高频微波衰减陶瓷的制备与频谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波衰减材料广‘泛应用于微波电真空器件、消极电子对抗和微波测量系统中。AlN具有适中的介电常数、高的热导率、好的化学和热稳定性以及高的电阻率;导电颗粒Mo、W具有与AlN匹配的热膨胀系数和较高的热导率,可以作为良好的微波衰减剂,因此,AlN/导电颗粒复合陶瓷以其优异的综合性能和对环境的友好性成为替代传统微波衰减材料的最佳选择。然而在AlN/Mo复合微波衰减陶瓷体系中,一方面,复合陶瓷的渗流阂值对原材料和加工工艺极其敏感;另一方面,AlN/Mo复合陶瓷的电阻率特别敏感于Mo的添加量变化,因而形成的电阻突变范围很窄,很难有效地控制电阻率以获得较好的介电性能。因此,这些不利因素成为亟待解决的问题。
     本文研究的目的就是在探究改变原材料及制备工艺对AlN/Mo复合陶瓷的渗流阈值的影响及由此带来的介电性能的影响的同时,在此基础上通过添加半导体颗粒SiC形成AlN/Mo/SiC复合体系,尝试做到有效而精确控制复合体系电阻率,使其电阻率发生突变的范围得以展宽,最终使复合陶瓷具有高热导率和良好的微波衰减性能。
     在AlN/Mo复合陶瓷的烧结过程中,混料方式和烧结温度等对AlN/Mo复合陶瓷在无压烧结方式下的烧结致密化起着关键性的作用。另外,导电颗粒Mo的加入有利于AlN/Mo复合陶瓷的致密烧结。在烧结温度为1750℃下,不同Mo含量的样品的致密度均超过了98%,当Mo含量达到32%以上,试样的致密度接近理论致密度。
     对于改变原料粒径和工艺制备的AlN/Mo复合微波衰减陶瓷,其渗流阈值为37.45%左右,相比于在之前工作中得到23%有了明显的提高。在此基础上测得,AlN/Mo复合陶瓷在渗流闽值附近的介电常数已经变大。但热导率随着Mo的添加量的增加出现下降。
     SiC的添加对AlN/Mo/SiC的烧结致密度会产生显著的影响,因而选择合适的烧结方式和工艺,调整SiC的添加含量到一个合适的范围,是制备高致密度的AlN/Mo/SiC复合陶瓷的关键。
     相对于AlN/Mo体系而言,SiC添加后的体系在一定范围内没有再出现电阻率的非线性突变现象,而是随着SiC添加量的增加,电阻率在一定范围内缓慢下降,说明SiC的添加有效地阻断了Mo颗粒形成的渗流通道,从而达到了展宽体系渗流阂值的目的。
     SiC含量对AlN/Mo/SiC复合陶瓷的介电性能和热导率均有显著影响。其介电常数和损耗随着SiC添加量的增加而增大。复合陶瓷的热导率则呈下降趋势,这和致密度、各相的相对含量,各相的热导率及分布状态有着密切的关系。
Microwave attenuation materials are widely used in vacuum microwave electronic devices, negative electronic countermeasure and microwave measuring system. AlN exhibits good thermal properties, electrical insulation and good chemical properties. Mo and W are suitable as attenuation substance in AlN composite ceramics for their appropriate thermal expansion coefficient and high thermal conductivity. It is such excellent properties and its healthy attribute that makes this kind of material could be taken as the alternative microwave attenuation materials. However, in this system, for one thing, the percolation threshold is very sensitive to the raw materials and preparation process so that it results in the change of dielectric properties of AIN/Mo composite ceramics. For another thing, the electrical resistivity of composite ceramics is too sensitive to the change of Mo content, so it is so difficult to control the electrical resistivity to obtain good dielectric properties. Therefore, the problems mentioned above need prompt solutions.
     In this work, the purpose of the study is to investigate the influence of the raw materials and preparation process on the percolation threshold of AIN/Mo composite ceramics and on this basis, study the process that how it change the dielectric properties. Furthermore, by adding proper amount of SiC, AIN/Mo/SiC composite ceramics were produced with high relative density. The purpose of adding SiC was to widen the range of the percolation threshold so that the composite ceramics could have proper dielectric properties that we expected, and at last, achieve the objective that obtain the material with excellent microwave attenuation properties.
     During the process of sintering, the method of mixing and the sintering temperature both have influence on the relative density of AIN/Mo composite ceramics produced by pressureless sintering process. In addition, adding Mo particles is helpful to the process of sintering. When the sintering temperature reaches 1750℃, the relative density of AIN/Mo composite ceramics with different Mo content exceed 98%. Especially, when the volume fraction of Mo content reaches 32% and above, the relative density of this kind of ceramics approaches its theoretical value.
     For AIN/Mo composite ceramics which is produced by changing the radius of the raw materials and preparation process, its percolation threshold has reached 37.45%. Comparing with value of 23% obtained in some formal works, it has increased greatly. On this basis, the measurement of dielectric constant shows that the dielectric constant of AlN/Mo composite ceramics has increased at the point closed to the percolation threshold. However, the thermal conductivity of AIN/Mo composite ceramics decreases because of the increase of Mo content.
     The addition of SiC has great influence on the relative density of AIN/Mo/SiC composite ceramics. Therefore, both choosing proper method of sintering and preparation process and adjusting the SiC content are key points to prepare AIN/Mo/SiC composite ceramics with high relative density.
     Comparing to AIN/Mo composite ceramics, when adding some SiC particles, the electric resistivity of AIN/Mo/SiC composite ceramics decreases gently instead of showing no-linear abrupt change. This result states that the addition of SiC has break down the channel which was made by the joint of Mo particles and achieving the goal of widening the range of the percolation threshold.
     SiC content has great influence on the dielectric properties and the thermal conductivity of AIN/Mo/SiC composite ceramics. The dielectric constant and dielectric loss increase with the increase of SiC content. Its thermal conductivity decreases with the increase of SiC content, which is closely related to these factors:the relative density, the relative content of each phase, the thermal conductivity of each phase and the distribution model of each phase.
引文
[1]鲁燕萍,张云鹤.含钛衰减陶瓷制作工艺[J].真空电子技术,2002,(3):15.
    [2]刘顺华,郭辉进.电磁屏蔽与吸波材料[J].功能材料与器件学报,2002,8(3):213
    [3]石明,鲁燕萍.氮化铝基微波衰减材料的研究进展[J].硅酸盐通报,2005,24(6):76-79
    [4]M. Biljana, K. David. AIN-based lossy ceramics for high power applications. IEEE International Vacuum Electronics Conference, California, USA,2002:32-33
    [5]E. Savrun, V.N. guyen, K.A. David. High thermal conductivity aluminum nitride ceramics for high power microwave tubes. IEEE International Vacuum Electronics Conference, California,2002:34-35
    [6]M.F. Kirsluer, L. Torek, K.P. David. Evaluation of aluminum nitride based RF lossy dielectrics for use in high power microwave devices. IEEE International Vacuum Electronics Conference, California,2002:36-37
    [7]G. Xu, Y. Camel, I.K. Loyd, etal. Advanced high thermal conductivity ceramics for power microwave tubes. IEEE International Vacuum Electronics Conference, California,2002:38-39
    [8]高陇桥.隐身材料与衰减陶瓷.火花塞与特种陶瓷,1998,1:19-26
    [9]鲁燕萍.毫米波行波管用衰减瓷真空电子技术.2004,1:49-52
    [10]徐耕夫,李文兰,庄汉锐等.氮化铝陶瓷的微波烧结研究[J].硅酸盐学报,1997,25(1):89-95
    [11]高陇桥.高热导率陶瓷材料的进展.真空电子技术,2003(2):49-53
    [12]K. A. Khor, L. G. Yu, Y. Murakoshi. Spark plasma sintering of Sm2O3-doped
    aluminum nitride. Journal of the European Ceramic Society,2005,25(7):1057-1065
    [13]B. Mikijelj, D.K. Abe, R. Hutcheon. AIN-based lossy ceramics for high average power microwave devices:performance-property correlation. J Euro Ceram Soc,2001,25(7): 2705-2709
    [14]B. Mikijelj, D.K. Abe, AIN-based lossy ceramics for high power applications. In IVEC 2002 proceedings, Monterey, CA,20-23 April.2002:32-33
    [15]S. Kume. Dielectric properties of sintered aluminum nitride, International Journal of Refractory Metals & Hard Materials.2005 (23):382-385
    [16]G. F. Xu, Y. Carmel, T. Olorunyolemi, etal. Microwave sintering and properties of AlN/TiB2 composites. J. Mater. Res,2003,18 (1):66-76
    [17]李杰,韦平,汪根林等.高介电复合材料及其介电性能的研究.绝缘材料,2003,5:3-6
    [18]江平开,徐传骧,刘辅宜等.金属-绝缘体复合材料介电增强的研究[J].西安交通 大学学报,1997,6(2):6-11
    [19]邢光建,杨志民,杨剑等.高介电性能的陶瓷一聚合物复合材料的研究现状.高分子材料科学与工程,2005,21(3):54-58
    [20]A. Malliaris, D.T. Turner. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. Journal of Applied Physics, 1971,42 (3):614-618
    [21]方俊鑫,殷之文.电介质物理学.北京:科学出版社,1989:50-60
    [22]C.J. Bottcher, V. Borde. Theory of Electric Polarization, Vol Ⅱ. Elsevier Scientific publishing Company, Amsterdam,1984:1-25
    [23]陈季丹,刘子玉.电介质物理学.北京:机械工业出版社,1991:130-135
    [24]黄昆.固体物理学.北京:高等教育出版社.1988
    [25]吴晓光,车晔秋.国外微波吸收材料.长沙:国防科技大学出版社,1992:35-55
    [26]邓蘅,周彩玉,张国兴.耦合腔行波管中的切断匹配负载的设计和测量.电子学报,1997,25(6):114-116
    [27]王岱峰,李文兰,庄汉锐等.高导热AlN陶瓷研究进展[J].材料导报,1998,12(1):29-31
    [28]B.H. Muller. Microstructure and thermal conductivity of AlN ceramics sintered in different atmosphere. J Europ Ceram Soc,1993,12:271-277
    [29]V.V. Anil. J. Am. Ceram. Soc.,1989,72 (11):2031
    [30]M. Zulfequax, A. Kumar. Dielectric behavior of hot-pressed AlN ceramics:effects of CaO additive. J Electrochem Soc,1989,36(4):1099-1102
    [31]K. Watari, K. lshiaki, E. Tsuehiya. Phonon scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics. J Mater Sci,1993,28(14): 3709-3714
    [32]S.R. Witek, G.A. Muller, M.P. Harmer. Effects of CaO on the strength and toughness of AlN. J Am Ceram Soc,1989,72(3):469-473
    [33]L.M. Sheppard. Aluminum nitride:a versatile but challenging material. Ceram. Bull.. 1990 (69):1801-1812
    [34]G.A. Slack, R.A. Tanzilli, R.O. Pohl, etal. The intrinsic thermal conductivity of AlN. J. Phq's. Chenz. Solids,1987,48 (7):641-647
    [35]王思青.AlN粉末及陶瓷的性能、制备与应用综述.中国陶瓷,1995,31(5):39-42
    [36]F.Y.C. Boey, A.I.Y. Tok. Porous AlN ceramic substrates by reaction sintering. Journal of Materials Processing Technology.2003,140(1):413-419
    [37]H. Buhr, Muller. Microstructure and thermal conductivity of AlN ceramics sintered in different atmosphere. J Europ Ceram Soc,1993,12:271-277
    [38]V.V. Rao, M.V. Krishna Murthy, J. Nagaraju. Thermal conductivity and thermal contact conductance studies on Al2O3/Al-AlN metal matrix composite. Composites Science and Technology,2004,64(16):2459-2462
    [41]M. Hirano, K. Kate, T. Isobe, etal. Sintering and characterisation of fully dense aluminum nitride ceramics. J Mater Sci,1993(28):3125-4730
    [42]C.C. Wu, C.C. Ying, C.F. Yang. The dielectric properties of epoxy/AIN composites. Journal of the European Ceramic Society,2007,27(13):3839-3842
    [43]G. Partridge. Ceramic materials possessing high thermal conductivity. A&. MureV, 1992,4(1):51-54
    [44]V.V. Anil. J. Am. Ceram. Soc.,1989,72 (11):2031
    [45]K.F. Cai, D.S. Mclachlan, G. Sauti, E. Mueller. The effects of annealing on thermal and electrical properties of reaction-bonded AlN ceramic. Solid State Sciences,2005, 7(8):945-949
    [46]J.J Wang, X.S. Yi. Effect of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Composites Science and Technology,2004,64(10):1623-1628
    [47]Y.J. Yao, T. Qiu. Effects of behaviors of aluminum nitride ceramics with rare earth oxide additives. Journal of Rare Earths,2007,25(1):58-63
    [48]C.W. Nan. Physics of inhomogeneous inorganic material. Progress in Material in Science,1993,37(1):1-16
    [49]王玉成,傅正义.导电体与绝缘体复相陶瓷中的渗流现象.武汉理工大学学报,2001,23(2):31-33
    [50]A.A. Khan, J.C. Labbe, Aluminum nitride-molybdenum ceramic matrix composites: Influence of molybdenum addition on electrical, mechanical and thermal properties. J. Europ. Ceram. Soc.,1997, (17):1885-1890
    [51]R. P. Kusy. Influence of particle size ratio on the continuity of aggregates. J Appl Phys Dec,1977,48(12):5301-5305
    [52]D.S. Mclachlan, I. Blaszkiew, R.E. Newnham. Electrical Resistivity of Composites. J Am Ceram Soc,1990,73 (8):2187-2203
    [53]南策文,陈新政Ti-Al2O3金属陶瓷的渗流模型.物理学报,987,36(4):511-513
    [54]A. Malliaris, D.T. Turner. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J. Appl.Phys.1971,42(2)
    [55]P.Gonon, A.Boudefel. Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys.99,2006,99:1-8
    [56]A. Collange, P. Grosseau, B. Guilhot, et al. Thermal Conductivity of Compacted AIN Samples. Journal of the European Ceramic Society,1997,17:1897-1900
    [57]M.Tajika, H.Matsubara, W.Rafaniello. Microstructures and properties in aluminum nitride-titanium nitride composite ceramics. Materials Letters,1999,41:139-144.
    [58]吴华忠,李晓云.影响氮化铝陶瓷热导率的因素及改善途径.佛山陶瓷,2003,5:8-10
    [59]A.A. Khan, J.C. Labbe, Aluminum nitride-molybdenum ceramic matrix composites: Influence of molybdenum addition on electrical, mechanical and thermal properties. J. Europ. Ceram. Soc.,1997, (17):1885-1890
    [60]王海龙,张锐,汪长安等.微波烧结SiC-Cu/Al复合材料的工艺及机理[J].硅酸盐学报,2006,34(12):1431-1436
    [61]闫法强,陈斐,沈强等.放电等离子烧结技术制备熔融石英陶瓷[J].硅酸盐通报,2007,26(2):362-365
    [62]徐强,朱时珍,倪川浩等.SiC陶瓷的SPS烧结机理研究[J].稀有金属材料与工程,2007,36(A01):341-343
    [63]N. Zhang, H.Q. Ru, Q.K. Cai. The influence of the molar ratio of Al2O3 to Y2O3 on sintering behavior and the mechanical properties of a SiC-Al2O3-Y2O3 ceramic composite. Materials Science and Engineering:A,2008,486(15):262-266
    [64]M Giuseppe, B Aldo, B Ivano, etal. Effects of oxidation on surface stresses and mechanical properties of liquid phase pressureless-sintered SiC-AlN-Y2O3 ceramics. Materials Science and Engineering:A,2008,486(15):381-388
    [65]Z.H Chen., Huang J.Q., Chen Q., etal. A percolative ferroelectric-metal composite with hybrid dielectric dependence. Scripta Materialia,2007 (57):921-924
    [66]S. M Jose, L.E Sonia, Carlos P. The challenge of ceramic/metal microcomposites and nanocomposites. Progress in Materials Science,2007,52(7):1017-1090
    [67]M. Matsumoto, Y. Miyata. Complex permittivity based on equivalent circuit model for polymer-metal composite[J], IEEE transactions on dielectrics and electrical insulation, 1999,1(6):27-34
    [68]李长青,张俊才,武万良,王振廷SiC/Mo界面反应的微观结构及对Mo力学性能的影响[J].黑龙江科技学院学报,2009,19(3):206-207
    [69]于红.导电颗粒Mo对AIN/Mo复合陶瓷性能的影响[J].稀有金属,2010,34(3):378-382.
    [70]Wang Yucheng, Fu Zhengyu. The Percolation Phenomenon in Conduction and Isolator Composite Ceramics[J]. Journal of Wuhan University of Technology,2001,23(2):31.
    [71]Khan A A, Labbe J C. Aluminum Nitride-Molybdenum Ceramic Matrix Composites: Characterization of Ceramic of Ceramic-metal Interface[J]. J. Eur. Ceram. Soc.,1996, 16:739
    [72]Sun Muzhen. Physical Basis of Dielectric[M]. Guangzhou:South China University of Technology Press,2000.97
    [73]Zhao Yiqiang, Yao Suying, Xie Xiaodong, et al. Translation. Semiconductor Physics and Devices[M]. Beijing:Publishing House of Electronic Industry(in Chin.),2005. 232.
    [74]步文博,丘泰,徐洁AIN-SiC复相材料的制备及其微波衰减性能[J].硅酸盐通报,2003,31(9):829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700