纳米硅酸锌的微波水热合成及用于改善可降解无机生物材料的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅(Si)与锌(Zn)在骨的新陈代谢中发挥着重要的作用,故含有这两种痕量元素的材料成为了当前骨修复领域研究的热点之一。硅酸锌的化学组分中同时含有Si和Zn,但其结构过于稳定,Si和Zn很难溶出。鉴于降低结晶性和减小晶粒尺寸可改善材料的溶解性,本研究采用微波水热法,合成可同时释放Si与Zn的弱结晶纳米硅酸锌(nano-ZS)粉体。硅酸钙生物陶瓷(CS)和磷酸钙骨水泥(CPC)因其各自优异的特性,被认为是应用于骨修复的极有潜力的无机可降解生物材料。针对目前CS降解过快、CPC缺乏骨诱导性及缺乏能促进成骨的相关功能性离子溶出的问题,本研究以nano-ZS粉体为改性材料,分别采用表面修饰、离子交联、共混掺杂的方式,通过制备具有含Zn表面涂层的CS、具有核壳结构的硅灰石-纳米硅酸锌复合微球(W/nano-ZS),以及nano-ZS粉体掺杂CPC复合材料(ZS/CPC),为解决CS和CPC生物材料存在的问题提供新的途径。
     本文采用微波水热法合成了硅锌矿相(Willemite)的弱结晶nano-ZS粉体,其形貌呈亚微米椭球状,由众多的纳米晶聚集而成,符合“多核生长”的机制。随着合成温度的降低,nano-ZS粉体的结晶度逐渐变弱。nano-ZS粉体能够在人体模拟体液中长时间释放Si、Zn,而且,其释放曲线可通过改变合成温度来调节。较低浓度的nano-ZS粉体的浸提液与小鼠成骨样细胞(MC3T3-E1)共同培养24h后,不会产生细胞毒性。
     将nano-ZS粉体悬涂于CS表面,随后共烧制备出带有含Zn表面涂层的硅酸钙复合陶瓷(Zn-CS)。Zn的掺入并未改变CS的表面物相组成,而且,含Zn表面涂层能有效地减缓CS基底材料中Ca、Si的溶出速度。研究发现,MC3T3-E1能很好地在含Zn表面涂层上粘附、铺展,且Zn-CS还能促进MC3T3-E1的增殖。不过,由于此含Zn涂层的结构过于稳定,造成Zn-CS表面矿化沉积羟基磷灰石的速度较慢,且Zn也很难从含Zn涂层中释放出来。
     为了解决上述含Zn涂层溶解过慢的问题,采用不同浓度的海藻酸钠/纳米硅酸锌粉体(SA/nano-ZS)悬浮液来表面修饰CS(Na/Zn-CS),并成功在CS表面制备出含有Na、Zn两种元素的表面涂层。与Zn-CS瓷片相比,Na/Zn-CS瓷片表面的物相发生改变。Na+的掺入,提高了单纯用nano-ZS粉体制备的含Zn表面涂层的溶解性,而且,此时的表面涂层还能溶出Zn2+。含有Na、Zn两种元素的表面涂层,既可以诱导CS表面快速沉积HA,又能够控制CS整体的离子溶出。研究发现,小鼠骨髓间质干细胞(rBMSCs)在Na/Zn-CS瓷片表面培养7天后,能显著性增殖。经0.1g/mL的SA/nano-ZS悬浮液表面修饰过的CS比纯CS更能促进rBMSCs的分化。
     借鉴上述研究思路,采用液滴法,经两次离子交联后成功制备出具有核壳结构的W/nano-ZS复合微球。SA/nano-ZS悬浮液的浓度越大,形成的微球壳层即越厚。离子溶出与体外矿化实验结果显示,由于海藻酸盐的作用,W/nano-ZS复合微球中的硅灰石颗粒溶解明显减缓。W/nano-ZS复合微球表面未发现有羟基磷灰石晶体矿化。但是,微球表面沉积了一层含有Ca、P元素的胶态物质,此胶态物质可能是无定形磷酸钙—海藻酸钙凝胶。浸泡在SBF溶液中,W/nano-ZS复合微球的壳层会逐渐形成多级孔结构,显示其具备在骨修复的同时原位缓释药物的潜力。
     将不同质量的nano-ZS粉体添加到CPC中制备出ZS/CPC复合材料。虽然,nano-ZS粉体的加入会延长CPC的初凝和终凝时间,但仍在临床应用可接受的范围。而且,ZS/CPC复合材料的抗压强度较纯CPC材料有明显的提高。细胞研究表明,相比于纯CPC材料,ZS/CPC复合材料能显著促进rBMSCs的增殖、分化,而且还可诱导rBMSCs表面形成含Ca、P元素的晶体,表明nano-ZS粉体的加入可提高CPC材料的成骨诱导能力。此外,研究还发现,在CPC水化初期,大量的Zn2+溶出会影响CPC的水化进程,进而改变CPC水化产物的物相组成、结晶形貌以及晶粒尺寸。CPC中含Zn载体的Zn2+的溶出行为,会影响下一阶段CPC水化产物中Zn2+的溶出行为。本研究中,当Zn2+在培养基中溶出的浓度为51.88μM时,促进rBMSCs增殖的效果最佳。当溶出到培养基中的Zn2+浓度介于0~28.75μM之间时,rBMSCs的ALP活性随着Zn2+浓度的升高而逐渐上升,能显著提高rBMSCs的ALP活性表达。当Zn2+浓度大于28.75μM时,rBMSCs的ALP活性又会降低。
Silicon (Si) and zinc (Zn) play a great role in bone metabolism, so the materialscontaining Si or Zn have become one of the hottest research points in the field of the bonerepair. Zinc silicate simultaneously contains Si and Zn elements, but it is so stable that Si andZn are hard to be dissolved out from the zinc silicate. The solubility of zinc silicate may beimproved via reducing its crystallinity and crystal size. Therefore, The poor crystallinenanosized zinc silicate (nano-ZS) powders were firstly synthesized via the microwavehydrothermal method. Among all the degradable inorganic biomaterials, calcium silicatebioceramics (CS) and calcium phosphate cements (CPC) were considered having the mostpotentials for the clinical bone repair owing to their respective excellent properties. However,they also have some disadvantages, such as the rapid degradation of CS, the lack ofosteoinductivity of CPC, and the lack of osteogenic functional ions released from CPC, whichneed to be resolved. Subsequently, nano-ZS powders were used as the modified materials forthe preparation of the CS with the Zn-containing surface layer (Zn-CS) via the surfacemodification, the preparation of core-shell structured wollastonite/nano-ZS (W/nano-ZS)composite microspheres via the ionic crosslink, and the preparation of the nano-ZS dopedCPC composite (ZS/CPC) via directly adding the nano-ZS into CPC, respectively, providingnew routes to improve the biological performances of the CS and CPC.
     Microwave hydrothermal method was used for the synthesis of the willemite phasenano-ZS with the low crystallinity. The nano-ZS powders displayed the submicron ellipsoidalshape, which were piled up with many nanocrystals. The crystal growth of the nano-ZS wasconsistent with the “multi-core growth” mechanism. With the decrease of the reactiontemperature, the crystallinity of the nano-ZS would gradually become poor. As nano-ZSpowders were soaked in the simulated body fluids (SBF), Si and Zn could be long-termreleased from the nano-ZS, and its release profile would be altered with the change of thereaction temperature. The relative low concentration of the nano-ZS powders extract causedno cytotoxicity on the mouse osteoblast-like cells (MC3T3-E1).
     Nano-ZS powders were spin-coated on the surface of the CS, and then the modified CSwas sintered to obtain the Zn-CS, which had a Zn-containing layer on its surface. The Zn-CS had the same surface phase as the CS, moreover, the Zn-containing surface layer couldeffectively slow down the dissolution of Ca and Si from the CS substrate. MC3T3-E1cellswell adhered and spread on the the Zn-containing surface layer, and Zn-CS could promote theproliferation of MC3T3-E1cells. Nevertheless, the structure of the Zn-containing surfacelayer is too stable, less mineralized hydroxyapatite (HA) would form on its surface, and lessZn could be released from the Zn-containing surface layer.
     In order to increase the dissolution of the Zn-containing surface layer, differentconcentrations of the well dispersed sodium alginate/nano-ZS (SA/nano-ZS) suspensionswere used for the surface modification of the CS. Subsequently, the modified CS was sinteredto obtain the Na/Zn-CS, which had a surface layer containing Zn and Na. Compared to theZn-CS, the surface composition of the Na/Zn-CS changed. Owing to the incorporation of Na+into the Zn-containing surface layer originally prepared by only using the nano-ZS, thesolubility of this surface layer increased. At this time, Zn2+could also be released from thesurface layer containing Zn and Na. Furthermore, the surface layer containing Zn and Nacould not only induce the rapid deposition of HA on its surface, but also effectively controlthe dissolution of the ions from the CS substrate. The rat bone marrow mesenchymal stemcells (rBMSCs) obviously proliferated when they were cultured on the surface of theNa/Zn-CS for7days. The rBMSCs cultured on the surfaces of the CS modified with0.1g/mLSA/nano-ZS suspensions had better differentiation performance than that of the pure CS.
     Using the liquid-droplet method, the core-shell structured W/nano-ZS compositemicrospheres were obtained after the two-step ionic crosslink. With the concentration of theSA/nano-ZS suspension increasing, the shell of the W/nano-ZS would become thicker. Owingto the influence of the alginate, the dissolution of the wollastonite particles in the W/nano-ZScomposite microspheres was obviously slowed. The mineralized HA could not be found onthe surfaces of the W/nano-ZS composite microspheres, but some gelatinous depositionscontaining Ca and P were found on their surfaces, which might be the amorphous calciumphosphate-calcium alginate gelatins. As soaking in the SBF, hierarchical porous structurewould be gradually formed in the shell of the W/nano-ZS composite microspheres, it’sshowed that the W/nano-ZS composite microspheres had the potential for simultaneouslyreleasing drugs during the in-situ bone repair.
     Different amounts of nano-ZS powders were added into the CPC to prepare the ZS/CPCcomposite. Although the initial setting time and the final setting time would be delayed whenthe nano-ZS were added into CPC, it still met the clinical operation requirements. Thecompressive strength of the CPC increased when the nano-ZS were added into the CPC. Bycomparing with the pure CPC, the ZS/CPC could obviously promote the proliferation anddifferentiation of the rBMSCs. Moreover, the ZS/CPC also had the ability to induce Ca and Pdepositing on the surface of the rBMSCs, indicating the osteoinductivity of the CPC may beimproved by the addition of the nano-ZS. Furthermore, in the initial hydration stage, largeamounts of Zn2+released from the Zn-carrier would affect the hydration of the CPC, whichcould further influence the phase composition, the crystal morphology, and the crystal size ofthe CPC hydration products. The releasing behavior of the Zn-carrier in CPC would affect thefollowing releasing behavior of the CPC hydration products. In our study, as51.88μM ofZn2+released into the cell culture medium, the proliferation of rBMSCs was the best. Whenthe concentration of the released Zn2+in the cell culture medium ranged from0μM to28.75μM, it could distinctly promote the ALP activity of the rBMSCs, and in this range, the ALPactivity of the rBMSCs would gradually increase with the raise of the concentration of thereleased Zn2+. However, when the concentration of the released Zn2+in the cell culturemedium exceeded28.75μM, the ALP activity of the rBMSCs would decrease.
引文
[1] Narayan R. Biomedical materials [M]. New York: Springer-Verlag New York Inc.,2009:123-125.
    [2]奚廷斐.生物医用材料现状和发展趋势[J].中国医疗器械信息,2006,12(5):1-5.
    [3] Bose S., Tarafder S. Calcium phosphate ceramic systems in growth factor and drugdelivery for bone tissue engineering: A review [J]. Acta Biomater,2012,8(4):1401-1421.
    [4] Burstein A. H., Zika J. M., Heiple K. G., et al. Contribution of collagen and mineral tothe elastic-plastic properties of bone [J]. J Bone Joint Surg (Am),1975,57(7):956-961.
    [5] Ascenzi A. The micromechanics versus the macromechanics of cortical bone-acomprehensive presentation [J]. J Biomech Eng,1988,110(8):357-361.
    [6] Ashman R. B., Corin J. D., Turner C. H. Elastic properties of cancellous bone:measurement by an ultrasonic technique [J]. J Biomech,1987,20(10):979-986.
    [7] Martin R. B. Toward a unifying theory of bone remodeling [J]. Bone,2000,26(1):1-6.
    [8]孙雷.同种异体骨移植生物学[J].中国矫形外科杂志,1996,3(1):56-58.
    [9]王呈,曾炳芳.骨移植替代材料在创伤骨科的应用[J].国际骨科学杂志,2012,(1):37-38.
    [10] Dodd C. A., Fergusson C. M., Freedman L., et al. Allograft versus autograft bone inscoliosis surgery [J]. J Bone Joint Surg Br,1998,70:431-434.
    [11] Damien C. J., Parsons J. R. Bone graft and bone graft substitutes: a review of currenttechnology and applications [J]. J Appl Biomater,1991,2:187-208.
    [12] VandeVord P.J., Nasser S., Wooley P.H. Immunological response to bone solubleproteins in recipients of bone allografts [J]. J Orthop Res,2005,23(5):1059-1064.
    [13] Wenz B., Oesch B., Horst M. Analysis of the risk of transmitting bovine spongiformencephalopathy through bone grafts derived from bovine bone [J]. Biomaterials,2001,22(12):1599-1606.
    [14] Hench L.L., Polak J.M. Third-generation biomedical materials [J]. Science,2002,295(5557):1014,1016-1017.
    [15] Kanayama M., Hashimoto T., Shigenobu K, et al. A prospective randomized study ofposterolateral lumbar fusion using osteogenic protein-1(OP-1) versus local autograftwith ceramic bone substitute: emphasis of surgical exploration and histologicassessment [J]. Spine,2006,31(10):1067-1074.
    [16] Kessler S., Koepp H.E., Mayr-Wohlfart U., et al. Bone morphogenetic protein2accelerates osteointegration and remodeling of solvent dehydrated bone substitutes[J].Arch Orthop Trauma Surg,2004,124(6):410-414.
    [17] Vaccaro A.R., Anderson D.G., Toth C.A. Recombinant human osteogenic protein-1(bone morphogenetic protein-7) as an osteoinductive agent in spinal fusion [J]. Spine,2002,27(16Suppl1):S59-65.
    [18] Hoppe A., Guldal N.S., Boccaccini A.R. A review of the biological response to ionicdissolution products from bioactive glasses and glass-ceramics [J]. Biomaterials,2011,32(11):2757-2774.
    [19] Dorozhkin S.V. Bioceramics of calcium orthophosphates [J]. Biomaterials,2010,31(7):1465-1485.
    [20] Dorozhkin S.V., Epple M. Biological and Medical Significance of CalciumPhosphates [J]. Angew Chem Int Ed,2002,41(17):3130-3146.
    [21] Boanini E., Gazzano M., Bigi A. Ionic substitutions in calcium phosphates synthesizedat low temperature [J]. Acta Biomater,2010,6(6):1882-1894.
    [22]张永光,王志强.骨移植替代材料研究进展[J].中国修复重建外科杂志,2008,22(10):1264-1268.
    [23]彭继荣,李珍.羟基磷灰石的应用研究进展[J].中国非金属矿工业导刊,2005,2:12-14,19.
    [24] Salma I., Salms G., Phimane M., et al. Evaluation of bioceramic bone substitute—hydroxyapatite(HAP), tricalcium phosphate (TCP) and biphasic ceramic (HAP/TCP)in vitro and in vivo [J]. Int J Oral Max Surg,2011,40(10):1216.
    [25] Wang W., Itoh S., Tanaka Y., et al. Comparison of enhancement of bone ingrowth intohydroxyapatite ceramics with highly and poorly interconnected pores by electricalpolarization [J]. Acta Biomater,2009,5(8):3132-3140.
    [26] Kealley C., Elcombe, Ben-Nissan B., et al. Development of carbonnanotube-reinforced hydroxyapatite bioceramics [J]. Phys Rev B,2006,385-386(Part1):496-498.
    [27] Xu J.L., Khor K.A., Sui J.J., et al. Preparation and characterization of a novelhydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-likecells [J]. Mat Sci Eng C-Bio S,2009,29(1):44-49.
    [28] Petricca S.E., Marra K.G., Kumta P.N. Chemical synthesis of poly(lactic-co-glycolicacid)/hydroxyapatite composite for orthopaedic application [J]. Acta Biomater,2006,2(3):277-286.
    [29] Sun F.F., Zhou H.J., Lee J. Various preparation methods of highly poroushydroxyapatite/polymer nanoscale biocomposites for bone regeneration [J]. ActaBiomater,2011,7(11):3813-3828.
    [30] Landi E., Valentini F., Tampieri A. Porous hydroxyapatite/gelatin scaffolds withice-designed channel-like porosity for biomedical applications [J]. Acta Biomater,2008,4(6):1620-1626.
    [31] Ong J.L., Cernes D.L., Bessho K. Evaluation of titanium plasma-sprayedhydroxyapatite implants in vivo [J]. Biomaterials,2004,25(19):4601-4606.
    [32] Porter A.E., Taak P., Hobbs L.W., et al. Bone bonding to hydroxyapatite and titaniumsurfaces on femoral stems retrieved from human subjects at autopsy [J]. Biomaterials,2004,25(21):5199-5208.
    [33] Yang C.W., Lui T.S., Chen L.H. Hydrothermal crystallization effect on theimprovement of erosion resistance and reliability of plasma-sprayed hydroxyapatitecoatings [J]. Thin Solid Films,2009,517(17):5380-5385.
    [34] Ryu H.S., Youn H.J., Hong K.S., et al. An improvement in sintering property ofβ-tricalcium phosphate by addition of calcium pyrophosphate [J]. Biomaterials,2002,23(3):909-914.
    [35] LeGeros R.Z. Biodegradation and bioresorption of calcium phosphate ceramics [J].Clinical materials,1993,14(1):65-88.
    [36]刘高梅.挤出法制备多孔磷酸钙骨修复材料[D].广州:华南理工大学,2011.
    [37] LeGeros R.Z., Lin S., Rohanizadeh R., et al. Biphasic calcium phosphate bioceramics:preparation, properties and application [J]. J Mater Sci-Mater M,2003,14(3):201-209.
    [38] Kurashina K., Kurita H., Wu Q., et al. Ectopic osteogenesis with biphasic ceramics ofhydroxyapatite and tricalcium phosphate in rabbits [J]. Biomaterials,2002,23(2):407-412.
    [39]苏葆辉,冉旭,冉均国,等. HA/β-TCP双相磷酸钙陶瓷材料的生物学性能研究[J].稀有金属材料与工程,2007,36(S2):37-39.
    [40] Kandel R.A., Grynpas M., Pilliar R., et al. Repair of osteochondral defects withbiphasic cartilage-calcium polyphosphate constructs in a sheep model [J].Biomaterials,2006,27(22):4120-4131.
    [41] Lien S.M., Liu C.K., Huang T.J. A novel surface modification on calciumpolyphosphate scaffold for articular cartilage tissue engineering [J]. Mat Sci EngC-Bio S,2007,27(1):127-134.
    [42] LeGeros R.Z., Chohayeb A., Shulman A. Apatitic calcium phosphates: possiblerestorative materials [J]. J Dent Res,1982,61(Spec Iss):343.
    [43] Julien M., Khairoun I., LeGeros R.Z., et al. Physico-chemical-mechanical and in vitrobiological properties of calcium phosphate cements with doped amorphous calciumphosphates [J]. Biomaterials,2007,28(6):956-965.
    [44]王秀鹏.新型可注射自固化磷酸钙骨水泥的制备与性能[D].广州:华南理工大学,2007.
    [45]漆小鹏.定向成孔和原位成孔可降解高分子/磷酸钙骨水泥复合骨修复材料研究
    [D].广州:华南理工大学,2008.
    [46] Costantino P.D., Friedman C.D., Jones K., et al. Experimental hydroxyapatite cementcranioplasty [J]. Plant Reconstr Surg,1992,90(2):174-185.
    [47] Liu C.S., Wang W., Shen W., et al. Evaluation of the biocompatibility of a nonceramichydroxyapatite [J]. J Endon,1997,23(8):490-493.
    [48] Blitterswijk C.V., Thomsen P., Williams D.F., et al. Tissue Engineering [M].Amsterdam: Elsevier,2008:223-255.
    [49] Casey W.H., Westrich H.R., Banfield J.F., et al. Leaching and reconstruction at thesurfaces of dissolving chain-silicate minerals [J]. Nature,1993,366:253-256.
    [50] Wu C.T., Chang J., Ni S.Y., et al. In vitro bioactivity of akermanite ceramics[J]. JBiomed Mater Res Part A,2006,76A(1):73-80.
    [51] Mertz W. The essential trace elements [J]. Science,1981,213:1332-1338.
    [52] Carlisle E.M. Silicon: a requirement in bone formation independent of vitamin D1[J].Calcif Tissue Int,1981,33(1):27-34.
    [53] Carlisle E.M. Silicon, A possible factor in bone calcification [J]. Science,1970,167:279-280.
    [54] Jugdaohsingh R., Tucker K.L., Qiao N., et al. Dietary silicon intake is positivelyassociated with bone mineral density in men and premenopausal women of theframingham offspring cohort [J]. J Bone Miner Res,2004,19(2):297-307.
    [55] Kim M.H., Bae Y.J., Choi M.K., et al. Silicon supplementation improves the bonemineral density of calcium-deficient ovariectomized rats by reducing bone resorption[J]. Biol Trace Elem Res,2009,128(3):239-247.
    [56] Nielsen F.H., Poellot R. Dietary silicon affects bone turnover differently inovariectomized and sham-operated growing rats [J]. J Trace Elem Exp Med,2004,17(3):137-149.
    [57] Reffitt D.M., Ogston N., Jugdaohsingh R., et al. Orthosilicic acid stimulates collagentype I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J]. Bone,2003,32(2):127-135.
    [58] Hench L.L., Splinter S.R., Allen W.C. Bonding mechanism at the interface of ceramicprosthetic materials [J]. J Biomed Mater Res,1971,2(1):117-141.
    [59] Ni S.Y., Chang J., Chou L., et al. Comparison of osteoblast-like cell responses tocalcium silicate and tricalcium phosphate ceramics in vitro [J]. J Biomed Mater ResPart B: Appl Biomater,2007,80B(1):174-183.
    [60] Pietak A.M., Reid J.W., Stott M.J., et al. Silicon substitution in the calcium phosphatebioceramics [J]. Biomaterials,2007,28(28):4023-4032.
    [61] Seeherman H., Wozney J.M. Delivery of bone morphogenetic proteins for orthopedictissue regeneration [J]. Cytokine Growth Factor Rev,2005,16(3):329-345.
    [62] Hench L.L., Wilson J. Surface-active biomaterials [J]. Science,1984,226:630-636.
    [63] Arcos D., Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissueregeneration [J]. Acta Biomater,2010,6(8):2874-2888.
    [64] Pamula E., Kokoszka J., Cholewa-Kowalska K., et al. Degradation, Bioactivity, andOsteogenic Potential of Composite Made of PLGA and Two Different Sol-GelBioactive Glasses [J]. Ann Biomed Eng,2011,39(8):2114-2129.
    [65] Rodenas-Rochina J., Ribelles J., Lebourg M. Comparative study of PCL-HAp andPCL-bioglass composite scaffolds for bone tissue engineering [J]. J Mater Sci MaterMed,2013,24(5):1293-1308.
    [66] Wang Y.J., Huang W., Ren L., et al. Fabrication and characterization of a PAMmodified PHBV/BG scaffold [J]. Chinese Sci Bull,2009,54(17):2940-2946.
    [67] Jones J.R. Review of bioactive glass: From Hench to hybrids [J]. Acta Biomater,2013,9(1):4457-4486.
    [68] XieY.T., Zhai W.Y., Chen L., et al. Preparation and in vitro evaluation ofplasma-sprayed Mg2SiO4coating on titanium alloy [J]. Acta Biomater,2009,5(6):2331-2337.
    [69] Zhang M.L., Zhai W.Y., Lin K.L., et al. Synthesis, in vitro hydroxyapatite formingability, and cytocompatibility of strontium silicate powders [J]. J Biomed Mater ResPart B: Appl Biomater,2010,93B(1):252-257.
    [70] Zhang M.L., Lin K.L., Chang J. Preparation and characterization of Sr-hardystonite(Sr2ZnSi2O7) for bone repair applications [J]. Mat Sci Eng C-Bio S,2012,32(2):184-188.
    [71] Zhang M.L., Wu C.T., Lin K.L., et al. Biological responses of human bone marrowmesenchymal stem cells to Sr-M-Si (M=Zn, Mg) silicate bioceramics [J]. J BiomedMater Res Part A,2012,100A(11):2979-2990.
    [72] Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3scaffold for bone tissueengineering [J]. J Biomed Mater Res Part A,2006,76(1):196-205.
    [73] Liu X.Y., Ding C,X., Chu P.K. Mechanism of apatite formation on wollastonitecoatings in simulated body fluids [J]. Biomaterials,2004,25(10):1755-1761.
    [74] Sarmento C., Luklinska Z.B., Brown L., et al. In vitro behavior of osteoblastic cellscultured in the presence of pseudowollastonite ceramic [J]. J Biomed Mater Res PartA,2004,69A(2):351-358.
    [75] Dufrane D., Delloye C., Mckay I.J., et al. Indirect cytotoxicity evaluation ofpseudowollastonite [J]. J Mater Sci-Mater M,2003,14(1):33-38.
    [76] De Aza P.N., Luklinska Z.B., Anseau M., et al. Morphological studies ofpseudowollastonite for biomedical application [J]. J Microsc,1996,182(Pt1):24-31.
    [77] Tsuru K., Hayakawa S., Ohtsuki C., et al. Ultrasonic implantation of calciummetasilicate glass particles into PMMA [J]. J Mater Sci-Mater M,1998,9(8):479-484.
    [78]林开利,常江,汪正.多孔硅酸钙生物陶瓷的制备及体外活性和降解性研究[J].无机材料学报,2005,20(3):692-698.
    [79] De Aza P.N., Luklinska Z.B., Anseau M.R. Bioactivity of pseudowollastonite inhuman saliva [J]. J Dent,1999,27(2):107-113.
    [80] Zhang M.L., Zhai W.Y., Chang J. Preparation and characterization of a novalwillemite bioceramic [J]. J Mater Sci-Mater M,2010,21(4):1169-1173.
    [81] Hulbert S.F., Morrison S.J., Klawitter J.J. Tissue reaction to three ceramics of porousand non-porous structures [J]. J Biomed Mater Res,1972,6(5):347-374.
    [82] Klawitter J.J., Bagwell J.G., Weinstein A.M., et al. Evaluation of bone-growth intoporous high-density polyethylene [J]. J Biomed Mater Res,1976,10(2):311-323.
    [83]许宋峰,胡蕴玉,林开利,等.多孔硅酸钙生物陶瓷体内非骨性环境的植入研究[J].无机材料学报,2008,23(3):611-616.
    [84] Huang Y., Jin X.G., Zhang X.L., et al. In vitro and in vivo evaluation of akermanitebioceramics for bone regeneration [J]. Biomaterials,2009,30(28):5041-5048.
    [85] Xu S.F., Lin K.L., Chang J, et al. Reconstruction of calvarial defect of rabbits usingporous calcium silicate bioactive ceramics [J]. Biomaterials,2008,29(17):2588-2596.
    [86] Yamaguchi M. Role of zinc in bone formation and bone resorption [J]. J Trace ElemExp Med,1998,11(2-3):119-135.
    [87] Prasad A.S. Zinc: an overview [J]. Nutrition,1995,11:93-99.
    [88] Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis [J]. Mol CellBiochem,2010,338(1-2):241-254.
    [89] Calhoun N.R., Smith J.C.Jr., Becker K.L. The role of zinc in bone metabolism [J].Clin Orthop Relat Res,1974,103:212-234.
    [90] Habibovic P., Barrralet J.E. Bioinorganics and biomaterials: Bone repair [J]. ActaBiomater,2011,7(8):3013-3026.
    [91] Fong L., Tan K., Tran C., et al. Interaction of dietary zinc and intracellular bindingprotein metallothionein in postnatal bone growth [J]. Bone,2009,44(6):1151-1162.
    [92] Litchfield T.M., Ishikawa Y., Wu L.N.Y., et al. Effect of metal ions on calcifyinggrowth plate cartilage chondrocytes [J]. Calcif Tissue Int,1998,62(4):341-349.
    [93] Neame P.J., Choi H.U., Rosenberg L.C. The primary structure of the core protein ofthe small, leucine-rich proteoglycan (PGI) from bovine articular cartilage [J]. J BiolChem,1989,264(15):8653-8661.
    [94] Wolf E., Rapp K., Brem G. Expression of metallothionein-human growth hormonefusion genes in transgenic mice results in disproportionate skeletal gigantism [J].Growth Dev Aging,1991,55(2):117-127.
    [95] Oteiza, Patricia I., Mackenzie, et al. Zinc, oxidant-triggered cell signaling, and humanhealth [J]. Mol Aspects Med,2005,26(4-5):245-255.
    [96] Prasad A.S., Bao B., Sarkar F.H., et al. Antioxidant effect of zinc in humans [J]. FreeRadic Biol Med,2004,37(8):1182-1190.
    [97] Tupler R., Perini G., Green M.R. Expressing the human genome [J]. Nature,2001,409(6822):832-833.
    [98] Krane S.M., Inada M. Matrix metalloproteinases and bone [J]. Bone,2008,43(1):7-18.
    [99] Haumont S. Distribution of zinc in bone tissue [J]. J Histochem Cytochem,1967,9:141-145.
    [100] Hurley L.S., Tao S.H. Alleviation of teratogenic effects of zinc deficiency bysimultaneous lack of calcium [J]. Am J Physiol,1972,222(2):322-325.
    [101] Gomez S., Rizzo R., Pozzi-Mucelli M., et al. Zinc mapping in bone tissues byhistochemistry and synchrotron radiation-induced X-ray emission: Correlation withthe distribution of alkaline phosphatase [J]. Bone,1999,25(1):33-38.
    [102] Moonga B.S., Dempster D.W. Zinc is a potent inhibitor of osteoclastic boneresorption in vitro [J]. J Bone Miner Res,1995,10(3):453-457.
    [103] Lowe N.M., Fraser W.D., Jackson M.J. Is there a potential therapeutic value ofcopper and zinc for osteoporosis?[J]. Proc Nutr Soc,2002,61(2):181-185.
    [104] Dimai H.P., Hall S.L., Stilt-Coffing B., et al. Skeletal response to dietary zinc in adultfemale mice [J]. Calcif Tissue Int,1998,62(4):309-315.
    [105] Yamaguchi M., Weitzmann M.N. Zinc stimulates osteoblastogenesis and suppressesosteoclastogenesis by antagonizing NF-kappa B activation [J]. Mol Cell Biochem,2011,355(1-2):179-186.
    [106] Hall S.L., Dimai H.P., Farley J.R. Effect of zinc on human skeletal alkalinephosphatase activity in vitro [J]. Calcif Tissue Int,1999,64(2):163-172.
    [107] Yamaguchi M., Goto M., Uchiyama S., et al. Effect of zinc on gene expression inosteoblastic MC3T3-E1cells: enhancement of Runx2, OPG, and reguclcin mRNAexpressions [J]. Mol Cell Biochem,2008,312(1-2):157-166.
    [108] Kwun I.S., Cho Y.E., Lomeda RAR., et al. Zinc deficiency suppresses matrixmineralization and retards osteogenesis transiently with catch-up possibly throughRunx2modulation [J]. Bone,2010,46(3):732-741.
    [109] Seo H.J., Cho Y.E., Kim T., et al. Zinc may increase bone formation throughstimulating cell proliferation, alkaline phosphatase activity and collagen synthesis inosteoblastic MC3T3-E1cells [J]. Nutr Res Pract,2010,4(5):356-361.
    [110] Cerovic A., Miletic I., Sobajic S., et al. Effect of zinc on the mineralization of bonenodules from human osteoblast-like cells [J]. Biol Trace Elem Res,2007,116(1):61-71.
    [111] Yamaguchi M., Oishi H., Suketa Y. Zinc stimulation of bone protein synthesis intissue culture. Activation of aminoacyl-tRNA synthetase [J]. Biochem Pharmacol,1988,37(21):4075-4080.
    [112] Lakhkar N.J., Lee I.N., Kim H.W., et al. Bone formation controlled by biologicallyrelevant inorganic ions: Role and controlled delivery from phosphate-based glass [J].Adv Drug Deliver Rev,2013,65(4):405-420.
    [113] Webb J., Macey D.J., Mann S. Biomineralization of iron in molluscan teeth [M].Weinheim: Verlag Chemie,1989:345-388.
    [114] Kanzaki N., Onuma K., Treboux G., et al. Inhibitory effect of magnesium and zinc oncrystallization kinetics of hydroxyapatite (0001) face [J]. J Phys Chem B,2000,104(17):4189-4194.
    [115] Miyaji F., Kono Y., Suyama Y. Formation and structure of zinc-substituted calciumhydroxyapatite [J]. Mater Res Bull,2005,40(2):209-220.
    [116] Matsunaga K., Murata H., Mizoguchi T. Mechanism of incorporation of zinc intohydroxyapatite [J]. Acta Biomater,2010,6(6):2289-2293.
    [117] Bigi A., Foresti E., Gandolfi M., et al. Inhibiting effect of zinc on hydroxyapatitecrystallization [J]. J Inorg Biochem,1995,58(1):49-58.
    [118] Ren F.Z., Xin R.L., Leng Y., et al. Characterization and structural analysis ofzinc-substituted hydroxyapatite [J]. Acta Biomater,2009,5(8):3141-3149.
    [119] Yang F., Wen J.D., He F.M., et al. Osteoblast response to porous titanium surfacescoated with zinc substituted hydroxyapatite [J]. Oral Surg Oral Med O,2011,113(3):313-318.
    [120] Wang X.P., Ito A., Sogo Y., et al. Zinc-containing apatite layers on external fixationrods promoting cell activity [J]. Acta Biomater,2010,6(3):962-968.
    [121] Bigi A., Foresti E., Gandolfi M., et al. Isomorphous substitutions in beta-tricalciumphosphate: The different effects of zinc and strontium [J]. J Inorg Biochem,1997,66(4):259-265.
    [122] Ito A., Ojima K., Naito H., et al. Preparation, solubility, and cytocompatibility ofzinc-releasing calcium phosphate ceramics [J]. J Biomed Mater Res,2000,50(2):178-183.
    [123] Ikeuchi M., Ito A., Dohi Y., et al. Osteogenic differentiation of cultured rat andhuman bone marrow cells on the surface of zinc-releasing calcium phosphateceramics [J]. J Biomed Mater Res A,2003,67A(4):1115-1122.
    [124] Xue W.C., Dahlquist K., Banerjee A., et al. Synthesis and characterization oftricalcium phosphate with Zn and Mg based dopants [J]. J Mater Sci-Mater M,2008,19(7):2669-2677.
    [125] Miao S.D., Cheng K., Weng W.J., et al. Fabrication and evaluation of Zn containingfluoridated hydroxyapatite layer with Zn release ability [J]. Acta Biomater,2008,4(2):441-446.
    [126] Li X., Senda K., Ito A., et al. Effect of Zn and Mg in tricalcium phosphate and inculture medium on apoptosis and actin ring formation of mature osteoclasts [J].Biomed Mater,2008,3(4):045002.
    [127] Yamada Y., Ito A., Kojima H., et al. Inhibitory effect of Zn2+in zinc-containingbeta-tricalcium phosphate on resorbing activity of mature osteoclasts [J]. J BiomedMater Res A,2008,84A(2):344-352.
    [128] Kawamura H., Ito A., Miyakawa S., et al. Stimulatory effect of zinc-releasingcalcium phosphate implant on bone formation in rabbit femora [J]. J Biomed MaterRes,2000,50(2):184-190.
    [129] Kawamura H., Ito A., Muramatsu T., et al. Long-term implantation of zinc-releasingcalcium phosphate ceramics in rabbit femora [J]. J Biomed Mater Res A,2003,65A(4):468-474.
    [130] Li X., Sogo Y., Ito A., et al. The optimum zinc content in set calcium phosphatecement for promoting bone formation in vivo [J]. Mat Sci Eng C-Bio S,2009,29(3):969-975.
    [131] Ishikawa K., Miyamoto Y., Ito A., et al. Fabrication of Zn containing apatite cementand its initial evaluation using human osteoblastic cells [J]. Biomaterials,2002,23(2):423-428.
    [132] Lusvardi G., Malavasi G., Menabue L., et al. Synthesis, characterization, andmolecular dynamics simulation of Na2O-CaO-SiO2-ZnO glasses [J]. J Phys Chem B,2002,106(38):9753-9760.
    [133] Kamitakahara M., Ohtsuki C., Inada H., et al. Effect of ZnO addition on bioactiveCaO-SiO2-P2O5-CaF2glass-ceramics containing apatite and wollastonite [J]. ActaBiomater,2006,2(4):467-471.
    [134] Balamurugan A., Balossier G., Kannan S., et al. Development and in vitrocharacterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass [J]. Acta Biomater,2007,3(2):255-262.
    [135] Courtheoux L., Lao J., Nedelec J.M., et al. Controlled bioactivity in zinc-dopedsol-gel-derived binary bioactive glasses [J]. J Phys Chem C,2008,112(35):13663-13667.
    [136] Jaroch D.B., Clupper D.C. Modulation of zinc release from bioactive sol-gel derivedSiO2-CaO-ZnO glasses and ceramics [J]. J Biomed Mater Res A,2007,82A(3):575-588.
    [137] Aina V., Malavasi G., Pla A.F., et al. Zinc-containing bioactive glasses: Surfacereactivity and behaviour towards endothelial cells [J]. Acta Biomater,2009,5(4):1211-1222.
    [138] Lusvardi G., Zaffe D., Menabue L., et al. In vitro and in vivo behaviour ofzinc-doped phosphosilicate glass [J]. Acta Biomater,2009,5(1):419-428.
    [139] Wang X.P., Li X., Ito A., et al. Synthesis and characterization of hierarchicallymacroporous and mesoporous CaO-MO-SiO2-P2O5(M=Mg, Zn, Sr) bioactive glassscaffolds [J]. Acta Biomater,2011,7(10):3638-3644.
    [140] Haimi S., Gorianc G., Moimas L., et al. Characterization of zinc-releasingthree-dimensional bioactive glass scaffold and their effect on human adipose stemcell proliferation and osteogenic differentiation [J]. Acta Biomater,2009,5(8):3122-3131.
    [141] Aina V., Perardi A., Malavasi G., et al. Cytotoxicity of zinc-containing bioactiveglasses in contact with human osteoblasts [J]. Chem-Biol Interact,2007,167(3):207-218.
    [142] Ramaswamy Y., Wu C.T., Zhou H., et al. Biological response of human bone cells tozinc-modified Ca-Si-based ceramics [J]. Acta Biomater,2008,4(5):1487-1497.
    [143] Zreiqat H., Ramaswamy Y., Wu C.T., et al. The incorporation of strontium and zincinto a calcium-silicon ceramic for bone tissue engineering [J]. Biomaterials,2010,31(12):3175-3184.
    [144] Lin Q., Lan X.H., Li Y.B., et al. Preparation and in vitro bioactivity of zincincorporating tricalcium silicate [J]. Mat Sci Eng C-Bio S,2011,31(3):629-636.
    [145] Limori Y., Kameshima Y., Okada K., et al. Comparative study of apatite formation onCaSiO3ceramics in simulated body fluids with different carbonate concentrations [J].J Mater Sci-Mater M,2005,16(1):73-79.
    [146] Sun H.L., Wu C.T., Dai K.R., et al. Proliferation and osteoblastic differentiation ofhuman bone marrow-derived stromal cells on akermanite-bioactive ceramics [J].Biomaterials,2006,27(33):5651-5657.
    [147] Gu H.J., Guo F.F., Zhou X., et al. The Stimulation of Osteogenic Differentiation ofHuman Adipose-Derived Stem Cells by Ionic Products from Akermanite Dissolutionvia Activation of the ERK Pathway [J]. Biomaterials,2011,32(29):7023-7033.
    [148] Wu C.T., Ramaswamy Y., Zreiqat H., et al. The effect of strontium incorporation intoCaSiO3ceramics on their physical and biological properties [J]. Biomaterials,2007,28(21):3171-3181.
    [149] Sainz M.A., Pena P., Serena S., et al. Influence of design on bioactivity of novelCaSiO3-CaMg(SiO3)2bioceramics: In vitro simulated body fluid test andthermodynamic simulation [J]. Acta Biomater,2010,6(7):2797-2807.
    [150] Wu C.T., Ramaswamy Y., Zreiqat H. Porous diopside (CaMgSi2O6) scaffold: Apromising bioactive material for bone tissue engineerings [J]. Acta Biomater,2010,6(6):2237-2245.
    [151] Wu C.T., Zreiqat H. Porous bioactive diopside (CaMgSi2O6) ceramic microspheresfor drug delivery [J]. Acta Biomater,2010,6(3):820-829.
    [152] Ramaswamy Y., Wu C.T., Ramaswamy Y., Dunstan C.R., et al. Sphene ceramics fororthopedic coating applications: An in vitro and in vivo study [J]. Acta Biomater,2009,5(8):3192-3204.
    [153] Roohani-Esfahani S.I., Dunstan C.R., Zreiqat H., et al. Repairing a critical-sizedbone defect with highly porous modified and unmodified baghdadite scaffolds [J].Acta Biomater,2012,8(11):4162-4172.
    [154] Liang Y., Xie Y.T., Ji H., et al. Excellent Stability of Plasma-Sprayed BioactiveCa3ZrSi2O9Ceramic Coating on Ti-6Al-4V [J]. Appl Surf Sci,2010,256(14):4677-4681.
    [155] Li C., Bando Y., Dierre B., et al. Effect of size-dependent thermal instability onsynthesis of Zn2SiO4-SiOxcore-shell nanotube arrays and their cathodoluminescenceproperties [J]. Nanpscale Res Lett,2010,5(4):773-780.
    [156] Tsai M.T., Lu Y.F., Wang Y.K. Synthesis and characterization of manganese-dopedzinc orthosilicate phosphor powders [J]. J Alloy Compd,2010,505(2):818-823.
    [157] Mai M., Feldmann C. Two-color emission of Zn2SiO4:Mn from ionic liquid mediatedsynthesis [J]. Solid State Sci,2009,11(2):528-531.
    [158] Shibuki K., Tajesue M., Aida T.M., et al. Continuous synthesis of Zn2SiO4:Mn2+fineparticles in supercritical water at temperature of400-500°C and pressure of30-35MPa [J]. J Supercrit Fluids,2010,54(2):266-271.
    [159] Xiong L.M., Shi J.L., Gu J.L., et al. A mesoporous template route to thelow-temperature preparation of efficient green light emitting Zn2SiO4:Mn phosphors[J]. J Phys Chem B,2005,109(2):731-735.
    [160] Diao C.C., Yang C.F. Synthesis of high efficiency Zn2SiO4:Mn2+green phosphorsusing nano-particles [J]. Cream Int,2010,36(5):1653-1657.
    [161] Krsmanovic R., Antic Z., Zekovic I., et al. Polymer-assisted sol-gel synthesis andcharacterization of Zn2SiO4:Eu3+powders [J]. J Alloy Compd,2009,480(2):494-498.
    [162] Patra A., Baker G.A., Baker S.N. Effect od dopant concentration and annealingtemperature on the phosphorescence from Zn2SiO4:Mn2+nanocrystals [J]. J lumin,2005,111(1-2):105-111.
    [163] Lukic S.R., Petrovic M.D., Deamicanin M.D., et al. Optical and structural propertiesof Zn2SiO4:Mn2+green phosphor nanoparticles obtained by a polymer-assistedsol-gel method [J]. Scripta Mater,2008,58(8):655-658.
    [164] Jiang Y.Q., Chen J., Xie Z.X., et al. Syntheses and optical properties of alpha-andbeta-Zn2SiO4:Mn nanoparticles by solvothermal method in ethylene glycol-watersystem [J]. Mater Chem Phys,2009,120(2-3):313-318.
    [165] Xu G.Q., Xu H.T., Zheng Z.X., et al. Preparation and characterization ofZn2SiO4:Mn2+phosphors with hydrothermal methods [J]. J Lumin,2010,130(10):1717-1720.
    [166] Yu X., Wang Y.H. Synthesis and photoluminescence improvement of monodispersedZn2SiO4:Mn2+nanophosphors [J]. J Alloy Compd,2010,497(1-2):290-294.
    [167] Takesue M., Shimoyama K., Shibuki K., et al. Formation of zinc silicate insupercritical water followed with in situ synchrotron radiation X-ray diffraction [J]. JSupercrit Fluid,2009,49(3):351-355.
    [168] Takesue M., Suino A., Hakuta Y., et al. Crystallization trigger of Mn-doped zincsilicate in supercritical water via Zn, Mn, Si sources and complexing agentethylenediamine tetraacetic acid [J]. Mater Chem Phys,2010,121(1-2):330-334.
    [169] Wang L.L., Liu X.M., Hao Z.Y., et al. Electrospinning synthesis and luminescenceproperties of one-dimensional Zn2SiO4:Mn2+microfibers and microbelts [J]. J PhysChem C,2008,112(48):18882-18888.
    [170] Kang Y.C., Lim M.A., Park H.D., et al. Ba2+co-doped Zn2SiO4:Mn phosphorparticles prepared by spray pyrolysis process [J]. J Electrochem Soc,2003,150(1):H7-H11.
    [171] Wang J., Ge J.P., Zhang H.X., et al. Mn-doped silicate micro/nanowire bundles onsilicon wafers: Synthesis and visible luminescence [J]. Small,2006,2(2):257-260.
    [172] Hu X.L., Yu J.C., Gong J.M., et al. α-Fe2O3nanorings prepared by amicrowave-assisted hydrothermal process and their sensing properties [J]. Adv Mater,2007,19(17):2324-2329.
    [173] Baghbanzadeh L., Carbone L., Cozzoli P.D., et al. Microwave-assisted synthesis ofcolloidal inorganic nanocrystals [J]. Angew Chem Int Ed,2011,50(48):11312-11359.
    [174] Kokubo t., Takadama H. How useful is SBF in predicting in vivo bone bioactivity [J].Biomaterials,2006,27(15):2907-2915.
    [175] ISO/EN10993-5. Biological evaluation of medical devices, Part5: Test forcytotoxicity, in vitro methods:8.2Test on extracts [S]. Geneva: ISO InternationalStandard,2009.
    [176] Zeng J.H., Fu H.L., Lou T.J., et al. Precursor, base concentration and solventbehavior on the formation of zinc silicate [J]. Mater Res Bull,2009,44(5):1106-1110.
    [177] Wang H.F., Ma Y.Q., Yi G.S., et al. Synthesis of Mn-doped Zn2SiO4rodlikenanoparticles through hydrothermal method [J]. Mater Chem Phys,2003,82(2):414-418.
    [178] An J.S., Noh J.H., Cho I.S., et al. Tailoring the morphology and Structure ofnanosized Zn2SiO4:Mn2+phosphors using the hydrothermal method and theirluminescence properties [J]. J Phys Chem C,2010,114(23):10330-10335.
    [179] Dirksen J.A., Ring T.A. Fundamentals of crystallization: kinetic effects on particlessize distributions and morphology [J]. Chem Eng Sci,1991,46(10):2389-2427.
    [180] Ito A., Kawamura H., Otsuka M., et al. Zinc-releasing calcium phosphate forstimulating bone formation [J]. Mat Sci Eng C-Bio S,2002,22(1):21-25.
    [181] Boyd D., Towler M.R., Wren A.W., et al. TEM analysis of apatite surface layersobserved on zinc based glass polyalkeonate cements [J]. J Mater Sci,2008,43(3):1170-1173.
    [182] Wu Y., Wang Y.S., He D., et al. Spherical Zn2SiO4:Eu3+@SiO2phosphor particle incore-shell structure: Synthesis and characterization [J]. J Lumin,2010,130(10):1768-1773.
    [183] Cho S.B., Nakanishi K., Kokubo T., et al. Dependence of apatite formation on silicagel on its structure: effect of heat treatment [J]. J Am Ceram Soc,1995,78(7):1769-1774.
    [184] Lei B., Chen X.F., Wang Y.J., et al. Influence of sintering temperature on porestructure and apatite formation of a sol-gel-derived bioactive glass [J]. J Am CeramSoc,2010,93(1):32-35.
    [185] Kumar R., Prakash K.H., Cheang P., et al. Temperature driven morphologicalchanges of chemically precipitated hydroxyapatite nanoparticles [J]. Langmuir,2004,20(13):5196-5200.
    [186] Huang M.J., Wang Y.J. Synthesis of calcium phosphate microcapsules usingyeast-based biotemplate [J]. J Mater Chem,2012,22(2):626-630.
    [187] Cothern C.R., Langer D.W., Vesely C.J. Determination of chemical shift of coreelectron binding energies for some zinc compounds and the applicability of electronspectroscopy to environmental samples [J]. J Electron Spectrosc,1974,3(5):399-407.
    [188] Liang D.. Yang M.W., Guo B.L., et al. Zinc upregulates the expression ofosteoprotegerin in mouse osteoblasts MC3T3-E1through PKC/MARK pathways [J].Biol Trace Elem Res,2012,146(3):340-348.
    [189] EI-Ghannam A., Ducheyne P., Shapiro I.M. Formation of surface reaction productson bioactive glass and their effects on the expression of the osteoblastic phenotypeand the deposition of mineralized extracellular matrix [J]. Biomaterials,1997,18(4):295-303.
    [190] Dorozhkin S.V. Biphasic, triphasic and multiphasic calcium orthophosphates [J].Acta Biomater,2012,8(3):963-977.
    [191] Lin K.L., Zhang M.L., Zhai W.Y., et al. Fabrication and characterization ofhydroxyapatite/wollastonite composite bioceramics with controllable properties forhard tissue repair [J]. J Am Ceram Soc,2011,94(1):99-105.
    [192] Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications [J]. ProgPolym Sci,2012,37(1):106-126.
    [193] Obata A., Kasuga T. Stimulation of human mesenchymal stem cells and osteoblastsactivities in vitro on silicon-releasable scaffolds [J]. J Biomed Mater Res A,2009,91A(1):11-17.
    [194] Obata A., Kasuga T. Cellular compatibility of bone-like apatite containing siliconspecies [J]. J Biomed Mater Res A,2008,85A(1):140-144.
    [195] Jones J.R., Tsigkou O., Coates E.E., et al. Extracellular matrix formation andmineralization on a phosphate-free porous bioactive glass scaffold using primaryhuman osteoblast (HOB) cells [J]. Biomaterials,2007,28(9):1653-1663.
    [196] Wu T.J., Huang H.H., Lan C.W., et al. Studies on the microspheres comprised ofreconstituted collagen and hydroxyapatite [J]. Biomaterials,2004,25(4):651-658.
    [197] Malafaya P.B., Santos T.C., Reis R.L., et al. Morphology, mechanical,characterization and in vivo neo-vascularization of chitosan particle aggregatedscaffolds architectures [J]. Biomaterials,2008,29(29):3914-3926.
    [198] Luciani A., Coccoli V., Orsi S., et al. PCL microspheres based functional scaffolds bybottom-up approach with predefined microstructural properties and release profiles[J]. Biomaterials,2008,29(36):4800-4807.
    [199] Kang S.W., Yang H.S., Seo S.W., et al. Apatite-coated poly(lactic-co-glycolic acid)microspheres as an injectable scaffold for bone tissue engineering [J]. J BiomedMater Res A,2008,85A(3):747-756.
    [200] Li H., Chang J. Preparation, characterization and in vitro release of gentamicin formPHBV/wollastonite composite microspheres [J]. J Control Release,2005,107(3):463-473.
    [201] Ribeiro C.C., Barrias C.C., Barbosa M.A. Preparation and characterization ofcalcium-phosphate porous microspheres with a uniform size for biomedicalapplications [J]. J Mater Sci,2006,17(5):455-463.
    [202] Barrias C.C., Ribeiro C.C., Lamghari M., et al. Proliferation, activity, and osteogenicdifferentiation of bone marrow stromal cells cultured on calcium titanium phosphatemicrospheres [J]. J Biomed Mater Res A,2005,72A(1):57-66.
    [203] Mateus A.Y., Barrias C.C., Ribeiro C., et al. Comparative study ofnanohydroxyapatite microspheres for medical applications [J]. J Biomed Mater ResA,2008,86A(2):483-493.
    [204] Ma Y.F., Feng Q.L. Alginate hydrogel-mediated crystallization of calcium carbonate[J]. J Solid State Chem,2011,184(5):1008-1015.
    [205] Yan X.X., Huang X.H., Yu C.Z., et al. The in vitro bioactivity of mesoporousbioactive glasses [J]. Biomaterials,2006,27(18):3396-3403.
    [206] Xia W., Chang J. Preparation, in vitro bioactivity and drug release property ofwell-ordered mesoporous58S bioactive glass [J]. J Non-cryst Solids,2008,354(12-13):1338-1341.
    [207] Li X., Shi J.L., Zhu Y.F., et al. A template route to the preparation of mesoporousamorphous calcium silicate with high in vitro bone-formation bioactivity [J]. JBiomed Mater Res B,2007,83(2):431-439.
    [208] Wei J., Chen F.P., Liu C.S. Preparation and characterization of bioactive mesoporouswollastonite-Polycaprolactone composite scaffold [J]. Biomaterials,2009,30(6):1080-1088.
    [209]李红兵.用圆二色谱(CD)研究海藻酸钠对钙锌离子的选择[J].离子交换与吸收,2006,22(3):246-253.
    [210] Verraest D.L., Peters J.A., Van-Bekkum H., et al. Carboxymethyl inulin: A newinhibitor for calcium carbonate precipitation [J]. J Am Oil Chem Soc,1996,73(1):55-62.
    [211] Manoli F., Dalas E. The effect of sodium alginate on the crystal growth of calciumcarbonate [J]. J Mater Sci-Mater M,2002,13(2):155-158.
    [212] Forster R.E.J., Thurmer F., Wallrapp C., et al. Characterization ofphysico-mechanical properties and degradation potential of calcium alginate beadsfor use in embolization [J]. J Mater Sci-Mater M,2010,21(7):2243-2251.
    [213] Xie M.L., Olderoy M.O., Andreassen J.P., et al. Alginate-controlled formation ofnanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogelnetwork [J]. Acta Biomater,2010,6(9):3665-3675.
    [214] Wang X.P., Chen L., Xiang H., et al. Influence of anti-washout agents on therheological properties and injectability of a calcium phosphate cement [J]. J BiomedMater Res B,2007,81B(2):410-418.
    [215] Wang X.P., Ye J.D., Wang Y.J., et al. Reinforcement of calcium phosphate cement bybio-mineralized carbon nanotube [J]. J Am Ceram Soc,2007,90(3):962-964.
    [216] Crane N.J., Popescu V., Morris M.D., et al. Roman spectroscopic evidence foroctacalcium phosphate and other transient mineral species deposited duringintramembranous mineralization [J]. Bone,2006,39(3):434-442.
    [217] Suzuki O., Imaizumi H., Kamakura S., et al. Bone regeneration by syntheticoctacalcium phosphate and its role in biological mineralization [J]. Curr Med Chem,2008,15(3):305-313.
    [218] Yang X., Zhang L., Chen X., et al. Trace element-incorporating octacalciumphosphate porous beads via polypeptide-assisted nanocrystal self-assembly forpotential applications in osteogenesis [J]. Acta Biomater,2012,8(4):1586-1596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700