微波辐射下PET水解聚动力学模型的优化及能效的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚酯解聚技术在我国蓬勃发展,聚酯解聚的方法也多种多样,但对聚酯解聚机理的研究却远落后于其技术的发展。然而日渐受重视的由聚酯的广泛应用引起的环境问题要求我们不得不对其机理作深入研究。对微波环境下的PET水解聚过程进行研究,不但可以为微波解聚工业化提供理论支持,还可以为微波非热效应提供有效支持。
     本文主要研究聚酯(PET)在微波环境中,水与PET质量比为10:1时,温度分别在190℃、180℃、170℃下,不同时间的纯水解聚过程。通过对解聚液相产物及固体残留物的测定、分析和表征来研究反应,探讨微波下PET解聚的反应机理,同时建立相应的动力学模型。利用气相色谱(GC)、红外光谱(IR)、凝胶色谱法(GPC)、热分析联用(TG-DSC)、扫描电镜(SEM)等分析测试手段,对PET解聚程度、解聚残留物的表观形貌和热力学行为进行了研究,同时对微波在反应过程中提供的能量进行了计算。
     通过采用气相色谱法对液相产物中乙二醇(EG)浓度的测定,发现同一温度下,随着时间的递进,液相产物中EG浓度不断增加;相应的同一反应时间,温度越高,测得的EG浓度也越高,但是EG浓度随时间的变化关系并不是简单的一次函数,表现出跳跃性。综合气相、红外、热重、扫描电镜等测试手段的分析结果,推断PET在微波环境下的解聚反应,其长链的断裂有无规和有规两个过程,反应初期主要进行的是无规断裂,有规断裂还不明显,后期则主要是有规断裂。通过对微波在反应中提供的能量进行分析,发现微波能量的多少与PET解聚程度呈一定的相关性,并初步建立了微波能量作用模型。
     对以往PET解聚的动力学模型进行优化,建立相应的反应速率方程,计算出化学反应的速率常数和活化能。结果表明,微波环境下的PET解聚反应的活化能比其他方式下PET解聚反应的活化能要低很多,结合前面分析得到的微波下PET无规解聚过程,说明正是微波的非热效应使PET发生无规解聚,反应在较短时间内就产生大量解聚产物,改变了反应路径,使反应更容易进行。
In recent years, PET depolymerization technology boomed in China, the methods of PET depolymerization are diverse, but the mechanism of it is far behind the technology. However, increasing attention to the environmental problems caused by the extensive use of PET requires us to have in-depth study of its mechanism. The study on PET depolymerization in microwave, it will not only provide the theoretical to the industrialization of PET depolymerization in microwave, but also give effective support to the non-thermal effects of microwave irradiation.
     This paper studied the process of PET depolymerization in pure water with microwave in different time while the water and PET mass ratio is 10:1 and the temperature are at 190℃, 180℃and 170℃. We studied the action by measure, analyse and characterize the liquid and solid residues, investigated the mechanism of PET depolymerization in microwave and established the corresponding dynamic model. By using gas chromatography (GC), infrared spectroscopy (IR), gel permeation chromatography (GPC), thermal analysis spectrometer (TG-DSC), scanning electron microscopy (SEM) and other methods, we analysed the degree of PET depolymerization and the morphology and thermotics of residues, while the energy supplied by microwave to the reaction was calculated at the same time.
     We used gas chromatography method to measue the consistency of ethylene glycol(EG) in the liquid residues and found that the consistency rises by the time under a certain temperature and also rises when raise the tempetature at the certain time, while the relationship between the EG consistency and time is not a simple linear function but an uneven one. After integrating the analysis result of gas chromatography (GC), infrared spectroscopy (IR), gel permeation chromatography (GPC), thermal analysis spectrometer (TG-DSC), scanning electron microscopy (SEM) and other methods, we concluded that the fracture of long molecular chains in PET depolymerization in micrwave has two process, while one is random and the other is regular. At the early stage of the reaction random fracture is the main one when the regular fracture is not clear, but in the later stage regular fracture is the main one. By analyzing the energy provided by microwave in the reaction, we found that the amount of microwave energy and the degree of PET depolymerization are some related, and we established the function model of microwave energy.
     We have optimizated the former kenetics model of the PET depolymerization, established the corresponding reaction rate equation and calculated the speed constant and the activation energy of the chemical reaction. The result indicated that under the microwave environment the activation energy of the PET depolymerization was lower than other ways, front the union the analysis obtains under the microwave the PET random depolymerization process, showing is precisely the microwave non-thermal reaction causes PET to have the random depolymerization, responded that in a short time produces the massive depolymerization product, change the way of reaction, easier the reaction. .
引文
[1]吴剑南.我国聚酯工业现状和前景展望[J].当代石油石化,2004,12(6):16-19
    [2]卢静.我国聚酯产业链发展趋势及建议[J].内蒙古石油化工,2009,7:48-49
    [3] 2009-2012年中国聚对苯二甲酸乙二醇酯(PET)市场调查与投资咨询研究报告. 2009.
    [4]谢亚芬.废聚酯的循环利用[J].化工时刊,2005,19(3):56-58
    [5]钱伯章.世界聚酯需求今后10年将年增10%[N].中国化工报,20070503(2)
    [6]郭大生,王文科.聚酯纤维科学与工程[M].上海:中国纺织出版社,2001.6-28
    [7]钱伯章.聚酯回收利用及技术进展[J].橡塑资源利用,2008,4:30-35
    [8]王信.今年全球聚酯需求继续增长[J].精细化工原料及中间体,2008,5:39-40
    [9]钱伯章.PET聚酯需求走入下行通道[N].中国化工报.20081205(3)
    [10]王信.世界经济危机对聚酯产业链的影响[J].精细化工原料及中间体,2009,4:35-37
    [11]黄发荣,陈涛,沈学宁等.高分子材料的循环利用[M].上海:化学工业出版社,2000.23-40
    [12]王德诚.新技术使聚酯实现完全回收再生[J].资料中国,2009,4:16-17
    [13]汪海,杨松伟,陈庆华.简析废旧塑料回收现状[J].中国资源综合利用,2009,27(7):11-13
    [14]庄苏宁.聚酯回收技术及前景[J].应用科技,2003,8:80-82
    [15]李娟.发展循环经济必须重点突出[N].中国纺织报,20081002(3)
    [16]王鸣义.“环境友好型”聚酯纤维的产品开发[J].合成纤维,2009,3:3-6
    [17] Goto M, Hiroshi K, Akio K, etal. Depolymerization of polyethylene terephthalate in supercritical methanol[J]. Journal of physics:condensed matter, 2002, 14:11427-11430
    [18]谢尔斯,赵国梁.现代聚酯[M].上海:化学工业出版社,2007.30-50
    [19]王晓春,张健飞.PET降解研究[J].合成纤维,2002,36(6):5-7
    [20] Goje A S.Auto-Catalyzed Hydrolytic Depolymerization of Poly(Butylene Terephthalate) Waste at High Temperature[J]. Polymer-Plastics Technology and Engineering, 2006, 45:171-181
    [21]史元元,陈衍夏,施亦东等.聚酯回收料的再资源化及其纺织产品的开发[J].纺织科技进展,2008,1:29-31
    [22] Xi Guoxi, Lu Maixi, Sun Chen. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate)[J]. Polymer Degradation and Stability, 2005, 87:117-120
    [23] Chi S J, Cheng W H. Thermal degradation and catalytic cracking of poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 1999, 63:407-412
    [24] Francis P, Gilles T. Comparative reactivity of glycols in PET glycolysis[J]. Polymer Degradation and Stability, 2006, 91(11):2567-2578
    [25]钱伯章.帝人公司在泰国推行聚酯回收利用计划[J].合成纤维,2009,33:55-56
    [26]王德诚.帝人集团在泰国推出聚酯循环再生项目[J].聚酯工业,2009,22(2):44-46
    [27] Campanelli J R, Cooper D G, Kammal M R. Kinetic Study of the Hydrolytic Degradation of Polyethylene Terephthalate at High Temperatures[J]. Journal of Applied Polymer Science, 1993, 48(3):443-451
    [28] Kao C Y. PET recycling and recovery of terephthalic acid by alkaline hydrolysis[J]. Advances in Polymer Technology, 2000, 21(4):250-259
    [29] Kao C Y. Investigation of Alkaline Hydrolysis of Polyethy-lene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis[J]. Applied Polymer Science, 1998, 70:1939-1945
    [30] Seyed Saeid Hosseini, Somaye Taheri, Ali Zadhoush. Hydrolytic Degradation of Poly(ethylene terephthalate)[J]. Appl. Poly. Sci., 2007, 103:2304-2309
    [31] launay A, Thominette F, Verdu J. Hydrolysis of Poly(ethylene terephtalate) steric exclusion chromatograrhy study[J]. Polymer Degradation and Stability, 1999, 63:385-389
    [32] Toshiaki Yoshioka, Nobuchika Okayama, Akitsugu Okuwaki. Kinetics of hydrolysis of PET Powder in Sulfuric Acid by a Modified Shrinking-Core Model[J].Ind. Eng. Chem. Res., 2001, 40:75-79.
    [33] Ben-Zu Wan, Chih-Yu Kao.Cheng.Kinetics of Depolymerization of Poly(ethylene terephthalate) in a Potassium Hydroxide Solution[J].Ind.Eng.Chem. Res,2001,40:509-514.
    [34] Kumar, H. S.; Guria, C. Alkaline Hydrolysis of Waste Poly(ethylene terephthalate): A Modified Shrinking Core Model. J. Macromol. Sci., PartA: Pure Appl. Chem. 2005, 42:237.
    [35] Darwin P. R.Kint, Antxon Martinez De Ilarduya, Jordi J Bou.Poly(ethylene terephthalate) copolymers containin Nitroterephthalic unitsIII.methanolytic Degradation[J].J. Polym. Sci. Pol. Chem. [J], 2002, 40: 2276-2285
    [36] Hideki Kurokawa, Masa-aki Ohshima, Kazuo Sugiyama.et.al. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol , Poly. Deg. Stab. [J], 2003, 79: 529-533.
    [37] Minoru Genta, Tomoko Iwaya, Mitsuru Sasaki. Depolymerization Mechanism of Poly(ethylene terephthalate) in Supercritical Methanol [J]. Ind.Eng.Chem.Res.2005,(44): 3894-3900
    [38]陈磊,吴勇强,倪燕慧等.聚对苯二甲酸乙二醇酯在超临界甲醇中解聚的研究[J].高校化学工程学报,2004,18(5):587-589
    [39] Chen J Y, Ou C F, Hu Y C,et.al., Depolymerization of poly (ethylene terephthalate) resin under pressure[J]. Appl. Polym. Sci., 1991, 42: 1501-1507
    [40] S. Mishra, A. S. Goje, Kinetics of Glycolysis of Poly(ethylene terephthalate) Waste Powder at Moderate Pressure and Temperature, [J]. Appl. Polym. Sci., 2003,87, 1569-1573.
    [41] Adhemar Ruvolo-Filho, Priscila S. Curti. Chemical Kinetic Model and Thermodynamic Compensation Effect of Alkaline Hydrolysis of Waste Poly(ethylene terephthalate) in Nonaqueous Ethylene Glycol Solution[J]Ind. Eng. Chem. Res. 2006, 45, 7985-7996
    [42]刘丽华,李葭,李燕立.聚酯醇解反应动力学研究[J].北京服装学院学报,2003,23(2):1-3
    [43]程为庄.废PET饮料瓶的醇解反应动力学[J].建筑材料学报,2002,5(3):298-302
    [44]李恺翔,张东.PET纯水中的微波解聚及动力学研究[D].温州大学硕士学位研究生学位论文.2007
    [45]张淑珍,张东.微波条件下PET水解的动力学研究[D].温州大学硕士学位研究生学位论文.2009
    [46]刘立新,张东,安立佳.纯水中PET的微波解聚及其反应机理研究[D].中国科学院博士学位研究生学位论文.2005
    [47]刘立新,张东,安立佳等.聚对苯二甲酸乙二醇酯(PET)的解聚与反应机理研究[J].功能材料,2004,35:2576-2578
    [48]张华阳,张东.纯水中PET的微波解聚研究[D].大庆石油学院硕士研究生学位论文.2004
    [49]王禹,王宝辉,张东.纯水中PET的微波解聚─方法的研究[D].大庆石油学院硕士研究生学位论文.2006
    [50]刘立新,张东,赵晓非等.聚对苯二甲酸乙二醇醋微波水解反应方式分析及机理研究[J].材料导报,2007,21(11):10-12
    [51]张东,宋小芳,李恺翔.微波辐射下PET的催化解聚方法[P].中国,发明,200710069215.9
    [52]龙智.废弃聚对苯二甲酸乙二醇酯的再资源化研究[D].重庆大学硕士学位论文.2008
    [53] Mart?′n-Gullo′n I., Esperanza M., R. Font. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). [J]. Journal of Analytical and Applied Pyrolysis2001,58–59:635–650.
    [54] Teare D O H, Bradley R H, Tonthat C. Surface characterization and ageing of ultravio-let-ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy[J]. Surface interface Analysis, 2000, 29:276-283
    [55]苏跃增,孙晓娟,刘萍.关于微波化学反应机理的探讨[J].化学通报,2000,3:3-4
    [56]梁亮,梁逸曾.微波辐射技术在有机合成中的应用[J].化学通报,1996,3:26-28
    [57]胡希明,张莲华.微波化学[J].化学通报,1998,12:33-36
    [58]胡希明,梅治乾,黄仲涛等.微波与合成[J].华南理工大学学报,1997,25(12):34-35
    [59]银董红.微波辐射促进ZnCl2与Y分子筛固相反应的研究[J].化学通报,1997,8:55-56
    [60]张华莲,胡希明,赖声礼.微波在化学中的应用[J].华南理工大学学报,1997,25(9):46-48
    [61] Jahngen.E.G.E. Hydrolysis of adenosine triphosphate by conventional or microwave heating.[J].Org.Chem.1990,55(10):3406-3409
    [62] Raner.K.D, Strauss.R. J. Influence of microwaves on the rate of esterification of 2,4,6-trimethylbenzoic acid with 2-propanol .[J]Org.Chem,1992,57(23):6231.
    [63] Dayal.B, Rapole.K.R, Salen.G.Microwave-induced rapid synthesis of sarcosine conjugated bile acids.[J] Bio & Medi Chem. Letters.1995,5(12):1301-1306
    [64] Shibata.C, Kashima.T, Ohuchi.K. Nonthermal Influence of Microwave Power on Chemical Reaction .[J] Jpn.J.Appl.Phys, 1996,35:316
    [65]黄卡玛,刘永清,唐敬贤,赵军.电磁波对化学反应非致热作用的实验研究[J]高等学校化学学报,1995,17(5):764-768.
    [66]郭永龙,王焰新,蔡鹤生.水热条件下利用微波加热从粉煤灰合成沸石研究[J]地球科学-中国地质大学报,2003,28(5):517-521.
    [67] PetrovAN, KononchukO F, AndreevA V, et a.l Crystal struc-ture, electrical and magnetic properties of La1-xSrxCoO3-y[J].Solid State Ionics, 1995, 80(3-4):189~199.
    [68]金钦汉,等.微波化学[M].北京,科学出版社, 1999.
    [69] Improved RecoveryWeek, 1997, 6(25), 1.
    [70] Liu Lixin, Zhang Dong, An Lijia, etal. Hydrolytic depolymerization of PET under microwave irradiation[J]. Applied Polymer Science, 2005, 95(3):719-720
    [71] Liu Lixin, Dong Zhang, An Lijia, etal. Hydrolytic Depolymerization of Poly(ethylene terephthalate) Under Microwave Irradiation[J]. Journal of Applied Polymer Science, 2005, 95:719-723
    [72]王禹,张东,王宝辉.微波的热效应与非热效应[J].辽宁化工,2006,35(3):167-169
    [73]宋小芳.微波辐射活性炭负载醋酸锌降解PET的催化研究[J].辽宁化工,2007,36(9):577-578
    [74]宋小芳,张东.微波环境下醋酸盐、金属氧化物对PET催化水解的研究[D].温州大学硕士学位研究生学位论文.2008
    [75]张淑珍,张东.PET中间产物及最终产物的端羧基含量测定[J].北京服装学院学报,1993,13(10):72-77
    [76]陈海平,张东.氨纶废丝甘油解聚及其工艺条件研究[D].温州大学硕士学位研究生学位论文.2008
    [77]张淑珍,张东.PET微波水解中端羧基含量的测定[J].辽宁化工,2008,37(12):852-853
    [78]张鑫,贾延华,张东等.微波环境下硫酸盐对聚苯二甲酸乙二醇酯水解的催化解聚.应用化学[C].应用化学.桂林:科学出版社,2009.26:575-577
    [79]张东,张鑫,贾延华.微波环境下PET的催化解聚方法[P].中国,发明,200910153094.5
    [80]汪杰,张东.密度变化对聚酯化反应动力学的影响[D].温州大学硕士学位论文.2008
    [81]刘立新,张东,赵晓非.微波对聚酯水解解聚反应选择性作用的研究[J].材料导报,2007, 21(11):13-15
    [82]刘立新,张东.结晶度对微波作用下PET水解解聚的影响[J].高等学校化学学报,2005, 26(12):2394-2396
    [83]刘立新,张东,赵晓非.热分析法研究聚对苯二甲酸乙二醇酯微波水解解聚反应[J].材料导报,2007,21(11A):7-9
    [84] Giguere R J. Tetrahedron Letters Duncan S M, et al. Application of commercial microwave ovens to organic synthesis[J]. Chemistry Commun, 1986, 41(27):4945-4948
    [85] Hwang D R, Moerlein S M. Application of microwave technology to the synthesis of short-lived radiopharmaceuticals[J]. Chemistry Commun. 1987, 23:1799-1800
    [86] Laurent A, Jacquault P J. Fast synthesis of amino acid salts and lactams without solvent under microwave irradiation[J]. Chemistry Commun. 1995, 11:1101-1103
    [87]潘道皑,赵成大,郑载新.物质结构(第二版)[M].北京:高等教育出版社,1994.382-390
    [88]胡英,陈学让,吴树森.物理化学[M].北京:高等教育出版社,1983.164-166
    [89]徐光宪.物质结构[M].北京:人民教育出版社,1978.150-153
    [90]郑昌仁.高聚物分子量及其分布[M].北京:化学工业出版社,1986.30-209
    [91] Novick S E,Engelking P,Jones C P L. Laser photoelectron, photodetachment, and photodestruction spectra of O?3 [J]. Journal of Chemical Physics,1979,70(6):2652.
    [92] Hubbard J, Onsager L. Dielectric dispersion and dielectric friction in electrolyte solutions. I.[J].Journal of Chemical Physics, 1977, 67:4850-4851
    [93]金钦汉.微波化学[M].上海:科学出版社,1999.5-6
    [94]宋红玮,许忠斌.微波辅助回收废弃聚酯制备粉末用聚酯树脂[D].浙江大学硕士学位研究生学位论文.2008
    [95]杨晓庆,黄卡玛.微波与化学反应体系相互作用过程中的特殊效应研究[D].四川大学博士学位研究生学位论文.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700