微波辐射下用于PET催化解聚金属氧化物的制备及其催化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧聚对苯二甲酸乙二醇酯PET在生产中被广泛的应用,它的循环利用是一个重要的研究课题。PET的循环利用越来越引起人们的重视。我们之前对微波作用下PET在水体系中的资源化研究已经做了大量的工作并取得了显著的研究成果。
     本论文系统的从氧化物结构及其酸碱性的角度研究了微波作用下金属氧化物对PET解聚的影响规律,研究表明金属氧化物的酸性、碱性越强,催化效果也就越好。同时金属氧化物的晶体结构也是影响催化性能的一个重要的因素。研究过程中,根据我们前面的工作,采用共沉淀法,无机固相合成法制备了部分Zn系列复合金属氧化物。通过XRD对催化剂进行表征,根据XRD图谱可以确定产物为所需复合氧化物。同时研究了不同复合金属氧化物催化剂对微波作用下金属氧化物对PET解聚的影响,通过IR ,SEM,GPC等表征手段对解聚产物进行了表征。实验过程中对复合金属氧化物催化剂进行筛选,通过正交实验方法得到具有最佳催化效果的复合金属氧化物ZnO?SrO,并研究了其对微波作用下PET催化解聚效果影响,接下来我们对解聚过程中微波能量,复合金属氧化物和PET之间的的作用机制进行了探讨。
     我们目前的研究表明,金属氧化物的酸性、碱性越强,催化效果也就越好。我们所研究的Zn系列复合金属氧化物催化剂对微波作用下PET的解聚都有一定的催化效果,Zn系列复合金属氧化物催化剂与PET有规、无规解聚的规律性存在因果关系,其中ZnO?SrO对微波作用下PET的解聚有较好的催化效果。
Poly(ethylene terephthalate) (PET) is widely used in the manufactur -e. The recycling of waste PET is a prominent object. The recycling and utilization of PET gets more and more attention. Lots of study was done about the recycling of PET in the pure water system under the microwav -e ,and made a noteworthy achivement.
     In this thesis, the law of catalytic effect on the depolymerization of PET by metal oxides under microwave irradiation was researched system -atically. The law was studied from the perspective of the oxide structure and acid and alkaline. The study shows that the stronger of the oxide acidic alkaline of metal, the better catalytic effect. Meanwhile, the crystal structure of metal oxide was a factor for its catalytic capability. In the process of researching, according to our work, several kinds of composite oxide catalysts of Zn series were prepared by coprecipitation and the diagnosis of inorganic solid consistency. The product were characterized by XRD and the product can be determined is the target product by XRD. At the same time, the catalytic effects of different complex metal oxide for PET depolymerization under the microwave irradiation was investig -ated.The residue of PET was characterized by IR, SEM and GPC etc. Composite metal oxide catalyst was selected by the experiments.As a result, The composite metal oxide, ZnO?SrO ,has the best catalytic effect. At the same moment, the best PET depolymerization’s condtion under the ZnO?SrO was obtained by orthogonal experime -nt, and its effect on the impact of PET catalyzed depolymerization under the microwave irrad -iation was studied.After that we discussed the mechanism among microwave energy, mixed metal oxides and PET during depolymerization process.
     Our current study showed that the stronger the acidity and alkaline of metal oxides is, the better catalytic effect they are.The composite metal oxide catalyst that we studied of Zn’s series have certain catalytic effect on the depolymerization of PET under microwave irradiation and their catalytic effects have Causality with regular and random PET depolym -erization.ZnO?SrO has better catalytic effect on the impact of depolym -erization of PET under microwave irradiation.
引文
[1] S. R. Shukla, Ajay M. Harad. Glycolysis of Polyethylene Terephthalate Waste Fibers.Journal of polymer science.2005,97(2):513-517.
    [2] M.Ghaemy,K. Mossaddegh.Depolymerisation of poly(ethylene terephthalate) fibre wastes using ethylene glycol[J]. Polymer Degradation and Stability, 2005. 90(3): 570-576.
    [3] Daniel Paszun,Tadeusz Spychaj.Chemical Recycling of Poly(ethylene terephtha -late) [J]. Ind. Eng. Chem. Res. 1997, 36:1373.
    [4]李玉林,固体催化剂研究新进展[J]..化学工业, 2008(02): 9-12.
    [5] Kao C. Y. PET recycling and recovery of terephthalic acid by alkaline hydrolysi -s[J]. Advances in Polymer Technology, 2000, 21(4):250-259
    [6] Campanelli J R, Cooper D G, Kammal M R. Kinetic Study of the Hydrolytic Degradation of Polyethylene Terephthalate at High Temperatures[J]. Journal of Applied Polymer Science, 1993, 48(3):443-451.
    [7]金钦汉.微波化学[M].上海:科学出版社,1999.5-6
    [8] Krzam A. Posvetovanja Slov.Kem. Dnovi, 1998, 645-650
    [9] Andrej Krzan,J. Appl. Polm. Sci,1998,69,1115-1118.
    [10] D J,Royall,J Lharie, Eur. 1993.
    [11]杨始堃.涤纶边脚料甲醇醇解回收[J].合成纤维工业,1978,(4):8-11.
    [12]席国喜,赵静,孙晨.废聚酯非酸催化合成对苯二甲酸二( 2-乙基己)酯的研究[J].环境科学研究.2006,19(1):49-52.
    [13]庄国雄.SnO催化醇解聚酯废料制备DOTP增塑剂的研究[J].广东民族学院学报.1996,4:117-119.
    [14] S.J. Chiua, Cheng W.H. Thermal degradation and catalytic cracking of poly(ethyleneterephth -alate) [J]. Polymer Degradation and Stability, 63(1999): 407-412.
    [15]刘立新,安立佳,张东.纯水中PET的微波解聚及其反应机理研究[D].中国科学院博士学位研究生学位论文,2005,53-58.
    [16]甄开吉.催化作用基础.现代化学基础[M].科学出版社. 2004.
    [17]王良,陶红侠.复合氧化物SnO2-ZnO催化废聚酯合成DOTP的研究[J].吉林师范大学学报, 2006, 2: 71-72.
    [18] Kuiling ding and yasuhiro Uozumi.Handbook of Asymeeetric Heterogeneous Catalysis[M].
    [19] S.D.Jackson, J.S.J. .Hargreaves. metal oxide catalysis[M].
    [20]谢希德.固体能带理论[M].复旦大学出版社.
    [21]田部浩三等.新固体酸和碱的催化作用[M].化学工业出版社.
    [22]清山哲郎,金属氧化物及其催化作用[M].1989.
    [23]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.72-77.
    [24]胡英,陈学让,吴树森.物理化学[M].北京:高等教育出版社,1983.164-166.
    [25] Smith D W. An Acidity Scale For Binary Oxides[J].J Chem Educ, 1987, 64(6):480.
    [26]孙家跃,杜海燕,石春山.标度二元氧化物酸碱性质的新方法[J].化学能报,1991,(2):19.
    [27]余训民.二元氧化物酸碱性的新标度[J].锦州师范学院学报. 2004, 23(2): 69- 71.
    [28] Tamele M W.Discussions Fraraday Soc..1960;8:270
    [29] Chen, A., Support effect in hydrogenation of methyl benzoate over supported manganese oxide catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003. 203(1-2): 299-306.
    [30] Ginosar, D.M.,et al., High-temperature sulfuric acid decomposition over complex metal oxide catalysts[J].. International Journal of Hydrogen Energy, 2009. 34(9): p. 4065-4073.
    [31] Habuta, Y., Catalytic activity and solid acidity of vanadium oxide thin layer loaded on TiO2, ZrO_2, and SnO_2. Catalysis Today, 2003. 78(1-4): p. 131-138.
    [32] Haneda, M., et al., Selective Reduction of NO with Propene over Ga2O3–Al_2 -O_3: Effect of Sol–Gel Method on the Catalytic Performance[J]. Journal of Catalysis, 2000. 192(1): p. 137-148.
    [33] Jakob, A., et al., Synthesis, solid state structure and spectro-electrochemistry of ferrocene-ethynyl phosphine and phosphine oxide transition metal complexes[J]. Journal of Organometallic Chemistry, 2009. 694(5): p. 655-666.
    [34] Lin, M., Complex metal-oxide catalysts for selective oxidation of propane and derivatives I. Catalysts preparation and application in propane selective oxidation to acrylic acid[J].. Applied Catalysis A: General, 2003. 250(2): p. 305-318.
    [35] Lu, Y., Hydrothermal synthesis and crystal structure of a layered vanadium oxide with an interlayer metal coordination complex: [Co(phen)3][V10O26]·H2O[J].Journal of Solid State Chemistry, 2004. 177(3): p. 946-950.
    [36] Lushchik, A., Electron and hole intraband luminescence in complex metal oxides[J].. Journal of Luminescence, 2003. 102-103: p. 44-47.
    [37] Niwa, M., Solid acidity of metal oxide monolayer and its role in catalytic reactions[J].. Catalysis Today, 2003. 87(1-4): p. 213-218.
    [38] Scott, E., Preparation of substituted transition-metal (η1-propargyl complexes and their [3+2] cycloaddition reactions with sulfur dioxide and disulfur monoxide. Transition-metal–carbon bond cleaving reactions of the cycloadducts which yield oxathiolene oxides and dithiolene oxides[J].Journal of Organometallic Chemistry, 2003. 673(1-2): p. 67-76.
    [39] Smiechowski, M., Iridium oxide sensors for acidity and basicity detection in industrial lubricants[J].. Sensors and Actuators B: Chemical, 2003. 96(1-2): p. 261-267.
    [40] Tokmachev, A., Local many-electron states in transition metal oxides and their surface complexes with atomic and molecular oxygen[J].. Journal of Solid State Chemistry, 2003. 176(2): p. 633-645.
    [41] Wu, Z., et al., Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: Controlling the dispersion and size of nickel nanoparticles[J].. Journal of Colloid and Interface Science, 2009. 330(2): p. 359-366.
    [42] Carniti, P., A. Gervasini, and M. Marzo, Silica–niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity[J].. Catalysis Today, 2010. 152(1-4): p. 42-47.
    [43]庄子栋,李延升.沉淀法制备氧化铟锡超细材料的研究进展[J].山西化工.2005,(25).
    [44]杨开怀,黄清涯,陈文哲.溶胶.凝胶法制备CuFeMn04复合金属氧化物的工艺研究[J].太阳能学报.2009(30):769-773.
    [45]童培云,冷冻干燥技术制备超微粉体的研究进展[J]..粉末冶金工业, 2007. 17(2).
    [46]曾翎,姜华昌,张立庆等微波法对复合金属氧化物催化剂结构和催化性能的影响[J]。
    [47]孙明,余林,余倩等.前躯体浸渍法制备VOx/Al2O3及其催化二甲醚制甲醛能[J].2010(01).
    [48]景春燕,洪广言等. Y2O3稳定的ZrO2超微粉末的合成与结构研究[J].土.1989,(4):6-10.
    [49] Gramich, Eysel, Mineralogisch-Petrograph. Institut, Universitaet Heidelberg, FRG.
    [50] Hydrolytic Depolymerization of PET under Microwave Irradiation [J]. J Appl Polym Sci, in the press.
    [51] Li, K., X. Song, Zhang D., Depolymerization of poly(ethylene terephthalate) with catalyst under microwave radiation[J].. J. Appl. Polym. Sci., 2008. 109(2): p. 1298-1301.
    [52] Li, K., Song X., Zhang D., Molecular weight evaluation of depolymerized poly(ethyleneterephthalate) using intrinsic viscosity[J].. J. Appl. Polym. Sci., 2008. 109(2): p. 1294-1297.
    [53] L.Liu, et al., Hydrolytic depolymerization of poly(ethylene terephthalate) under microwave irradiation[J]. J. Appl. Polym. Sci., 2005. 95(3): p. 719-723.
    [54]刘立新.聚对苯二甲酸乙二醇酯(PET)的解聚与反应机理研究[J].. 2004.
    [55]刘立新.结晶度对微波作用下PET水解解聚的影响[J].高等学校化学学报, 2005(12): p. 2394-2396+2198.
    [56]宋小芳,张东.微波辐射在高分子材料降解中的应用[J]..辽宁化工, 2008(02): p. 102-105.
    [57]宋小芳,张淑珍,张东.微波辐射下PET解聚的金属氧化物催化作用研究[J]. 2007.中国四川成都.
    [58]孙海涛.纯水中PET的微波解聚研究-PET的粒度对解聚率的影响. 2005.中国北京.
    [59]王禹.微波辐射下PET解聚的催化作用研究. 2005.中国北京.
    [60]王禹.微波的热效应与非热效应.辽宁化工, 2006(03): p. 167-169.
    [61]张淑珍,宋小芳,张东.微波辐射下PET解聚的醋酸盐系催化作用研究. 2007.
    [62]张淑珍,张东. PET微波水解产物中端羧基含量的测定.辽宁化工, 2008(12): p. 852-853.
    [63]王真.云南大学硕士论文[D]. 1991, 6
    [64] Laurent A, Jacquault P J. Chemistry Sociaty[J]. Chemistry Commun. 1995, 11:1101-1103.
    [65]余训民.拓扑指数YM与二元氧化物的光学碱标[J].2000(11).
    [66]孙家跃,杜海燕,石春山.氧化物酸碱性的一种新标度[J].化学通报,1911(2).
    [67]潘道皑,赵成大,郑载新.物质结构(第二版)[M].北京:高等教育出版社,1994.382-390.
    [68] Smith D W. An Acidity Scale For Binary Oxides[J]. J Chen Educ, 1987, 64(6): 480.
    [69]孙家跃,杜海燕,石春山.标度二元氧化物酸碱性质的新方法[J].化学能报, 1991, (2): 19.
    [70]孙贤祥,氧化物酸碱性的一种新标度[J].萍乡高等专科学校, 1994(4): p. 34-38.
    [71]刘立新,安立佳,张东.纯水中PET的微波解聚及其反应机理研究[D].中国科学院博士学位研究生学位论文,2005,53-58.
    [72] Song,X.,Zhang S., Zhang D. Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation. Journal of Applied Polymer Science, 2010. 117(6): p. 3155-3159.
    [73]龙智.废弃聚对苯二甲酸乙二醇酯的再资源化研究[J].重庆大学硕士论文[D].2008.
    [74] Smith D W. An Acidity Scale For Binary Oxides[J]. J Chen Educ, 1987, 64(6): 480.
    [75] Microcalorimetric study of the acidity and basicity of metal oxide surfaces.
    [76] Wataru Ueda, Tomokazu Katou, Takumi Fujisawa etc.New Complex Metal Oxide Catalysts for Chemical[J].
    [77] T. Lopez, J.Navarrete, R.Gomez etc. Preparation of sol-gel sulfated ZrO2·SiO2 and characterization of its surface acidity[J]. Applied Catalysis, 1995, 125: 217-232.
    [78] A.F. WELLS, Structural Inorganic Chemistry[M], ed. t. ed. 1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700