换(Modified Frequen-cy Scaling,MFS)算法,实现正侧视和小斜视角情况下快速的距离向处理。在非常适合去斜率信号实时成像的FS算法的基础上,结合调频连续波SAR特殊的信号模型,给出了严格的距离-多普勒域的信号解析式。分析了天线的连续运动导致的相位变化与方位向频率之间的关系。MFS算法通过在距离.多普勒域引入了一个新的相位因子校正了天线的连续运动。所引入的新的相位因子可以与原始FS算法中的块平移因子同时实现,因而该算法相对原始FS算法并不增加运算量。
     针对系统采样频率低的问题,提出了两种算法实现斜视角情况下的距离向处理。一种是MFS算法的扩展(Extension to MFS,EMFS)算法,这种方法从调频连续波SAR残余视频相位(Residual Video Phase,RVP)可以忽略的特点出发,在MFS算法的基础上通过增加斜置处理并修正相关相位因子来降低处理斜视角数据过程中引入的信号带宽。另一种是调频变换成像(Chirp Transform Imaging,CTI)算法,该算法同样从RVP可以忽略的特点出发,将距离徙动校正问题转化为一个非标准的Fourier变换问题。利用调频变换方法快速实现了这个非标准的Fourier变换。克服了MFS算法处理斜视角回波数据时存在的距离向频谱混叠问题。CTI算法效果与EMFS算法相当,但运算效率优于EMFS算法。
     针对扫频非线性的问题,提出了一种随多普勒中心变化的FS(Doppler CentroidDependent Frequency Scaling,DCDFS)算法实现存在扫频非线性时的斜视角情况下的快速距离向处理。分析了扫频非线性对距离向压缩性能的影响,给出了不同类型的扫频非线性情况下SAR成像对线性度的约束条件。在同时完成扫频非线性校正与距离徙动校正的过程中引入了一个与多普勒中心有关的因子,减小了斜视角的影响,从而降低了处理过程中引入信号的带宽,消除了距离向的频谱混叠。该算法可以直接推广到脉冲SAR的成像处理中。
     针对运动补偿对成像的制约问题,提出了一种随距离变化的步进变换(RangeVarying Step Transform,RVST)算法实现方位向数据的高效压缩。该算法利用典型的机载运动补偿通常在时域完成的特点,从时域出发,利用去斜率的方法实现方位向的压缩。由小型平台飞行高度较低的特点,考虑了斜视角随距离的变化关系,并在处理中补偿了这种变化。该算法同时分析了斜视角情况下调频斜率的非线性问题。
     给出了上述各种算法详细的推导过程及其解释,分析了各种算法的运算效率和处理误差,通过点目标仿真试验验证了各种算法的有效性。
Frequency-modulated continuous-wave(FMCW) synthetic aperture radar(SAR) is a light-weight,cost-effective,high-resolution imaging radar,which is suitable for small platforms such as unmanned aerial vehicles.
     Compared with pulsed SAR,there are four problems in FMCW SAR real-time signal processing.Firstly,the continuous antenna motion will induce serious dilation in the received signal and the dilation can cause serious distortions in the reconstructed images.Secondly,dechirp-on-receive technique can be used to reduce the bandwidth of the received signal before analog-to-digital conversion,so the system sampling frequency is low.Thirdly,sweep frequency non-linearity in the transmitted signal deteriorates the range compression seriously.Fourthly,the motion compensation should be easily compatible with the image formation algorithm.
     A modified frequency scaling(MFS) algorithm is proposed to perform the range processing of side-looking or low squint FMCW SAR signal with the continuous antenna motion.Based on the frequency scaling algorithm,which is suitable for dechirped signal,the MFS algorithm gives the rigorous expression of range-Doppler domain signal.The relation between the phase resulting from the continuous motion and the azimuth frequency is analyzed.The MFS algorithm compensates the continuous antenna motion by introducing a new phase term in range-Doppler domain without extra computation load.
     Two methods are proposed to perform the range processing of squint FMCW SAR. The first is the extention to the MFS(EMFS) algorithm.According to the negligibility of the residual video phase(RVP) of FMCW SAR,the EMFS algorithm removes the range frequency aliasing by adding a skewing operation and modifying relative phase factors.The second is the chirp transform imaging(CTI) algorithm.Also based on the negligibility of the RVP,the algorithm transforms the problem of range cell migration (RCM) correction to the problem of a non-standard Foruier transformation.The CTI algorithm performs the non-standard Fourier trandformation by a chirp transform with low sampling frequency.The performances of the EMFS algorithm and those of the CTI algorithm are equivalent.The CTI algorithm is more efficency than the EMFS algorithm.
     A Doppler centroid dependent frequency scaling(DCDFS) algorithm is proposed to perform the range processing of squint FMCW SAR signal with non-linearity.The impact of transmitted signal non-linearity is analyzed.The linearity requirement for two different type phase en,ors in SAR imaging is given.The DCDFS algorithm introduces a factor dependent Doppler centroid to alleviate the impact of the squint angle when the nonlinearity and the RCM are compensated at the same time.At the position,the range frequency aliasing is removed.The algorithm can also be extended to pulsed SAR.
     A range varying step transform(RVST) algorithm is proposed to perform the azimuth processing of FMCW SAR signal.The algorithm performs the azimuth compressing by using the dechirping method from the characteristic of accomplishing the second-order motion compensation in azimuth time domain.Due to the large variation of the look angle in the small platforms' FMCW SAR,the Doppler centroid can vary several hundred hetz from the near to the far range.The algorithm accommodates the variation of the Doppler centroid with the range distance by using a range-varying phase factor.The nonlinear chirp rate of the azimuth signal is also considered.
     The complete derivation of aforementioned algorithms is given.The computation load and processing error of the algorithms are analyzed.The algorithms performances are shown by point target simulation results.
引文
[1]Curlander J C,McDonough R N.Synthetic Aperture Radar:Systems and Signal Processing[M].New York:John Wiley & Sons,1991.
    [2]Carrara W G,Goodman R S,Majewski R M.Spotlight Synthetic Aperture Radar[M].Boston:Artech House,1995.
    [3]Skolnik M I.Introduction to Radar Systems[M].New York:McGraw-Hill,2001.
    [4]斯科尔尼克.雷达手册[M].北京:电子工业出版社,2003.
    [5]张直中.微波成像技术[M].北京:科学出版社,1990.
    [6]郭华东.机载雷达遥感应用试验研究[M].北京:中国科学技术出版社,1992.
    [7]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [8]Cumming I G,Wong F H.Digital Processing of Synthetic Aperture Radar Data[M].Boston:Artech House,2005.
    [9]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [10]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [11]Hamilton P C.Autonomous System for Initializing Synthetic Aperture Radar Seeker Acquisition:United States,5232182[P].1993-08-03.
    [12]Kennedy T A,Landau,Nussbaum M I H.Combined SAR Monopulse and Inverse Monopulse Weapon Guidance:United States,5473331[P].1995-12-05.
    [13]禹卫东,朱兆达,张兴敢.弹载SAR信号处理及其硬件实现[J].南京航空航天大学学报,1997,29(2):162-168.
    [14]Masey J.Unmanned Vehicles Handbook[M].Burnham:Shephard Press,2003.
    [15]Wergin A,Edrich M.First LUNA Flight Results with a Miniaturised SAR[C].Proceedings of EURO UVS International Technical Conference on Unmanned Vehicle System Technologies.Brussels,2003.
    [16]Hoogeboom P,de Wit J J M,Meta A.FM-CW Based Miniature SAR Systems for Small UAV's[C].Proceedings of NATO SET-092 Symposium on Advanced Sensor Payloads for Unmanned Aerial Vehicles.Lisboa,Portugal,May 2005.
    [17]Tsunoda S I,Pace F,Stence J,Woodring M.Lynx:A High-Resolution Synthetic Aperture Radar[C].Proc.of IEEE Aerospace Conference,Vol.5.Piscataway,NJ:IEEE Press,2000:51-58.
    [18]Stove A G.Linear FM-CW Radar Techniques[J].IEE Proc.Radar Sonar Navigation.1992,139(5):343-350.
    [19]Edrich M,Ultra-Lightweight Synthetic Aperture Radar Based on a 35GHz FMCW Sensor Concept and Online Raw Data Transmission[J].IEE Proc.Radar Sonar Navigation.2006,153(2):129-134.
    [20]Zaugg E,Hudson D,Long D.The BYU μSAR:a Small,Student-Built for UAV Operation[C].Proceedings of IGARSS'06.Piscataway,NJ:IEEE Press,2006:411-414.
    [21]Giret R,Jeuland H,Jeuland,Enert P.A Study of a 3D-SAR Concept for a Millimiter-Wave Imaging Radar Onboard an UAV[C].Proceedings of EuRAD'04.London:Horizon House Publications,2004:201-204.
    [22]Meta A,de Wit J J M,Hoogeboom P.Development of High Resolution Airborne Millimeter Wave FM-CW SAR[C].Proceedings of EuRAD'04.London:Horizon House Publications,2004:209-212.
    [23]Sherwin C W,Ruina J P,Raweliffe R D.Some Early Developments in Synthetic Aperture Radar System[J].IRE Transactions on MIL,1962,6(2):111-115.
    [24]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [25]Bennett J R,Cumming I G,Deane R A,Widmer P,Fielding R,McConnell P.SEASET Imagery Shows St.Lawrence[J].Aviation Week and Space Technology.February 26,1979:19.
    [26]Elachi C,Cimino J B.Shuttle Imaging Radar-A(SIR-A) Experiment[R].Washington:NTIS-N83-16594,1982,1-230.
    [27]Jordan R L,Huneycutt B L,Werner M.The SIR-C/S-SAR Synthetic Aperture Radar System[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):829-839.
    [28]Stofan E R,Evans D L.Overview of Results of Spaceborne Imaging SIR-C/X-SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):817-827.
    [29]Werner M.Shuttle Radar Topography Mission(SRTM):Experience with the X-band SAR interferometer[C].Proceedings of ICR'01.Piscataway,NJ:IEEE Press,2001:634-638.
    [30]Coltelli M,Fornaro G.ERS-1/ERS-2 Tandem Data for Digital Elevation Model Generation[C].Proceedings of IGARSS'98,Vol.2,Piscataway,NJ:IEEE Press,1998:1088-1090.
    [31]Zink M,Torres R,Buch C H,Rosich B,Closa J.The Advanced SAR System on ENVIST:Mission Status[C].Proceedings of EUSAR'02.Cologne,Germany,2002:175.
    [32]Eineder M,Schattler B,Breit H,Fritz T,Roth A.TerraSAR-X SAR Products and Processing Algorithms[C].Proceedings of IGARSS'05,Vol.7.Piscataway,NJ:IEEE Press,2005:4870-4873.
    [33]Nazarenko D M.RADARSAT Imaging Characteristics and Application Requirements[C].Proceedings of IEEE international radar conference'95.Piscataway,NJ:IEEE Press,1995:351-355.
    [34]Ralph G,Pok F L,Kenneth J.The RADARSAT-2&3 Topographic Mission:an Overview[C].Proceedings of IGARSS'02,Vol.3.Piscataway,NJ:IEEE Press,2002:1477-1479.
    [35]Shimada M.SAR Programmes in JAXA:From JERS-1 to the Future[J].IEE Proc.Radar Sonar Navigation.2006,153(2):122-128.
    [36]Ender J H G,Brenner A R.PAMIR - A Wideband Phased Array SAR/MTI System[J].IEE Proc.-Radar Sonar Navigation.2003,150(3):165-172.
    [37]Horn R.The DLR Airborne SAR Project E-SAR[C].Proceedings of IGARSS'96,Vol.3.Piscataway,NJ:IEEE Press,1996:1624-1628.
    [38]Ulander L,Hellsten,H.System Analysis of Ultra-Wideband VHF SAR[C].Proceedings of Radar'97.Piscataway,NJ:IEEE Press,1997:104-108.
    [39]Snoeig P.The PHARUS Aireborne SAR Concept[C].SPIE,Vol.2584,1995:484-493.
    [40]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [41]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [42]Griffiths H D.Synthetic Aperture Processing for Full-Deramp Radar[J].IEE Electronic Letters.1988,24(7):371-373.
    [43]Connan G,Griffiths H D,Brennan P V.FMCW SAR Development for Internal Wave Imaging[C].Proceedings of IEEE Oceans'97,Vol.1.Piscataway,NJ:IEEE Press,1997:73-78.
    [44]Connan G,Griffiths H D,Brennan P V,Renouard D,Barthlmy E,Garello R.Experimental Imaging of Internal Waves by a mm-Wave Radar[C].Proceedings of IEEE Oceans'98.Piscataway,NJ:IEEE Press,1998:619-623.
    [45]Yamaguchi Y,Mitsumoto M,Kawakami A,Sengoku M,Abe T.Detection of Objects by Synthetic Aperture FM-CW Radar[J].IEICE Trans.Commun.,1991,J74-B-Ⅱ(7):413-420.
    [46]Yamaguchi Y,Mitsumoto M,Sengoku M,Abe T.Synthetic Aperture FM-CW Radar Applied to the Detection of Objects Buried in Snowpack[C].Proceeding of IEEE Antennas and Propagation Society International Symposium.Piscataway,NJ:IEEE Press,1992:1122-1125.
    [47]Yamaguchi Y.Synthetic Aperture FM-CW Radar Applied to the Detection of Objects Buried in Snowpack[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(1):11-18.
    [48]Yamaguchi Y,Nishikawa T,Sengoku M,Boerner W M,Eom H J.Fundamental Study on Synthetic Aperture FM-CW Radar Polarimetry[J].IEICE Trans.Commun.,1994,E77-B(1):73-80.
    [49]Yamaguchi Y,Moriyama T.Polarimetric Detection of Objects Buried in Snowpack by a Synthetic Aperture FM-CW Radar[J].IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1): 45-51.
    [50] Moriyama T, Yamaguchi Y, Yamada H. Three-Dimensional Fully Polarimetric Imaging in Snowpack by a Synthetic Aperture FM-CW Radar[J]. IEICE Trans.Commun., 2000, E83-B(9): 1963-1968.
    [51] Saab seekers UK involvement in enhanced RBS15 seeker[J]. WEAPONS AND EQUIPMENT.
    [52] De Wit J J M. Development of an Airborne Ka-Band FM-CW Synthetic Aperture Radar[D]. Delft, Netherlands: Delft University of Technology, 2005.
    [53] Meta A. Signal Processing of FMCW Synthetic Aperture Radar Data[D]. Delft,Netherlands: Delft University of Technology, 2005.
    [54] De Wit J J M, Hoogeboom P. High-Rresolution Airborne FM-CW SAR: Design and Processing Aspects[C]. Proceedings of EUSAR'02. Cologne, Germany, 2002:163-166.
    [55] De Wit J J M, Meta A, Hoogeboom P. Modified Range-Doppler Processing for FM-CW Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 83-87.
    [56] Meta A, Hoogeboom P, Ligthart L P. Non-linear Frequency Scaling Algorithm for FMCW SAR Data[C]. Proceedings of EuRAD'06. London: Horizon House Publications, 2006: 9-12.
    [57] Meta A, Hoogeboom P, Ligthart L P. Range Non-Linearities Correction in FMCW SAR[C]. Proceedings of IGARSS'06. Piscataway, NJ: IEEE Press, 2006:403-406.
    [58] Meta A, Hakkaart P, van der Zwan F, Hoogeboom P, Ligthart L P. First Demonstration of an X-band Airborne FMCW SAR[C]. Proceedings of EUSAR'06. Dresden, Germany, 2006.
    [59] Meta A, Hoogebbom P, Ligthart L P. Correction of the Effects Induced by the Continuous Motion in FMCW SAR[C]. Proceedings of IEEE Radar Conference'06. Piscataway, NJ: IEEE Press, 2006: 358-365.
    [60] Meta A, Lorga J F M, de Wit J J M, Hoogeboom P. Motion Compensation for a High Resolution Ka-band Airborne FM-CW SAR[C]. Proceedings of EuRAD '05.London: Horizon House Publications, 2005: 391-394.
    [61] Meta A, Hoogeboom P. Signal Processing for High Resolution FMCW SAR and Moving Targets[C]. Proceedings of IRS'05, Berlin, Germany: Deutschen Gesell-schaft fur Ortung & Navigation, 2005: 127-132.
    [62] Lorga JFM, Meta A, de Wit J J M, Hoogeboom P, Mulder J A. Airborne FMCW SAR and Integrated Navigation System Data Fusion[C]. Proceedings of AIAA GNC'05. San Francisco, USA, 2005: 201-205.
    [63] Meta A, Hoogeboom P. Signal Processing Algorithms for FMCW Moving Target Indicator Synthetic Aperture Radar[C]. Proceedings of IGARSS'05. Piscataway, NJ: IEEE Press, 2005: 316-319.
    [64] Meta A, Hoogeboom P. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR[C]. Proceedings of IEEE International Radar Conference'05. Piscataway, NJ: IEEE Press, 2005: 326-331.
    [65] Meta A, Hoogeboom P. High Resolution Airborne FMCW SAR: Preliminary Results[C]. Proceedings of EUSAR'04, Vol. 1. Neu-Ulm, 2004: 183-186.
    [66] De Wit J J M, Meta A, Hoogeboom P. First Airborne FM-CW SAR Campaign:Preliminary Results[C]. Proceedings of IRS'04. Warszawa, Poland: Deutschen Gesellschaft fur Ortung & Navigation, 2004: 165-170.
    [67] Meta A, Hoogeboom P. Time Analysis and Processing of FM-CW SAR signals[C]. Proceedings of IRS'03. Dresden, Germany. Deutschen Gesellschaft fur Ortung & Navigation, 2003: 263-268.
    [68] Meta A, Hoogeboom P. High Resolution Airborne FM-CW SAR: Digital Signal Processing Aspects[C]. Proceedings of IGARSS'03, Vol. VI. Piscataway, NJ:IEEE Press, 2003: 4074-4076.
    [69] Edrich M. Design Overview and Flight Test Results of the Miniaturised SAR Sensor MISAR[C]. Proceedings of EuRAD'04. London: Horizon House Publications, 2004: 205-208.
    [70] Weiss M, Ender J. A 3-D Imaging Radar for Small Unmanned Airplanes-ARTINO[C]. Proceedings of EuRAD'05. London: Horizon House Publications,2005:229-232.
    [71] Edrich M. Lessons Learnt from the Design and Flight-Testing of a Highly Miniaturized MMW SAR Sensor System[C], Proceedings of EUSAR'06. Dresden,Germany, 2006.
    [72] Edrich, M. A High-Resolution Millimeter-Wave FMCW Airborne SAR with Minimum SWP Characteristics[C]. Proceedings of EUSAR'04. Neu-Ulm, 2004:287-290.
    [73] Smith R L. Micro Synthetic Aperture Radar Using FM/CW Technology[D].Provo, USA: Brigham Young University, 2002.
    [74] Duersch M I. BYU Micro-SAR: A Very Small, Low-Power LFM-CW Synthetic Aperture Radar[D]. Provo, USA: Brigham Young University, 2004.
    [75] Soumekh M. Wide-Bandwidth Continous-Wave Monostatic/Bistatic Synthetic Aperture Radar Imaging[C]. Proceedings of IEEE ICIP'98, Vol. 3. Piscataway,NJ: IEEE Press, 1998: 361-365.
    [76] Soumekh M. Bistatic Synthetic Aperture Radar Imaging Using Wide-Bandwidth Continuous-Wave Sources[C]. SPIE, Vol. 3462, 1998: 99-109.
    [77] Soumekh M. FM-CW SAR and Phased Array Spatial-Velocity Imaging[C].Proceedings of IEEE ICIP'94, Vol. 1. Piscataway, NJ: IEEE Press, 1994:471-475.
    [78]Smith R L,Arnold D V.Development of a Low Cost,FM/CW Transmitter for Remote Sensing[C].Proceedings of IGARSS'00,Vol.5.Piscataway,NJ:IEEE Press,2000:2328-2330.
    [79]Charvat G L,Kempel L C.Synthetic Aperture Radar Imaging Using a Unique Approach to Frequency-Modulated Continuous-Wave Radar Design[J].IEEE Antennas and Propagation Magazine,2006,48(1):171 - 177.
    [80]Chatzakis C,Uzunoglu N K.Analysis of a Head-On Looking SAR[C].Proceedings of EUSAR'02.Cologne,Germany,2002:489-492.
    [81]Nalecz M,Kulpa K,Rytel-Andrianik R,Plata S,Dawidowicz B.Data Recording and Processing in FMCW SAR System[C].Proceedings of IRS'04.Warszawa,Poland:Deutschen Gesellschaft fur Ortung & Navigation,2004:171-175.
    [82]张军,毛二可.线性调频连续波SAR成像处理研究[J].现代雷达,2005(4):42-45.
    [83]唐波,王卫延.抑制连续波合成孔径雷达距离模糊的研究[J],系统工程与电子技技术,2005,29(9):1505-1507.
    [84]江志红,程翥,皇甫堪,万建伟.无人机载正侧视SAR去调频斜率成像算法[C].第二届合成孔径雷达会议论文集.北京:电子工业出版社,2005:143-147.
    [85]朱珍珍,江志红,程翥,皂甫堪.基于FFT的快速无人机毫米波SAR回波模拟算法[C].第二届合成孔径雷达会议论文集.北京:电子工业出版社,2005:386-389.
    [86]朱珍珍.调频连续波SAR回波模拟研究[D].长沙:国防科技大学,2005.
    [87]Geng S M,Cheng Z,HuangFu K.Study on Imaging Algorithm of De-chirped FM-CW SAR[C].Proceedings of ICR'06.Piscataway,NJ:IEEE Press,2006:744-747.
    [88]Wang W Q.Analysis of Waveform Errors in Millimeter-Wave LFMCW Synthetic Aperture Radar[J].Int.J.Infrared Milli Waves,2006,27(11):1433-1444.
    [89]耿淑敏,皇甫堪.去调频FM-CW SAR距离维成像研究[J].国防科技大学学报,2007,29(1):49-53.
    [90]Jiang Z H,Huangfu K,Wan J W.A Chirp Transform Algorithm for Processing Squint Mode FMCW SAR Data[J].IEEE Geoscience and Remote Sensing Letters,2007,4(3):377-381.
    [91]Soumekh M.Fourier Array Imaging[M].New Jersey:Prentice Hall,1994.
    [92]Piper S O.Homodyne FM-CW Radar Resolution Effects with Sinusoidal Non-Linearities in the Frequency Sweep[C].Proceedings of IEEE International Radar Conference'95.Piscataway,NJ:IEEE Press,1995:563-567.
    [93]Brooker G M.Understanding Millimetre Wave FMCW Radars[C].Proceedings of ICST'05.Piscataway,NJ:IEEE Press,2005:152-157.
    [94] Prati C, Rocca F. Focusing SAR Data with Time-Varying Doppler centroid[J].IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3): 550-559.
    [95] Moreira A, Huang Y. Airborne SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029-1040.
    [96] Fornaro, G. Trajectory Deviations in Airborne SAR: Analysis and Compensation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (7):997-1009.
    [97] Buckreuss, S. Motion Errors in Airborne Synthetic Aperture Radar System[J].European Transactions on Telecommunications, 1991, 2 (6): 55-64.
    [98] Fornaro G, Franceschetti G, Perna S. Motion Compensation Errors: Effects on the Accuracy of Airborne SAR Images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(4): 1338-1352.
    [99] Zaugg E C, Long D G. Full Motion Compensation for LFM-CW Synthetic Aperture Radar[C]. Proceedings of IGARSS'07. Piscataway, NJ: IEEE Press,2007.
    [100]Cumming I G, Bennett J R. Digital Processing of SEASAT SAR Data[C].Proceedings of ICASSP'79. Piscataway, NJ: IEEE Press, 1979: 710-718.
    [101] Wu C, Liu K Y, Jin M J. A Modeling and Correlation Algorithm for Spaceborne SAR Signals[J]. IEEE Transactions on Aerospace and Electronic systems, 1982,18(5): 563-574.
    [102] Jin M Y, Wu C. A SAR Correlation Algorithm Which Accommodates Large Range Migration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984,22(3): 592-597.
    [103] Wong F H, Cumming I G. Error Sensitivities of a Secondary Range Compression Algorithm for Processing Squinted Satellite SAR Data[C]. Proceedings of IGARSS'89. Piscataway, NJ: IEEE Press, 1989: 2584-2587.
    [104] Chang C Y, Jin M, Curlander J C. Squint Mode SAR Processing Algorithms[C].Proceedings of IGARSS'89. Piscataway, NJ: IEEE Press, 1989: 1702-1706.
    [105] Smith A M. A New Approach to Range-Doppler SAR Processing[J]. International Journal of Remote Sensing, 1991, 12(2): 235-251.
    [106]Soumekh M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: John Wiley & Sons, 1999.
    [107] Franceschetti G. Lanari R. Synthetic Aperture Radar Processing[M]. Boca Raton,FL:CRC Press, 1999.
    [108] Hellsten, H, Anderssonet L E. An Inverse Method for the Processing of Synthetic Aperture Radar Data[J]. Inverse Problems, 1987, 3(1): 111-124.
    [109] Prati C, Rocca F, Monti-Guarnieri A, Damonti E. Seismic Migration for SAR Focusing: Interferometrical Applications[J]. IEEE Transactions on Geoscience and Remote Sensing 1990, 28(4): 627-640.
    [110] Cafforio C, Prati C, Rocca F. Full Resolution Focusing of SEASAT SAR Images in the Frequency-Wavenumber Domain[J]. International Journal of Remote Sensing, 1991, 12(3): 491-510.
    [111]Cafforio C, Prati C, Rocca F. SAR Data Focusing Using Seismic Migration Techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991,27(2): 194-207.
    [112]Franceschetti G, Mazzeo A, Mazzocca N, Pascazio V, Schirinzi G. An Efficient SAR Parallel Processor[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 343-353.
    [113] Bamler R. A Comparison of Range-Doppler and Wavenumber Domain SAR Focusing Algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(4): 706-713.
    [114] Franceschetti G, Lanari R, Marzouk E S. A New Two-Dimensional Squint Mode SAR Processor[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996,32(2): 854-863.
    [115]Scheuer T E, Wong F H. Comparison of SAR Processors Based on a Wave Equation Formulation[C]. Proceedings of IGRASS'91, Vol. 2. Piscataway, NJ:IEEE Press, 1991:635-639.
    [116] Rocca F, Cafforio C, Prati C. Synthetic Aperture Radar: a New Application for Wave Equation Techniques[J]. Geophysical Prospecting, 1989, 37(2): 809-830.
    [117] Milman A S. SAR Imaging by ω-k Migration[J]. International Journal of Remote Sensing, 1993, 14(10): 1965-1979.
    [118]Hui J, Huan H C. Spaceborne SAR Imaging in Wavenumber Domain[C].Proceedings of IGRASS'95. Piscataway, NJ: IEEE Press, 1995: 2141-2144.
    [119]Raney R K, Runge H, Bamler R, Cumming I G, Wong F H. Precision SAR Processing Using Chirp Scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
    [120] Moreira A, Mittermayer J, Scheiber R. Extended Chirp Scaling Algorithm for Air-and Spaceborne SAR Data Processing in Stripmap and Scan SAR Imaging Modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1123-1136.
    [121] Davidson G W, Cumming I G, Ito M R. A Chirp Scaling Approach for Processing High Squint Mode SAR Data[J]. IEEE Transactions on Aerospace and Electronic Systems[J], 1996,32(1): 121-133.
    [122] Sun J P, Wang J. Extended Chirp Scaling Algorithm for Spotlight SAR[J].Chinese Journal of Aeronautics, 2002, 15(2): 103-108.
    [123] Runge H, Bamler R. A Novel High Precision SAR Focusing Algorithm Based on Chirp Scaling[C]. Proceedings of IGARSS'92. Piscataway, NJ: IEEE Press, 1992: 372-375.
    [124] Cumming I G, Wong F H, Raney R K. A SAR Processing Algorithm with No Interpolation[C]. Proceedings of IGARSS'92. Piscataway, NJ: IEEE Press, 1992:376-379.
    [125] Jin M Y, Cheng F, Chen M. Chirp Scaling Algorithms for SAR Processing[C].Proceedings of IGARSS'93, Vol. 3. Piscataway, NJ: IEEE Press, 1993:1169-1172.
    [126]Impagnatiello F. A Precision Chirp Scaling SAR Extension to Sub-Aperture Implementation on Massively Parallel Supercomputers[C]. Proceedings of IGARSS'95, Vol. 3. Piscataway, NJ: IEEE Press, 1995: 1819-1821.
    [127] Loffeld O, Hein A, Schneider F. SAR Focusing : Scaled Inverse Fourier Transformation and Chirp Scaling[C]. Proceedings of IGARSS'98, Vol. 2. Piscataway, NJ:IEEE Press, 1998:630-632.
    [128] Ding C, Peng H, Wu Y Jia H. Large Beamwidth Spaceborne SAR Processing Using Chirp Scaling[C]. Proceedings of IGARSS'99, Vol. 1. Piscataway, NJ:IEEE Press, 1999:527-529.
    [129] Wong F H, Yeo T S. New Applications of Non-Linear Chirp Scaling in SAR Data Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(5): 946-953.
    [130] Hawkins D W, Gough P T. An Accelerated Chirp Scaling Algorithm for Synthetic Aperture Imaging[C]. Proceedings of IGARSS'97, Vol. 1. Piscataway, NJ: IEEE Press, 1997:471-473.
    [131] Hong W, Mittermayer J, Moreira A. High Squint Angle Processing of E-SAR Stripmap Data[C]. Proceedings of EUSAR'00. Munich, Germany, 2000: 449-552.
    [132] Gimeno E, Lopez-Sanchez J M. Near-Field 2-D and 3-D Radar Imaging Using a Chirp Scaling Algorithm[C]. Proceedings of IGARSS'01, Vol. 1. Piscataway, NJ:IEEE Press, 2001: 354-356.
    [133] Mittermayer J, Scheiber R, Moreira A. The Extended Chirp Scaling Algorithm for ScanSAR Data Processing[C]. Proceedings of EUSAR'96. Konigswinter,Germany, 1996:517-520.
    [134] Mittermayer J, Moreira A. A Generic Formulation of the Extended Chirp Scaling Algorithm for Phase Preserving ScanSAR and SpotSAR Processing[C].Proceedings of IGARSS'00, Vol. 1. Piscataway, NJ: IEEE Press, 2000: 108-110.
    [135] Fernandes D, Waller G, Moreira J R. Registration of SAR Images Using the Chirp Scaling Algorithm[C]. Proceedings of IGARSS'96, Vol. 1. Piscataway, NJ: IEEE Press, 1996:799-801.
    [136] Davidson G W, Wong F H, Cumming I G. The Effect of Pulse Phase Errors on the Chirp Scaling SAR Processing Algorithm[J]. IEEE Transactions on Geosci-ence and remote sensing, 1996, 34(2): 471-478.
    [137]Mittermayer J,Moreira A,Scheiber R.Reduction of Phase Errors Arising from the Approximations in the Chirp Scaling Algorithm[C].Proceedings of IGARSS'98,Vol.2.Piscataway,NJ:IEEE Press,2000:1180-1182.
    [138]Mittermayer J,Moreira A.Spotlight SAR Processing Using the Extended Chirp Scaling Algorithm[C].Proceedings of IGARSS'97,Vol.4.Piscataway,NJ:IEEE Press,1997:2021-2023.
    [139]Moreira A,Scheiber R,Mittermayer J,Spielbauer R.Real-time Implementation of the Extended Chirp Scaling Algorithm for Air and Spaceborne SAR Processing[C].Proceedings of IGARSS'95,Vol.3.Piscataway,NJ:IEEE Press,1995:2286-2288.
    [140]Hughes W,Gault K,Princz G J.A Comparison of the Range-Doppler and Chirp Scaling Algorithms with Reference to RADARSAT[C].Proceedings of IGARSS'96,Vol.2.Piscataway,NJ:IEEE Press,1997:1221-1223.
    [141]Huang Y,Moria A.Airborne SAR Processing Using the Chirp Scaling and a Time Domain Subaperture Algorithm[C].Proceedings of IGARSS'93,Vol.3.Piscataway,NJ:IEEE Press,1993:1169-1172.
    [142]Mittermayer J,Moreira A,Loffeld O.Spotlight SAR Data Processing Using the Frequency Scaling Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2198- 2214.
    [143]Jin L H,Liu X Z.Nonlinear FM Frequency Scaling Method for Processing Squint Mode Spotlight SAR[C].Proceedings of Radar'05.Piscataway,NJ:IEEE Press,2005:811-815.
    [144]王建,宋千,周智敏.适用于低频超宽带合成孔径雷达的改进Frequency Scaling算法[J].信号处理,2005,21(6):605-610.
    [145]Mittermayer J.The Frequency Scaling Algorithm and Interferometric Spotlight SAR Processing[J].Aerospace Science and Technology,2002,6(2):147-158.
    [146]Jin L H,Liu X Z,Zhou Z X.Spaceborne Spotlight SAR Processing Using the Frequency Scaling Algorithm[C].Proceedings of Radar'04.Piscataway,NJ:IEEE Press,2004:563-568.
    [147]Mittermayer J,Moreira A,Loffeld O.Spotlight Processing of Wide-Beam Stripmap SAR Data Using the Frequency Scaling Algorithm[C].Proceedings of IGARSS'98,Vol.2.Piscataway,NJ:IEEE Press,1998:1177 - 1179 vol.2.
    [148]王国栋,周荫清,李春升.星载聚束式SAR改进的Frequency Scaling成像算法[J].电子学报,2003,31(3):381-385.
    [149]孙进平,袁运能,柳重堪等.斜视聚束模式合成孔径雷达的频率scaling成像算法[J].电子学报,2001,29(12):1593-1596.
    [150]Martinson P.Radar Matched Filtering[M].New York:Artech House,1977.
    [151]Sack M,Ito M R,Cumming I G.Application of Efficient Linear FM Matched Filtering Algorithms to SAR Processing[J].IEE Proc.-Radar Sonar and Navigation,1985,132(1):45-57.
    [152]Wu K H,Vant M R.Extensions to the Step Transform SAR Processing Technique[J].IEEE Transactions on Aerospace and Electronic Systems,1985,21(2):338-344.
    [153]Sun X B,Yeo T S,Zhang C B.Time-Varying Step-Transform Algorithm for High Squint SAR Imaging[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(6):2668-2677.
    [154]Yeo T S,Tan N L,Zhang C B.A New Subaperture Approach to High Squint SAR Processing[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(5):954-968.
    [155]Lanari R,Hensley S,Rosen P A.Chirp Z-Transform Based SPECAN Approach for Phase-Preserving ScanSAR Image Generation[J].IEE Proc.Radar,Sonar and Navigation,1998,145(5):254-261.
    [156]Lanari R.A New Method for the Compensation of the SAR Range Cell Migration Based on the Chirp Z-Transform[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(5):1296-1299.
    [157]Vidal-Pantaleoni A,Ferrando M.A New Spectral Analysis Algorithm for SAR Data Processing of ScanSAR Data and Medium Resolution Data without Interpolation[C].Proceedings of IGARSS'98,Vol.2.Piscataway,NJ:IEEE Press,1998:639-641.
    [158]Wenzel D,Mittermayer J,Moreira A.Analysis of Two Different Implementation of the SPECAN Algorithm for Real-Time Range Compression of SAR Data[C].Proceedings of IGARSS'99,Vol.3.Piscataway,NJ:IEEE Press,1999:1764-1766.
    [159]Mesnager G,Castanie F,Lambert-Nebout C.Spatial Resolution Improvement Using a SPECAN Approach in SAR Data Processing[C].Proceedings of IGARSS'95,Vol.3.Piscataway,NJ:IEEE Press,1995:2295-2297.
    [160]McGoey-Smith A D,Vant M R.Modification of the SAR Step Transform Algorithm[J].IEEE Transactions on Aerospace Electronic Systems,1992,28(3):666-674.
    [161]Stimson G W.机载雷达导论[M].北京:电子工业出版社,2005.
    [162]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,1994.
    [163]Vossiek M,Heide P,Nalezinski M,Magori V.Novel FMCW Radar System Concept with Adaptive Compensation of Phase Errors[C].Proceedings of EuMC'96.Piscataway,NJ:IEEE Press,1996:135-139.
    [164]Zhu Z,Yu W,Zhang X,Qiu X.A Correction Method to Distortion in FM-CW Imaging System[C].Proceedings of NEACON'96.Piscataway,NJ:IEEE Press, 1996:323-326.
    [165]Weidong C,Shanjia X,Dongjin W,Falin L.Range Performance Analysis in Linear FMCW Radar[C].Proceedings of 2nd International Conference on Microwave and Millimeter Wave Technology.Piscataway,NJ:IEEE Press,2000:654-657.
    [166]Fuchs J,Ward K D,Tulin M P,York R A.Simple Techniques to Correct for VCO Nonlinearities in Short Range FMCW Radars[C].Proceedings of IEEE MTT-S'96,Vol.2.Piscataway,NJ:IEEE Press,1996:1175-1178.
    [167]陈卫东,徐善驾,王东进,刘发林.毫米波LFMCW雷达调频非线性剩余频差的估计[J].红外与毫米波学报,2002,21(4):245-250.
    [168]Davidson G W,Cumming I G.Signal Properties of Spaceborne Squint-Mode SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):611-617.
    [169]陆必应,梁甸农.调频线性度对线性调频信号性能影响分析[J].系统工程与电子技术,2005(8):1384-1386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700