钛化物复合纤维的制备及其在吸波材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息时代的到来,电子产品、通讯器材已成为人们日常生活的重要部分,21世界严重恶化的电磁环境会对人体健康、电子产品、电气产品及系统造成灾难性的危害。电磁波吸收材料是各国政府和科学家及社会共同关注的一个课题。
     本课题旨在开发钛化物复合纤维吸波材料,该材料可望成为一种二十一世纪保护电磁环境和人体免受电磁波侵害的新型材料。
     本论文以PAN基碳纤维、气相生长碳纤维(VGCF)、微米螺旋碳管为基体,采用化学气相沉积工艺制备TiC/C,TiN/C复合纤维。通过SEM、TEM、XRD和EMAX分析复合纤维的微观形态、结构和组成。探讨了反应温度、反应时间对TiC颗粒大小、镀层厚度的影响,结果表明:随着反应温度的提高和反应时间的延长,TiC层的颗粒尺寸逐渐增大,均匀程度下降;在1200℃涂层的表面形貌呈现为片状或针状结构。还对该气相沉积过程进行了动力学、热力学分析,探讨了复合纤维的形成机理。
     本论文还把复合纤维添加到树脂基体中制得复合吸波板,比较了添加不同条件制备而得的TiC/C复合纤维吸收剂的复合吸波板的电磁波吸收性能,还和传统电磁波吸收剂进行了比较,并探讨了碳纤维和复合纤维的吸波机理。结果表明:以PAN基碳纤维为基体制备而得的TiC/C复合纤维的吸波板在15-35GHz频段内具有良好的电磁波吸收性能,有效带宽超过5GHz,最大吸收峰达到-15dB。随着吸收剂含量的增加,复合吸波板的吸收性能增强。TiC/C复合纤维在对频率为2G左右的电磁波就有很强的吸收性能,其吸收波能明显高于传统的吸波剂SiC、铁氧体。
With increasing various electronic products and telecommunication equipments which are facilitating the daily life, the electromagnetic wave (EMW), which is vital to these technologies, is bringing disastrous harm to human health, as well as to the electronic equipments that are sensitive to excessive EMW. In order to reduce the negative effects of EMW, the development of EMW absorbing material has been attracting much research attention.
    In this work, novel EMW absorbing composite fibers of TiC (or TiN)/carbon fibers were prepared by the reaction of TiCl4 with carbon fibers such as PAN-based carbon fibers, vapor-grown carbon fibers and micron-size carbon solenoids via chemical vapor deposition (CVD) process. SEM, TEM, XRD and EMAX were applied to characterize the microstructure and compositions of the synthesized materials. The influences of CVD reaction conditions such as temperature and reaction time on the TiC particle size and the thickness of the deposited layer were investigated. Higher temperature and longer time resulted in the growth of bigger size of the TiC crystal particles, and the particle uniformity was also decreased. TiC deposited at 1200C had the crystal shape of platelets or needles instead of grains. The kinetics and thermodynamics of this CVD process and the formation mechanism of the composite fibers were discussed.
    The obtained TiC/C fibers were filled into resin matrix to prepared composite EMW absorption plates. These materials were proved to be excellent candidates of EMW absorbing material to protect human being and electronic equipments from destructive EMW radiation. The adsorption strength increased with the increased concentration of the TiC/C fiber in the composite absorbing plates. Especially, the TiC/C composite fiber prepared with the PAN-based carbon fibers strongly absorbed EMW in the frequencies ranging from 15GHz to 35 GHz. Strong adsorption of EMW, especially of the EMW of frequencies at about 2 GHz, was observed in the composite EMW absorption plates, in obvious contrast to the conventional EMW absorbing agents such as SiC and ferric oxide. The effective absorption band width was more than 5GHz and the biggest adsorption peak reached about -15dB.
引文
[1] Pearson W B.A handbook of Lattice Spacings and Structures of Matals and alloys. Oxford.. Pergamon Press,1958, 960
    [2] 周芝骏,宁崇德等编,钛的性质及其应用,高等教育出版社,1993.4
    [3] 王零森编著 特种陶瓷,中南工业大学出版社 1994;168-169
    [4] K.THORNE, S.TING and C.J.CHU, J,Mater.Sci, 1992, 27: 4406
    [5] R.KOC, J.SFOLMER, Carborhermal synthesis of tanium carbide using ultrafine titana powders, J.Mater.Sci, 1997, 32: 3101-3111
    [6] RASIT K. Sintering Properties of submicron TiC powders from carbon coated titania precursor[J], Journal of Materials Science 2000, 35 (12): 3131-3141
    [7] RASIT K. Kinerties and Phase evolution during carbothermal synthesis of titanium carbide from ultrafine titanic carbon mixture [J], Journal of material science, 1998, 33 (4): 1049-1055。
    [8] 夏斌华等,SHS法合成TiC的晶体结构形成过程分析[J],稀有金属与硬质合金,1996,(9):6
    [9] MISHRA S K.. Self-propagating high tempertature synthesis (SHS) of titanium carbide [J], Journal of Material Science Letters, 1997, 16 (2): 965-967
    [10] CAPALDI M J. Production and characterization of TiC-containing Materials by Self-propagating high temperature synthesis [J], Journal of Materials Synhesis and Processing, 1996, 4 (4): 245-253
    [11] OWEN C R. Differential thermal analysis of ignition temperatures in a self-propagating high-temperature synthesis reaction [J], Joural of Thermal Analysis, 1994, 42 (4): 713-719
    [12] KOSG. Self-propagation high-temperature synthesis(SHS) of ultrafine high-purity TiC powder from TiO_2+Mg+C[J], Journal of Material Science, 1995, 30 (11): 2835-2837
    [13] AIEXANDRESCU K. Synthesis of TiC and SiC/TiC nanocrystalline powder by gas-phase laser-induced reaction [J], Journal of Materials Science, 1997, 32 (21): 5629-5635
    
    
    [14] 郭海明,舒武炳,乔生儒等,化学气相沉积碳化钛的热力学和动力学研究,材料工程,1998,10:25-29
    [15] YOONCHOI, SHI-RHEE, Effect of aluminum addition on the combus tion reaction titanium and carbon to form TiC, J.Mater.Sci, 1993, 28:6669-6675
    [16] 赵杰,自蔓延高温合成新型碳化钛磨料,南京化工大学学报,1999,11:20-25
    [17] 张修庆,朱心昆,颜丙勇等,反应球磨技术制备纳米材料,材料科学与工程,2001,2::95-99
    [18] 胡晓力,刘阳,尹虹等,微波合成碳化钛的研究,中国陶瓷工业,2002,1:12-15
    [19] 钱鸿森,微波加热技术与应用,黑龙江科学技术出版社,1985。
    [20] Tian D.Xia, Zuhair A.Munir, etal, Structure Formation in Combustion synthesis of Al_2O_3-TiC Composites, J.Amm.Ceram, Soc, 2000, 83 (3): 507-512
    [21] Adrian Goldstein and Ania Singurindi, Al_2O_3/TiC Basedmetal cutting tools by microwaves intering followed by hot isostatic pressing, J.Am.Ceram, Soc, 2000, 83 (6): 1530-1532
    [22] 高纪明,陈松年,肖汉宁等,氧化铝/碳化钛复合材料的无压烧结,湖南大学学报,1996,4:46-50
    [23] 赵喆,龚江宏,苗赫濯等,TiC颗粒弥散Al_2O_3复合材料的阻力曲线行为,硅酸盐学报,2001,4:371-375
    [24] Barry H.Rabin, Gary, E.Korth, and Ricard L.Williamson, Fabrication of Titanium carbide-Alumian composites by combustion synthesis and subsequent dynamic consolidtion, J.Am, Ceram, Soc, 1990, 73 (7): 2156-2157
    [25] 胡玉龙,蒋凡,装甲陶瓷的发展现状和趋势,兵器材料科学与工程,1999,5:37-42
    [26] 张国军,反应热压法制备TiB2-Ti(C、N)复相陶瓷研究,硅酸盐学报,1998,2:182-186
    [27] 宋桂明,王玉金,周玉等,TiC和ZrC颗粒增强钨基复合材料,固体火箭技术,1998,4:54-59
    [28] 邹勇,,邹增大,碳化钛抗裂堆焊焊条的研制,中国机械工程,1999,3:99-100
    
    
    [29] 胡国荣,杨凯华,汤凤林等,用反应性PVD方法在金刚石表面沉积金属钛,机械工程材料,1999,6:23-24
    [30] 潘秉锁,,陈裕康,胡国荣等,金刚石表面沉积二氧化钛薄膜研究,地质与勘探,2000,2:74-75,88
    [31] 胡国荣,杨凯华,汤凤林等,用均一沉淀法在金刚石表面沉积二氧化钛,,材料科学与工程,2001,3:44-46
    [32] 张建民,直流三极偏压溅射沉积碳化钛膜,真空,1998,1::29-31
    [33] 山常起,陈庆望,戴少侠等,碳化钛及其复合涂层材料抗氚渗透层的稳定性,核聚变与等离子体物理,2001,1::59-62
    [34] 张晓燕,张家鼎,吴正纯等,新型复合电接触材料的开发研究,上海大学学报(自然科学版),2000,1::91-94
    [35] 林杰,亚振国,徐成富等,提高掘进机截割头截齿寿命的新途径,煤炭技术,2000,1:4-6
    [36] 张勇,林均品,陈国良等,碳化钛泡沫陶瓷的筋内组织,材料科学与工艺,1999,2:62-64
    [37] 林品均,张勇,陈国良,制备工艺对TiC泡沫陶瓷结构及性能影响,粉末冶金技术,2000,1:12-15
    [38] 崔万秋,朱小英,金德江等,碳化钛-堇青石复相导电型陶瓷结构与红外辐射特性的研究,红外与毫米波学报,2000,2:89-94
    [39] N.M.Rodringus, J.Meter.Res, 1993(8): 3233-3240
    [40] Endo M, Takeuchi K, Kobori K, Carbon, 1995 (33): 873-881
    [41] 贺福,王润娥,赵建国,聚丙烯腈基碳纤维,化工新型材料,1999(4):6-8
    [42] 张卫东,冯晓云,孟秀兰。国外隐身材料研究进展[J]。宇航材料工艺,2000(3):1~4.
    [43] 吴明忠,雷达吸波材料的现状和发展趋势[J]。磁性材料及器件,1997,28(2):26~30.
    [44] KIMMSS, CHEONCM, YOONBI, ferrite-epoxy absorber on carbon fiber composite substrate [J],Journal De Physique, 1997,7(1): :425~426
    [45] Han Shineho, Sung Sookim. M-Haxaferrites with Plannar Magnetic Anisotropy and their Application to High Frequency Microwave Absorbers [J], Transactions
    
    on Magnetics, 1999,35(5): 3151~3153.
    [46] SUCIMOTOS, OKAYAMAK, KONDOS, etal. Barium M-type ferrite as an electromagnetic microwave absorber in the CHz range [J]。Mater Trans JIM, 1998,39(10): 1080~1083.
    [47] 焦桓,周万城。雷达吸收剂研究进展[J]。材料导报,2000,14(3):11-12.
    [48] 杨咏来,宁桂玲。吸波材料及其研究进展。化工进展,1996,(5):19~21.
    [49] 曾祥云,马铁军,李家俊。吸波材料(RAM)用损耗介质及RAM技术发展趋势。材料导报,1997,11(3):57~61.
    [50] 欧阳国恩。炭化硅-炭功能纤维,功能材料,1994,25(4):300~305.
    [51] 欧阳国恩,刘兴慰,岳曼。,SiC-C纤维有机先驱体流变可纺性研究。复合材料学报,1999,12(3):46~52.
    [52] 焦桓,罗发,周万城。纳米吸波材料研究与发展趋势。宇航材料工艺,2001,5:9~11.
    [53] 张卫东,冯小云,孟秀兰。国外隐身材料研究进展。宇航工艺,2000,3:1~4.
    [54] 刘祥萱,王碹军。雷达波吸收剂的研究进展。电子对抗技术,2002,17(4):44~47.
    [55] 邓建国,王建华,贺传兰。纳米微波吸收剂研究现状与进展。宇航材料工艺,2002,5:5~10.
    [56] 周敏,杨觉明,周建军,吸波材料研究进展[J]。西安工业学院学报,2000,20(4):296~302.
    [57] 葛副鼎,库万军等,手性材料及其在隐身吸波材料中的应用[J]。材料导报,1999,13(1):10~11.
    [58] 王海,雷达吸波材料的现状和发展方向[J]。上海航天,1999,1:55~59.
    [59] 徐生求,段永法。新型吸波材料的研究和展望[J]。空军雷达学院学报,2001,15(1):45~48.
    [60] COURRICS. Electromagnetic properties of blends of poly (p-phenylene-vinylene) derivatives [J].Polymers for Advanced Technologies, 2000, 11(6): 273~279.
    [61] 吴晓华,东华秋,国外微波吸收材料
    
    
    [62] V.S.Ban. CVD-Sixth International Conference, 1975, 66
    [63] 叶瑞伦等编,无机材料物理化学,北京:中国建筑工业出版社,1986,139.
    [64] 李伯骥编著。化学化工实验师手册.大连:大连理工大学出版社,1996,155
    [65] R.cadoret. in Curent Topics in Materials Science, edited by E.Kaldis,Amsterdam:North-Holland, 1980,Ch2
    [66] [美]A.W.Adamson著。顾惕人译,表面的物理化学(下册),北京:科学出版社,1985,385.
    [67] 日本化学会编,董万堂等译.无机固相反应,北京:科学出版社,1985,219.
    [68] D.Lespiaux etal. J.Mater. Sci, 1995, 30: 1500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700